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OPTIMIZED CONTROL METHOD FOR VEHICLES AT
UNSIGNALIZED INTERSECTIONS IN A HUMAN-MACHINE
MIXED-DRIVING ENVIRONMENT

Hui SHEN!* Weiming WANG?, Shangjiang YANG?, Yuqi YANG*

In addressing the optimization control issue of vehicles at intersections within
a human-machine mixed-driving traffic environment, the concepts of controllable and
uncontrollable vehicle platoons are first proposed. Considering the impact of multi-
lane vehicles moving in the same direction and the upstream and downstream conflict
areas on the internal conflict process at intersections, an algorithm for handling
conflicts between different types of vehicle platoons has been designed. Based on this,
by considering the interaction between vehicles in the internal conflict zones of
intersections and applying the scanline method, the actual conflict points are
decoupled in a closed loop. Furthermore, based on the analysis of the speed-time
space domain of the lead vehicle in the controllable platoon reaching the stop line,
with the objectives of minimizing the number of actual conflict points and reducing
average vehicle delay, a two-stage optimization model for vehicle scheduling at
intersections in a human-machine mixed traffic flow environment is constructed. The
model’s optimized solution further facilitates the reverse optimization of lane-
changing trajectories for autonomous vehicles.

Keywords: human-machine mixed driving, unsignalized intersections, conflict
decoupling, optimized control

1. Introduction

Autonomous driving technology has become a research hotspot in the field
of intelligent transportation. With the continuous maturity of autonomous driving
technologies, optimized control of vehicles at unsignalized intersections will
become feasible. Currently, most research on this issue is targeted towards a fully
autonomous driving environment. However, for a considerable period, there will
exist a mixed-driving scenario where manually driven and autonomous vehicles
coexist.
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Unlike traditional intersections solely comprised of manually driven
vehicles, the predictability and controllability of autonomous vehicles have
significantly altered the control paradigms at intersections in a human-machine
mixed-driving environment. Beyond the traditional traffic light control, the
operation trajectories of autonomous vehicles can be planned in this environment.
This planning can change the distribution of traffic flow and enhance the efficiency
of intersection traffic. As the penetration rate of autonomous vehicles increases,
studying the effects of optimized control at unsignalized intersections under various
penetration rates will provide support for implementing unsignalized control
strategies, thus bearing greater significance.

Based on this context, this research focuses on the optimized control of
vehicles at intersections in a human-machine mixed-driving traffic environment.
After analyzing the interaction between vehicles in the internal conflict zones at
intersections, a two-stage optimization model for vehicle scheduling at intersections
in a human-machine mixed traffic flow environment is constructed. The second part
of this article provides a literature review of previous research. The third part
describes the definition of the platform and the assumptions for input and output,
the fourth part describes the model construction, including lane changing model,
speed guidance model, conflict model, optimization objective model, etc., and the
fifth part is the conclusion.

2. Literature review

In the context of signal-controlled scenarios, research on autonomous
vehicle trajectory planning includes trajectory planning for single-lane autonomous
vehicles and multi-lane autonomous vehicles. Wang et al. [1] focused on the car-
following issue for autonomous vehicles and proposed a control structure based on
rolling optimization. F. Zhou et al. [2], considering a mixed platoon consisting of
autonomous and manually driven vehicles, extended the trajectory planning model
for single-lane autonomous vehicles to accommodate system state measurements'
uncertainties and established a stochastic optimal control model.

In addition to the aforementioned model-based methods, recent studies have
begun exploring the potential of utilizing machine learning techniques for
autonomous vehicle trajectory planning. In this regard, M. Zhou et al. [3] developed
a car-following model based on reinforcement learning (RL) for autonomous
vehicles at single-lane intersections, aiming to improve overall traffic efficiency,
fuel consumption, and traffic safety. Shi et al. [4] used a traditional (non-deep) Q-
learning approach to develop effective driving strategies for autonomous vehicles
approaching signalized intersections. Mousa et al. [5] employed deep Q-learning
with prioritized experience replay, target networks, and double learning to train RL
agents, which allow autonomous vehicles to approach and leave signalized
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intersections efficiently without interference from other vehicles. Wang et al. [©]
focused on the control issues of autonomous vehicles within mixed traffic flows at
signalized intersections, considering oscillations caused by manually driven
vehicles, using deep reinforcement learning models to predict the trajectories of
manually driven vehicles and control autonomous vehicles.

