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BIFURCATION ANALYSIS OF A MODEL OF THREE-LEVEL
FOOD CHAIN IN A MANGROVE ECOSYSTEM

Cristina Bercia1 and Romeo Bercia2

In this paper, we consider a three-dimensional non-linear dy-
namical system of predator-prey type with 12 parameters which models a
food-chain in a mangrove ecosystem. Our goal is to study the dynamical
properties of the model with constant rate harvesting on the top-predator. It
is shown that transcritical, saddle-node and supercritical Hopf bifurcations
occur when one parameter is varied. By numerical integration of the system,
we plot the phase portraits for the important types of dynamics and we show
the presence of a stable limit cycle. We deduce the controlling role of the
harvesting rate upon the stable equlibrium or periodic state of coexistence of
the species.
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1. Introduction

We consider a three dimensional ordinary differential autonomous system
which models a food chain in a mangrove ecosystem with detritus recycling
and with constant rate harvesting of top predators. The three levels of the
food chain are the detritus (x(t) denotes its density at time t) which consists
of algal species and leaves of the mangrove plants, then detritivores (y(t))-
unicellular animals, crustacean, amphiopod and others (see [4]) which depend
on rich detritus-base and the predators of detritivores (z(t))-fish and prawn.
Some of the predators have commercial value and undergo harvesting. The
system has the following form:

x′(t) = x0 − ax− βxye−αx + γz

y′(t) = β1xye−αx − d1y −
cyz

k + y
(1)

z′(t) =
c1yz

k + y
− d2z − hz

with the initial conditions x(0), y(0), z(0) ≥ 0.
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The main assumptions of the model are the following:
1. The detritus has a constant input rate (x0) maintained by the de-

composed mangrove leaves. [4] Also the detritus is washout from the system
with a certain rate (a) and is supplied with dead organic matter converted into
detritus by the action of the micro-organisms.

2. The interaction between detritus and detritivores is different from
the classical models of predator-prey in that the detritivores response func-
tion is not a monotone incresing function of prey density, but rather is only
monotone increasing until some critical density and then becomes monotone
decreasing. (as it is described in [3] between phytoplankton and zooplankton).
This phenomenon is called group defense in which predation (in our case by
detritivores) decreases when the density of the prey population is sufficiently
large, which is also related to the nutrient uptake inhibition phenomenon in
chemical kinetics (see [1]). One of the nonmonotone functional response in-
troduced (see [6]) is p(x) = βxe−αx where 1

α
> 0 is the density of the prey at

which predation reaches its maximum.
3. The amount of detritivores consumed by the top predator is assumed

to follow a Holling type-II functional response. It exhibits saturation effect
when y-population is abundent and k is the half-saturation constant. The top
predators (z(t)) are harvested with a constant rate, h.

4. The detritus-detritivores conversion rate is less then the detritus up-
take rate, so β1 < β.

5. For the same reason, the detritivore-predator conversion rate is c1 < c.
6. The detritus recycle rate due to the death of predators, γ is less than

d2 + h.
First we study the boundedness of the solutions of the system (1).

Proposition 1.1. The first octant R3
+ is positively invariant under the flow

generated by the system (1).

Proof. Let be (v1, v2, v3) the vector field which defines the differential system
(1). We study the vector-field on the boundaries of the first octant. In Oxz-
plane, v2(x, 0, z) = 0, therefore all trajectories which initiate in this plane,
remain in it, for any t ≥ 0, so the plane y = 0 is an invariant set for the
system. In the same situation is the plane z = 0 because v3(x, y, 0) = 0. But
trajectories which start in Oyz-plane, y, z > 0 are directed towards the interior
of the first octant, since v1(0, y, z) = x0 + γz > 0. In consequence all solutions
with x(0), y(0), z(0) ≥ 0, remain in the first octant. �

Proposition 1.2. With the hypothesis upon the parameters 4,5 and 6, every
solution of the system (1) with positive initial values, is bounded.