Yao et al. [7] considered the interaction between autonomous vehicle
trajectory planning and manually driven vehicle lane changes and designed a
human-machine mixed-traffic trajectory planning framework for multi-lane
signalized intersections. Ma et al. [8] aimed to optimize the longitudinal and lateral
trajectories of individual autonomous vehicles, and with signal timing and
surrounding vehicle trajectory information provided, established a discrete-time bi-
level optimization model with the objectives of minimizing vehicle delay, fuel
consumption, and lane-changing costs. Bai et al. [9] developed a hybrid eco-driving
strategy based on reinforcement learning for human-machine mixed traffic flows at
signalized intersections. Xu et al. [10] proposed a two-step strategy for this joint
optimal control problem. Guo et al. [11] also utilized a two-step method to
separately optimize traffic signal timing and autonomous vehicle trajectories. Yu et
al. [12] modeled the problem as a MILP (Mixed-integer linear programming)
problem, treating the sequence of signal phases at the intersection. Liu et al. [13]
also developed a MILP model for the joint optimization problem.

The computational complexity of the aforementioned joint optimization
modeling methods is relatively high, making real-time computation challenging to
ensure. To enhance computational efficiency, some research has simplified
individual vehicle control to the overall control of a platoon by establishing mixed-
platoon configurations, thereby reducing problem scale [14] [15]. In terms of
distributed control, Naumann et al. [16] proposed a distributed control strategy for
vehicles at intersections. Wu et al. [17] developed a distributed exclusion algorithm
for intersection vehicles, where vehicles issuing travel requests compete with other
vehicles to determine if they gain priority passage permission. Zhang et al. [18]
introduced a distributed optimal control framework that ensures each vehicle
obtains the optimal acceleration/deceleration at any given moment. Simulations
demonstrated that this strategy not only avoids congestion and ensures safety but
also reduces average fuel consumption under different levels of autonomous vehicle
penetration. Quang et al. [19] proposed a vehicle scheduling method based on deep
reinforcement learning. Li et al. [20] discussed optimal control strategies for mixed
platoons with different formations, including cases where the lead vehicle is
manually driven.

Overall, in the current research on vehicle control optimization at
unsignalized intersections in a human-machine mixed-driving environment,
although some results consider lane allocation or platoon reformation, the impact
of reformation on intersection conflicts and conflict avoidance optimization is still
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lacking. Additionally, when multiple lanes in the same direction are present at the
entry points, coordination among platoons within these lanes also needs
consideration.

3. Platoon definition

Assumptions and Inputs/Outputs:

1) During the analysis of the conflict areas at the intersection, only cross-
conflict points are considered, ignoring conflict points related to diverging and
merging traffic flows.

2) Communication delays related to V2V (Vehicle-to-Vehicle) and V2X
(Vehicle-to-Infrastructure) technologies are not considered.

The model's inputs include the geometric parameters of the intersection,
such as the number of entry and exit lanes from each direction, lane widths,
coordinates of the stop line endpoints on each lane, coordinates of the inner
boundaries of zebra crossings, and coordinates of the conflict area boundaries.
Inputs also include vehicle attributes, such as autonomous and manually driven
vehicles; additionally, real-time position and speed information of vehicles at the
decision-making moment are included. The model's outputs are the guided speeds
along the vehicle paths, vehicle entry and exit times at the intersection, and the
delay time experienced by each vehicle.