Proof. Let (x(t), y(t), z(t)) be a solution of the system with positive initial
conditions. We deduce that (x+y+z)′(t) < x0−ax(t)+(γ−d2−h)z(t)−d1y(t),
∀t ≥ 0. If M = min(a, d2 + h− γ, d1), then (x+ y + z)′ < x0 −M(x+ y + z).
Next we denote u(t) = (x+ y + z)(t). By multiplying the last inequality with
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eMt, we get that u verifies (ueMt)′ − x0eMt < 0, ∀t ≥ 0, or, equivalently from
integration, u(t) ≤ (u(0)− x0

M
)e−Mt + x0

M
, that is u(t) ≤ max(u(0), x0

M
), ∀t ≥ 0.

Therefore, any solution of the system (1) starting in R3
+, is bounded. �

Let us nondimensionalize the system (1) with the following scaling:
t→ at; y → β

a
y; z → cβ

a2
z and the system becomes

x′(t) = X0 − x− xye−αx + µz (2)

y′(t) = bxye−αx −D1y −
yz

K + y

z′(t) =
ryz

K + y
−Hz

where X0 = x0
a

; b = β1
a

;D1 = d1
a

;K = kβ
a

; r = c1
a

;H = d2+h
a

;µ = γa
cβ

are positive

constants. For simplicity, we keep the ecological implications of parameters
X0, µ, b,D1, K, r and H the same as x0, γ, β1, d1, k, c1 and h, respectively. In
consequence, in the following study, we assume that µ < H, b < 1 and r < 1.

2. Stability and bifurcation analysis

Now we determine the location and the existence criteria for the equilibria
of the system (2) in the first octant.

Proposition 2.1. a) There is an axial equlibrium E0(X0, 0, 0), for any values
of the parameters;
b) If αe < b

D1
< eαX0

X0
and X0 >

1
α

, the system has two boundary equilibria

Ei(x
∗
i , y
∗
i , 0), i = 1, 2, where x∗1 < x∗2 are the two solutions of the equation

xe−αx =
D1

b
(3)

and y∗i = (X0 − x∗i ) b
D1

,i = 1, 2;

c) If b
D1

> eαX0

X0
, there exists only one boundary equilibrium E1(x

∗
1, y
∗
1, 0) with

x∗1 <
1
α

and y∗1 given in b);

d) If b
D1

< αe, there are no boundary equilibria in R3
+.

Proof. b) Un equilibrium with z = 0 has its first component, solution of the
equation xe−αx = D1

b
. A simple classical analysis shows that the equation has

solutions iff b
D1
≥ αe and in the case with strict inequality there are two solu-

tions x∗1 < x∗2 which are smaller than X0 when X0e
−αX0 < D1

b
, X0 >

1
α

.

c) The condition b
D1

> eαX0

X0
is equivalent with x∗1 < X0 < x∗2 and in conse-

quence, only E1 is in the first octant. �

We take the case when (∃)M such that xe−αx|x=M > D1

b
, which, from

the second equation in system (2), means that otherwise y could not survive
on the prey at any density in the absence of z. In the following study, b

D1
≥ αe

and this is the case when the equation (3) posses at least one solution.
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Next we give a sufficient existence criterion for the interior equilibrium
E3(x3, y3, z3). A simple calculation shows that x3 is a solution of the equation:

g(x) := K
H − µbr
r −H

xe−αx + x+
µD1rK

r −H
−X0 = 0, (4)

y3 = HK
r−H and z3 = (bx3e

−αx3 −D1)
rK
r−H .

Remark 2.1. We assume that r > H from now on, that is the detritivore-
predator conversion rate has to be greater than the harvesting rate, so that
there exists un interior equilibrium which is the case with biological relevance.

Proposition 2.2. i) If b
D1

< eαX0

X0
and X0 >

1
α

(i.e. the system has two bound-

ary equilibria) and H2 < H < H1, then it is at least one interior equilibrium,
E3, where

Hi :=
br(X0 − x∗i )

KD1 + b(X0 − x∗i )
, i = 1, 2; (5)

ii) If b
D1

> eαX0

X0
(i.e. there exists only one boundary equilibrium) and H < H1,

then it is also at least one interior equilibrium, E3.
iii) When the system has two boundary equilibria, H2 < H1.

Proof. First of all note that z3 > 0 is equivalent to bx3e
−αx3 > D1 or

x3 ∈ (x∗1, x
∗
2), where x∗1 < x∗2 are the two solutions of the equation xe−αx = D1

b
.

Then notice that in equation (4) the coefficient H − µbr > 0, due to the
assumptions (4,5,6) of the model. A sufficient condition for equation (4) to have
a solution x3 ∈ (x∗1, x

∗
2) is g(x∗1)g(x∗2) < 0 or in the form x∗1 < X0− KD1H

b(r−H)
< x∗2

which in case i) becomes H2 < H < H1 and in case ii), H < H1. We shall see
that for H = H1, E3 = E1 and in case i), for H = H2, E3 = E2. �

Corollary 2.1. If, in addition to the conditions in Proposition 2.2 we require

H < r
Kµb+ e2

K + e2
=: H0, (6)

it follows that the equation g(x) = 0 has only one solution x3 ∈ (x∗1, x
∗
2),

that is the equilibrium E3 exists and it is unique. Otherwise, g(x) = 0 may
have maximum three positive solutions, so there are maximum three interior
equilibria.

Proof. g′(x) = 1 +KH−µbr
r−H (1−αx)e−αx attains its minimum m = 1− K(H−µbr)

e2(r−H)

at x = 2
α

. Because g′(0) > 0 and lim
x→∞

g′(x) > 0, it turns out that if m > 0

(the condition (6)), then g is increasing . If m < 0, then g′(x) = 0 has two
solutions and in consequence, the equation g(x) = 0 may have three positive
solutions. �
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Next we discuss the dynamics of the system (2) in the neighborhood of
each equilibrium. The Jacobian matrix of the linearization of the system is

Dv

D(x, y, z)
=

 −1− ye−αx(1− αx) −xe−αx µ
bye−αx(1− αx) bxe−αx −D1 − Kz

(y+K)2
− y
y+K

0 rKz
(y+K)2

ry
y+K
−H


(7)

Evaluating Dv
D(x,y,z)

at each equilibrium, we get the following results:

Proposition 2.3. i) If b
D1

< eαX0

X0
, the equilibrium E0 is a hyperbolic stable

node . If b
D1

> eαX0

X0
, E0 is a hyperbolic saddle . In any case, it is attractive in

two directions in the plane y = 0;
ii) The boundary equilibrium E1 is locally asymptotically stable for H > H1

and it is a hyperbolic saddle for H < H1;
iii) E2 is a hyperbolic saddle for the values of the parameters which ensure its

existence, namely b
D1

< eαX0

X0
, X0 >

1
α

and for any H.

Proof. i) The eigenvalues of the Jacobian matrix evaluated at E0 are
λ1 = −1, λ2 = −H,λ3 = bX0e

−αX0 − D1 and the eigenvectors corresponding
to λ1,2 < 0 are u1 = (1, 0, 0), u2 = (µ, 0, 1−H) which imply i).

ii),iii) For Ei, i = 1, 2, the eigenvalues are λi1 =
br(X0−x∗i )

KD1+b(X0−x∗i )
−H and λi2,3 are

the roots of the equation λ2 + (1 + pi)λ + D1pi = 0 with pi =
(X0−x∗i )(1−αx∗i )

x∗i
.

Hence, p1 > 0 and in consequence, Re(λ12,3) < 0, but p2 < 0 so, λ22λ
2
3 < 0 and

E2 becomes a saddle. �

The eigenvalues of the Jacobian matrix at the interior equilibrium
E3(x3, y3, z3) verify the characteristic equation

λ3 + A1λ
2 + A2λ+ A3 = 0 (8)

where

A1 =
D1H

r
+ 1 +

H

r(r −H)
e−αx3 [Kr − x3(b(r −H) + αKr)];

A2 =
H

r
(bx3e

−αx3 −D1)[r −H − 1− KH

r −H
e−αx3(1− αx3)]

+
bKH

r −H
e−2αx3x3(1− αx3); (9)

A3 = (bx3e
−αx3 −D1)(r −H)[

KH

r −H
e−αx3(1− αx3)(

H

r
− µb) +

H

r
].