In this paper, the non-lane-changing section upstream of the intersection is
treated as the control segment, which generally consists of the guided lanes. To
enhance the optimization effect when employing the unsignalized control method
proposed in this paper, the length of the guided lanes can be extended. Given the
randomness in the driving behaviors of manually driven vehicles, individual
vehicle-based control often results in reduced control precision (due to vehicle
speed estimation errors, leading to significant deviations between the analysis
process and actual control outcomes), and tends to cause frequent acceleration and
deceleration of vehicles within the intersection. Additionally, considering a platoon
led by a Connected and Autonomous Vehicle (CAV) as the research subject can
further reduce computational complexity. Therefore, this paper first defines a
platoon and subsequently focuses on platoon-based optimization of control
strategies. With the control section of the intersection area already defined, the
platoon in this paper is required to meet the following conditions:

(a)The platoon consists of vehicles within the range of the guided lanes.

(b) Vehicles in the same platoon come from the same lane; vehicles from
different lanes cannot be in the same platoon.

(c) The time gap between vehicles within the platoon should be less than or
equal to a set value.
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Given the different compositions of vehicles in platoons from various
directions at the intersection, this chapter categorizes platoons into controllable and
uncontrollable types. A controllable platoon refers to a platoon led by a CAV
whereas an uncontrollable platoon consists entirely of HDVs (Human-Driven
Vehicles), as shown in Fig. 1(a). The platoon is modeled to include the type of
platoon, number of vehicles in the platoon, and real-time attributes of the vehicles
(such as vehicle type, position, speed, and acceleration), as shown in equation (1).
As time progresses, the original attributes of the platoon may change, as illustrated
in Fig. 1(b) and (c):

Human-Driven Vehicles (HDV) :'_ Uncontrollable Controllable Uncontrollable
l Az Platoon Platoon
. sEle
Autonomous Vehicles (AV) l C 0!"‘[:(‘:'!:\‘:1 le
. Controllable Controllable Controllable
1 Platoon Platoon Platoon
Controlled l
Section
(a) (b) ()¢

Fig.1 Schematic Diagram of Platoon Composition
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In equation (1), ji,d;r (t) represents the attributes of the J -th platoon on lane
i in direction dir (approach direction) at time ¢, lypei 'f (¢) indicates the type of the
dir

J -th platoon on lane i in direction dir at time ¢, with bpe;;

(t) =1 denoting a
controllable platoon, and lype,.‘f i-r(l‘) =0 indicating an uncontrollable platoon.
numf ’]' (#) denotes the number of vehicles in the J -th platoon on lane 7 in direction
dir at time . k,d'f (¢) represents the real-time attributes of the vehicles in the J -th
platoon on lane i in direction dir , and kfjin(t) specifies the real-time attributes of
the 7 -th vehicle in the kf;r(t) platoon on lane i in direction dir . pf ’Jrn (t) indicates
the type of the 7 -th vehicle in the J -th platoon on lane J at time ¢, where
pfi.r,n (t) =1 signifies the vehicle is a CAV, and pf 'jr,,
HDV. d"

L,J.n

(t) =0 means the vehicle is an

() represents the real-time position of the 7 -th vehicle in the J -th
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platoon on lane i in direction dir, v, (¢) denotes the real-time speed of the 7 -th

lji‘l

vehicle in the J -th platoon on lane i in direction dir , and a” " (?) is the real-time

i,j,n

acceleration of the 7 -th vehicle in the J -th platoon on lane J in direction dir .

Controlled platoons manage the formation by adjusting the speed of the
leading CAV. When the speed of the lead CAV changes, following HDVs calculate
their trajectories using the IDM (Intelligent Driver Model). Under centralized
comprehensive data collection and processing, the lead CAV in a controlled platoon

can access real-time attributes fld;r () of other platoons currently. In the control

strategies discussed in this chapter, if the conflict area involves only controlled
platoons, the speed of the lead vehicle in controlled platoons can be managed to
allow the entire platoon to pass through the conflict direction smoothly. However,
if the conflict involves a controlled platoon and an uncontrolled platoon or between
two uncontrolled platoons, conflict area management strategies are used to
determine the process of vehicle passage. This means, in conflicts between
controlled and uncontrolled platoons, HDVs may cut through the platoon.

When optimizing the speed of the lead CAV in a controllable platoon, it is
essential first to ascertain the number of HDVs within the same platoon. If
subsequent HDVss enter the guided lane, the conditions for these vehicles to join the
preceding platoon include:

(1) The time gap between the vehicle and the last vehicle of the preceding
platoon must meet the platoon criterion (c).

(2) Upon entry of the vehicle into the platoon, the vehicles in the direction
of conflict must be able to pass through the conflict area safely as a consolidated
platoon

diry ,b diry ,b diry,m
. 1121 ([ ) \/ 1121 (t ) _Zamaxll 121 (t )

a

max

<t (g 2)

L,j.n

In this context, """ (¢,) represents the time required for the newly added

s Lijn
vehicle 7 in the J -th controllable platoon on lane i in direction dir; to pass
(¢,) denotes
the distance from the lead vehicle of the Jj -th controllable platoon on lane i in
direction dir, to the conflict area at time £, and V,d ljzl
the lead vehicle in the J -th controllable platoon on lane i in direction dir, at time

diry ,m
l 25

through the conflict area 7 starting from time Z,. Conversely, /; ;;

(z,) represents the speed of

Zy . The variable a,,, corresponds to the maximum deceleration of the vehicle.
Considering the interactions between controllable platoons in conflict areas,

the approach of allowing entire platoons to yield may sometimes result in infeasible

situations. Therefore, it is necessary to address such infeasible scenarios as follows:
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(1) If an infeasible situation arises during initialization, randomly select one
platoon from the conflicting controllable platoons to reduce by one vehicle at the
end, and recalculate until a solution is found.

(2) If an infeasible situation occurs during the optimization process, remove
the newly added vehicle in the target platoon.

4. Control model construction

4.1 Lane change constraints

Based on the above analysis, it is obvious that when the direction of the
conflict is a controllable fleet, the controllable space can be increased and the
flexibility of vehicle trajectory control can be improved, therefore, the problem that
needs to be solved by lane change control is how to increase the number of multi-
lane controllable fleets in the same direction on the basis of not affecting the
operation of the original controllable fleet. Based on this, this paper stipulates that
when one of the two CAVs in the controllable fleet of the lane can change lanes and
can change lanes to the front of the uncontrollable fleet in the adjacent lane, the
CAV vehicle is controlled for lane change planning, and the applicable scenarios
include two scenarios: single-rear vehicle lane change control for the target lane
and lane change control for the target lane with dual rear vehicles, as shown in Fig.
2.

y Convoy j Convoy j-1 y Convoy j Convoy j-1
= - ] Leei |3 3 [ Lane i
____ [ B Leve !
Convoy m —— _ o
XV a) X'
y Convoy | Convoy j-1 y Convoy j Convoy j-1
- — T Tanei | 1 [ Lanei
] B B lanci+l 1 B Laneifl
Convoym —p . | Convoym ———» -
XV Lall
(b) b
Bl CAV [ ] HDV Controllable convoys Uncontrollable convoys

Fig. 2 (a) Applicable scenario of deceleration and lane change of double rear vehicles facing the
target lane, (b) Applicable scenario of lane changing of single rear vehicle facing the target lane

(1) Compatible with single rear vehicles facing the target lane
Compared with conventional autonomous lane change, because it is a
controlled lane change at this time, the lane change conditions only need to meet
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the safety conditions, and at the same time, considering the fleet reorganization
goal, the lane change conditions are as follows:

safe
Gapi,j—l,n (tchange,AV) > GapAV (tchange,AV)

Gap, il (tclmnge,AV) > Gapi‘jﬁ (tchange,AV)

pia,,_l;l (1)=0and dic,i;il (tchange,AV) < diilr,m,p (tchange,AV) and _ (3)
dicfj‘rfl,n (tchange,AV) > dij{,m, » (tchange,AV ) and pi{i;,m, » (tchange,AV )=1

pidz,m,p (tchange,AV) =Lp=12,..kk22

Wherein, Gap, ; ,, (t.juge.r) the distance fouue 4 betweeni+1 the first m

CAV of P the time lane team and i the last vehicle of the j —1 adjacent lane” team

Gap, il (tchange,AV)iS the time Z 4.4 adjacent lanei team j The distance between

the lead car and the CAV to be changed.