The necessary and sufficient condition for E3 to be asymptotically stable is
given by the Routh-Hurwitz criterion, i.e. A1A2 > A3 and A1, A3 > 0;
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The third component of E3 has to be strictly positive, or equivalently
bx3e

−αx3 −D1 > 0. Then we notice that A1 > 0 if

x3 <
rK

b(r −H) + αKr
. (10)

This implies x3 <
1
α

and since H > µbr, we have A3 > 0.
With simple algebra, we deduce the following

Proposition 2.4. If E3 exists, the condition (10) holds and(
H

r
(bx3e

−αx3 −D1)− 1− KH

r −H
e−αx3(1− αx3)

)
·

·
(
bx3e

−αx3 −D1

r

(
1 +

KH

r −H
e−αx3(1− αx3)

)
− bK

r −H
e−2αx3x3(1− αx3)

)
(11)

+(bx3e
−αx3 −D1)

(
bµKe−αx3(1− αx3)−

H(r −H)

r2
(bx3e

−αx3 −D1)

)
> 0

then the equilibrium E3 is locally asymptotically stable.

The previous propositions are sintethized in the following

Theorem 2.1. Let X0 >
1
α

, H1 < H0 and D1αe < b < D1

X0
eαX0. Then:

i) If H2 > µ, for H ∈ (µ,H2), the system (2) has at least three equilibria: E0

as attractive node, E1 and E2 hyperbolic saddles;
ii) For max(µ,H2) < H < H1, the system has the equilibrium points E0, E1, E2

as in the previous case and E3 which is locally asymptotically stable (l.a.s.) if
conditions (10) and (11) hold;
iii) For H = H2, E2 and E3 concide;
iv) For H = H1, E1 and E3 concide;
v) For H1 < H < r, E3 may be unphysical, E1 becomes l.a.s., E0 remains
attractive node and E2 hyperbolic saddle.

Theorem 2.2. Let H1 < H0 and b > D1

X0
eαX0. Then:

i) For µ < H < H1, the system has the equilibrium points E0, E1 hyperbolic
saddles and E3 which is l.a.s. if conditions (10) and (11) hold;
ii) For H = H1, E1 and E3 concide;
iii) For H1 < H < r, E3 may be unphysical, E1 becomes l.a.s., E0 remains
hyperbolic saddle.

3. Bifurcation analysis

First we take b as the control parameter for the system (2).

Theorem 3.1. If H 6= er(αX0−1)
e(αX0−1)+K , X0 > 1

α
, for b = αeD1, the boundary

equilibria E1 and E2 appear through a saddle-node bifurcation. For b < αeD1,
these two equilibria do not exist.
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Proof. We fix b = αeD1, then x∗1 = x∗2 = 1
α
< X0 and y∗1 = y∗2, so E1 = E2. The

eigenvalues corresponding to E1 are λ1 = er(αX0−1)
e(αX0−1)+K −H, λ2 = 0, λ3 = −1, so

we need λ1 6= 0 in order to have the codimension 1 bifurcation of saddle-node
type.
Let be DF

Dv
(E1, αeD1) the Jacobian matrix of the system written in the form

v′ = F (v, b), with b the bifurcation parameter and v = (x, y, z), evaluated in
E1 for b = αeD1. We use a theorem (Sotomayor [2]) which gives necessary and
sufficient conditions for a saddle-node bifurcation. These are:
(SN1) DF

Dv
(E1, αeD1) has a single zero eigenvalue which is fulfilled, due to the

hypothesis of the theorem. Let be u = (1,−eα, 0)T its right eigenvector and
w = (0, r, 1)T its left eigenvector.
(SN2) w· ∂F

∂b
(E1, αeD1) = rα(αX0 − 1) 6= 0.

(SN3) w·DvvF (E1, αeD1)(u, u) = −α2eD1(αX0 − 1)r 6= 0.
The nonzero conditions (SN2) and (SN3) imply that SN = {b = αeD1, H 6=
er(αX0−1)

e(αX0−1)+K , X0 >
1
α
} is a saddle-node bifurcation surface in the parameters

space. When the parameters pass from one side of the surface to the other
side, the number of the boundary equilibria changes from zero when b < αeD1

to two hyperbolic equilibria E1,2 when b > αeD1, in the neighborhood of
b = αeD1. These equilibria are connected by an orbit that is asymptotic to E1

for t→∞ and to E2 for t→ −∞. �

Now we take H as a control parameter for the system.

Theorem 3.2. If X0 >
1
α

, b > αeD1 and

µ >
K

b

b(X0 − x∗1)− e2D1

b(X0 − x∗1) +KD1

, (12)

then
a) the equilibria E1 and E3 coincide for H =

br(X0−x∗1)
KD1+b(X0−x∗1)

=: H1 at a point of

transcritical bifurcation;

b) E2 and E3 coincide for H =
br(X0−x∗2)

KD1+b(X0−x∗2)
=: H2 also at a point of trans-

critical bifurcation, if, in addition b < D1

X0
eαX0.

Proof. a) i) We fix H = H1. The condition (12) is equivalent to H1 < rKµb+e2

K+e2

which (see Proposition 2.2 and corrolary) implies that the solution x3 of
the equation (4), g(x) = 0, exists and it is unique. Then H = H1 ⇐⇒
x∗1 = X0 − KD1H

b(r−H)
. But x∗1 < 1

α
and verifies xe−αx = D1

b
, in consequence

KH1−µbr
r−H1

x∗1e
−αx∗1 + x∗1 = X0 − µD1rK

r−H1
and x∗1 = x3. Also y3 = KH1

r−H1
= y∗1, z3 = 0

which imply E1 = E3. From the proof of Proposition 2.3, we have:
ii) For H = H1, the eigenvalues for E1 are λ1 = 0, Re(λ2,3) < 0, so only one
eigenvalue is zero.
iii) On the other hand, the equilibrium E1, from unstable (when H < H1)
becomes stable for H > H1.
iv) We evaluate the matrix

(
DF
Dv
| ∂F
∂H

)
at the bifurcation point (E1, H1) and we
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find that ∂F
∂H

= (0, 0, 0)T . It implies rank
(
DF
Dv
| ∂F
∂H

)
= 2.

From i)-iv) (see [5]), we deduce that in R3
+×{H > 0} the branches of equilibria

E1 and E3 intersect through a transcritical bifurcation at H = H1 and change
their stable manifold when we pass the critical parameter value.
b) There are similar arguments. The condition b < D1

X0
eαX0 ensures the ex-

istence of the equilibrium E2. Then H = H2 ⇐⇒ x3 = x∗2 >
1
α

. Also only
one eigenvalue (see proof of Proposition 2.3) corresponding to E2 is zero for
H = H1. �

These values of the parameters H = H1, H = H2, b = αeD1 delimitate
strata on parameters space induced by topological equivalence of the phase
portraits.
We are now investigating dynamic bifurcations. The equilibrium E3 is the
only one which may experience Hopf bifurcation because only the interior
equilibrium can have a pair of purely imaginary eigenvalues. This necessary
condition for E3 to undergo a Hopf bifurcation is equivalent to

A1A2 = A3, A2 > 0 (13)

(with Ai given by (9)) together with the sufficient conditions for the existence
of the interior equilibrium (see Proposition 2.2). Also we need that the third
eigenvalue of E3 to be non-zero, i.e. A3 6= 0, which is satisfied if x3 <

1
α

with
g(x3) = 0. In this case, we have A3 > 0 and so the characteristic equation (8)
admits the roots λ1,2 = ±iω, ω > 0 and λ3 = −A1 < 0.