(2) Compatible with dual rear vehicles facing the target lane

This paper stipulates that the lane change CAV of the double rear vehicle
facing the target lane should be the head vehicle of the controllable team, and the
vehicle behind it in the team is also a CAV.

safe

Gapi,j*l,n (tchange,AV) < Gapi,j*l,n (tchange,AV)

dir _ dir dir
pi,_/—l,n (tchange,AV) - O and di,‘/—l,n (tchange,AV) < di+l,m,l (tchange,AV)

pidfl/,m,p (tchange,AV) = l’p = 1’ 2’ oot k’ k 2 2

safe

Gapi,/‘,pﬂ (th) > Gapi,j,p+1 (tb)
dll,il]r,]? (tb ) > di‘iri;,m,l (tb )

safe

Gap, ; ,(t,)> Gapyy (t,)

In addition, in order to reduce the computational complexity, in the design
of the algorithm, the CAV lane change and vehicle speed guidance are divided into
two stages, firstly, the CAV that meets the above lane change conditions is
controlled for lane change, and then the vehicle speed guidance is carried out after
the lane change is completed. In order to achieve the goal of minimizing the internal
conflict of the intersection through the speed guidance of the head vehicle of the
CAV, it is necessary to ensure that the head CAV vehicle (if any) entering the
control section in the time window does not pass the stop line at the time when the
CAV completes the lane change, and can be guided to the lowest speed V., ,

“)

therefore, the constraints are as follows:

1 2 2
1 Zo max 1 Vd' i (t e, ) —V_.
ldir,i (tchange,AV) _JI \ . vdir,i (t)dt 2 ST =
‘change.,

2 a(,‘

)
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wherein, 7, .. is the latest lane change end time required among all
controlled lane change vehicles in this time window.

4.2 Speed guidance constraints

Under the guidance speed, the rear car shall be evenly accelerated and
decelerated until the guidance speed is reached, and in this process, it is necessary
to meet the safety time distance from the front vehicle, that is, there are the
following constraints:

T t »
X () [V Ode 2 )+ [ Vi @de+ v L O, Vdir ki
: t, B g 4, E E Z
t,<T <t§;,lfe (6)
Vmin < V:I{;}i (t) < Vmax B Vka l

Wherein, ?, is the & time when the first vehicle starts to guide, xfji,,[ (¢,) and
is the position dir of the first i vehicle in the k£ direction lane at the time ¢,
(according to the lane where the vehicle is located, x;‘,.,,i (¢,) it can be represented by
the coordinates of the front corner point of the vehicle), Vﬁir,i(t) and is the dir

direction lanei The k speed at the time? of the first car v,,;, is the minimum guiding

speed, and v,,,, the maximum guiding speed tﬁ;}f is the moment when the dir first

vehicle in thei direction lane & +1 enters the intersection.

In the actual scene, if the guidance speed is very small, it can be converted
into the time from the beginning of guidance to leaving the intersection, and then
the time of leaving the intersection is obtained, and the vehicle can drive normally
after conversion, but the speed and time of leaving from the stop line need to be
consistent with the optimized result (the control mode is changed to the time control
of entering the intersection at this time), therefore, if the vehicle needs to stop and
wait before entering the intersection and is the first vehicle on the lane, its stop point
should be some distance from the stop line, The distance is the distance from the
acceleration of the vehicle speed from 0 to the guide speed, then at this time, the
moment when the vehicle starts from the stop point and the stop point position are
calculated as follows:

k k k k k
Viri =Vari @) L (8.) =S4, Lk Vi,
+ Vk = Ydir,i
ac dir,i c
2
kN2 k
k _ (Vd[r,[) _<vd[r,[(ta))
dir,i — (7)
2a,
ko2
lk,.v _ Vdir,i
dir,i
2a,
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Wherein, /;

ir,i

(¢,)is thedir idistance from the stop line when the vehicle

speed guidance on the direction lane begins, and £ is the moment when tﬁir,i the

vehicle starts dir from the stopi point on the & direction lane, and /5. is the dir

direction lanei The k distance between the parking position of the vehicle and the
parking line a. is the comfortable acceleration of the vehicle, le;,i the guiding

speed, and S 5 . the distance traveled when dir the vehicle on thei direction lane &

starts from the speed guidance to the guiding speed.

When the speed guidance is carried out on the head vehicle of the
controllable fleet, the vehicle should be able to reach the guiding speed before the
stop line at the intersection, therefore, the guiding speed also needs to satisfy the
formula (12):

(Vd]l('r,i )2 - (Vjir,i (ta))2
2a,

Before the vehicle reaches the stop line (enters the intersection), when there
is speed guidance, it reaches the guiding speed and then drives at a constant speed.

Due to the influence of the vehicle in front during acceleration guidance, the?,

<Ly (2,) ®)

following conditions should be met at a constant speed at a time when it is sufficient
to a, accelerate to the guidance speed, so the following conditions should be met

respectively according to the attainability of acceleration guidance and deceleration
guidance
(1) When decelerating and directing:

kY (o 2
ltfir,i (ta) - (V:ﬁr’i) Z(anihi (ta)) = Vd]:'r,i (ts _tl)
‘ ©)

k k
;= Vi = Vairi(8,)
=i _dniac

a

c

Wherein, ?,1s the time when the vehicle speed starts to guide, the?, time

when the vehicle reaches the guiding speed, and ¢, the time when the vehicle arrives

at the stop line.
(2) When speeding up booting:
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)

V/t
ltl;ir,i (tLhunge,AV ) - J‘::u vdu x(t)dt L - (t - ) dir i

e AV Zac
k k 2 ‘
Viir,i (n= Viir, i([)(tehange,,w) +J: Ay ; (t)dt, L <t<t,
change AV
t = L(t)
-« (10)

ayl () =a, {1 [v‘“ (t) S (t) }
" ™ max AS(Z)

ad (D= adj(t) a,; /([)<Olh nge.ay <L

adir,i(t) =0, atlﬁrf,i(t) 20,

>“change, AV <t <t

Wherein, Z,is the time when the vehicle speed starts to guide, which ¢, 1s
obtained by the following formula, and the constraints also need to meet the formula

(10), (11), (12):

k (K
max f(2,) =1y, ,(t,)~ Vi) (%M@J)t <t <t <t (11)

>Ye,max —
2 c

The vehicle without speed guidance uses the following model to calculate
the trajectory:

k
dlr 1( tchanee AV) I v vdir,i(t)dt

T
vdil',i(t) = vdir.i( t(fhang@,AV) +-[t/ » amr,(t)dt L ange. av <T<t, (12)

a’(t=a, {1 —[v“k”'"" (t)]_(S(t)J 1
" Vi As(t)

On the basis of the above constraints, based on the position and speed of the

CAV head vehicle of each controllable fleet at the Z, ., moment, the speed-time

range of the CAV reaching the stop line can be calculated, and then the speed and
time of the controllable fleet reaching the stop line can be used as the decision
variables, and the optimization solution is carried out within the value range. Since
the end position and lane change time of CAV lane change trajectory planning are
not unique, when the end position and lane change time of CAV lane change
trajectory planning, a new speed-time range will be formed, and then the speed-
time space domain when it reaches the stop line will be formed.

Based on the above analysis, it can be seen that when the speed-time of the
CAV head vehicle of each team is optimized, there may be more than one end
position and lane change time of the corresponding lane change CAYV trajectory, so
on the basis of the optimization solution of the speed-time optimization of the CAV
head car of each controllable team, reverse optimization is required, that is, the
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optimal trajectory is found from the CAV lane change trajectory that can achieve
the optimization result, that is, the optimal end position and lane change time.

4.3 Conflict constraints

To reduce the complexity of calculations, this paper focuses on conflict
zones as the subject of analysis, addressing conflicts involving vehicles from
different directions within these zones. To prevent the occurrence of "deadlock" at
intersections, it is stipulated that vehicles are not allowed to stop within any conflict
zones. A typical intersection conflict area is depicted in Fig. 3, which divides the
intersection space into three sections based on the spatial position attributes of
vehicles before crossing the intersection: the buffer zone, conflict zone, and
downstream impact area. The buffer zone refers to the interval from the stop line to
the boundary of the conflict zone. The conflict zone is the area where vehicles from
different directions intersect, and the downstream impact area is the section
between the downstream conflict zone and the target conflict zone. The design of
the intersection can lead to variations in the extents of the buffer zones, conflict
zones, and downstream impact zones, and specific calculations can establish a
coordinate system for the intersection to analyze the ranges of these three areas in
detail.