4. Numerical results

We take H as a control parameter. We fix the parameters in order to be
in the case D1αe < b < D1

eαX0

X0
(see Theorem 2.1): K = 1;α = 1.2; r = 0.3; b =

0.66;D1 = 0.2;µ = 0.1;X0 = 1. This case corresponds with the existence of
two boundary equilibria Ei(x

∗
i , y
∗
i , 0), i = 1, 2. With a program in MAPLE,

we find the solutions of the equation xe−αx = D1

b
, x∗1 =

LambertW (0,−αD1
b

)

α
=

0.71276,x∗2 =
LambertW (−1,−αD1

b
)

α
= 0.96679, then y∗1 = 0.94789, y∗2 = 0.10958.

The static bifurcation parameters are H2 = 0.029628 < H1 = 0.1459872.
We solve numerically the system

A1A2 = A3

g(x3) = 0 (14)

A2 > 0, x3 <
1

α
, bx3e

−αx3 −D1 > 0

which are the necessary conditions for Hopf bifurcation of E3 and we find the
bifurcation parameter value H = Hcr = 0.112115 and x3 = 0.81746422.

Hcr ∈ (H2, H1), H1 < H0 and we are in the hypothesis of Proposition 2.2
and its corollary. There is only one interior equilibrium for any H ∈ (H2, H1).
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Then, we investigate the appearance of a limit cycle when H is in the
neighborhood of the critical parameter value. We find that for H < Hcr an
asymptotically stable limit cycle appears.

For example, when H = 0.11 ∈ (H2, Hcr), the solution of equation
g(x3) = 0, bx3e

−αx3 > D1 is x3 = 0.822894. Then y3 = 0.5789; z3 = 0.00365.
With initial conditions close to E3, we integrate numerically the system. With
a program in MATLAB we obtain the phase portrait. The trajectories come
together close to the saddle connection between E1 and E2, towards E1 and
then tend to a stable limit cycle, while E3 is repelling. (see Figure 1)

Figure 1. Left: A stable limit cycle when K = 1;α = 1.2; r =
0.3; b = 0.66;D1 = 0.2;µ = 0.1;X0 = 1;H = 0.11 < Hcr.
Right: Time oscillations of populations corresponding to one of
the trajectories, with initial values (0.6228; 0.7789; 0.0136).

Figure 2. Left: Trajectories tending to the attractive focus
E3. The modified parameter is H = 0.13 > Hcr. Right: Time
evolution of the three populations corresponding to one of the
trajectories, with initial values (0.7666; 0.9647; 0.0129).
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For H = 0.13 ∈ (Hcr, H1), trajectories initiated in a small neighborhood
of E3, come together very close to the saddle connection E2 → E1 and tend
for t→∞ to E3 as a focus. (see Figure 2)

In consequence, (E3, Hcr) is a point of supercritical Hopf bifurcation be-
cause, when H varies and passes the critical value, from a stable equilibrium
E3 for H > Hcr, it appears a stable limit cycle for H < Hcr, while E3 loses its
stability.

5. Conclusions

The harvesting rate (H) of top predator can control the stable equilib-
rium point or periodic state of coexistence of the three species.

First of all, the model illustrates the phenomenon of biological overhar-
vesting when H > H1 and in this case the top-predator goes to extinction.

If the detritus-detritivores conversion rate b is not high,D1αe<b< D1eαX0

X0
,

the scenario of extinction of both detritivores and top-predator is possible, for
any value of the harvesting rate, depending on initial population levels.

When we decrease H, for H ∈ (Hcr, H1), all the populations coexist in a
form of a stable equilibrium, under certain initial conditions. When H passes
through a critical value, Hcr, the system undergoes a Hopf bifurcation, namely
for H ∈ (max(µ,H2), Hcr), different populations of the system will start to
oscillate with a finite period around the equilibrium point of coexistence.

Since H = d2+h
a

, it turns out that also for increasing large values of
washout rate (a) of detritus, the system changes from a stable state to an
unstable state and the populations will survive through periodic fluctuations.

Mathematically, we would like to point out here that our analysis of the
model is a first look at the local bifurcations, but it is not complete. For
example a study of codimension 2 bifurcations will reveal richer dynamics.
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