: Virtual Lane Lines
Downstream

Influence Area

Buffer Zone

Stop Line

Fig.3 Schematic Diagram of Various Areas within the Intersection

As illustrated in Fig. 3, for platoon combinations on two lanes heading in
the same direction, vehicles influence each other as they pass through the conflict
area. Due to one platoon occupying a position within the conflict zone, vehicles
from the other platoon in the same direction, although reaching the conflict area
later, are still able to proceed.
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4.4 Objective function

On the basis of the above constraint analysis, the two-stage control
objectives are designed as follows:

Decision variables: vehicle guidance speed ¥V, , vehicle speed guidance

i,j,m>

start time ¢

ijme

Objective function 1: Through the reorganization of the controllable fleet

and the speed guidance of the head CAV of the controllable fleet, the actual number

of collision points generated by vehicles in all directions of the intersection at this
time is minimized.

Z, =minnum,. AN (13)

i,j,m?> z] m
On the basis of the optimal solution of objective function 1, the optimal
solution of objective function 2 is obtained. The objective function 2 is the AT
shortest average delay time for vehicles entering the control area within the time
window. The difference between the actual travel time of a single vehicle and the
travel time at free flow speed, i.e.:

k _ tk tk ldirl,i + ldirl,dirZ,i,j (14)
diny diryi,j — \"dirl,ie dirl,i,b v

Wherein, /;,1, is the dirl length of the control area of the i directional
entrance lane /s, 42, ;, is the distance from the dirldirectional entrance lanei to
the dir2 directional exit lane / in the intersection, v represents the free flow speed,
and fﬁm; , represents the time window A7 The dirltime when the first vehicle in

the

moment when the AT first vehicle in the dirldirectional entrance lanei leaves the
intersection within the £ time window.
Therefore, the AT total vehicle delays within the time window are:

Liin J s Kain diry i.j

Delay= 3, > X2 2 i (15)

din=N,S,W ,E dir,=N,S,W,E i=1 j=1 k=1

the directional entrance lane enters the control area, i which indicates k g

irl,i,e

. K, . ..
where represents the number of vehicles = -/ that entered the control

dir,

section within AT the time window and went from the direction lane! to the

direction dir, lane/ .

The expression of the objective function 2 (the A7 average delay of vehicles
entering the control section in the time window is the smallest) is further obtained
as:
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Z, =min( Delay

Lain Ty )

16
> Ko, (16)

dir=N,S W E dir,=N,S,W ,E i=] j=1

5. Conclusion

This paper addresses the issue of wvehicle optimization control at
intersections in a mixed human-autonomous driving traffic environment. Firstly, it
introduces the concepts of controllable and uncontrollable vehicle platoons,
considering the impact of multi-lane vehicles traveling in the same direction and
conflict zones upstream and downstream on the internal conflict processes at the
intersection. Conflict handling algorithms between different types of platoons are
designed accordingly. Building upon this, the operational process of vehicles within
the conflict zones of the intersection is considered, employing a scan line method
to achieve decoupling of actual conflict points in a closed-loop manner.
Furthermore, based on the speed-time space domain analysis of the leading vehicle
in controllable platoons reaching the stop line, a two-stage optimization model for
intersection vehicle scheduling under a mixed human-autonomous traffic flow
environment is constructed. The objective function aims to minimize the number of
actual conflict points and reduce the average vehicle delay. On the basis of model
optimization and solution, further reverse optimization of lane-changing
trajectories for autonomous vehicles is achieved. This paper constructs and solves
a model for the optimization control problem of intersection vehicles in a human-
machine hybrid traffic environment, which can minimize the average delay of
vehicles. Future research directions can further verify the effectiveness of the
proposed method through virtual simulation experiments.
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