U.P.B. Sci. Bull., Series A Vol. 77, Iss. 2, 2015 ISSN 1223-7027

NUMERICAL SOLUTION FOR FUZZY HEAT EQUATION
USING HSAGE METHOD

A’gilah Ahmad DAHALAN?, Mohana Sundaram MUTHUVALU?, Jumat
SULAIMAN?®

In this paper, application of the Half-Sweep Alternating Group Explicit
(HSAGE) method to solve finite difference approximation equations arising from
fuzzy heat equation is examined. The formulation and implementation of HSAGE
method are also presented. In addition, numerical results by solving two test
problems are included and compared with the standard Gauss-Seidel (GS) and
Alternating Group Explicit (AGE) methods.
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1. Introduction

The Alternating Group Explicit (AGE) method is one of the widely used
and successful two-stage iterative methods to solve sparse linear system. The
AGE method employs the fractional splitting strategy which is applied alternately
at each intermediate step on linear system. In a series of papers, the effectiveness
of the AGE and its variants methods were studied and tested by solving a variety
of scientific problems, for instance refer [1, 2, 3, 4]. Besides that, the concept of
half-sweep iteration has been initiated by Abdullah [5] via the Explicit Decoupled
Group (EDG) method for solving two-dimensional Poisson equations. The basic
idea of the half-sweep iteration approach is to speed-up the computational time by
reducing the computational complexity of the solution method.

Consequently, in this paper, performance of the half-sweep iteration with
AGE method i.e. Half-Sweep Alternating Group Explicit (HSAGE) method will
be investigated for solving linear systems generated from the fuzzy heat equation.
The performance of HSAGE method will be compared with the existing standard
Gauss-Seidel (GS) and AGE methods. The standard GS and AGE methods are
also known as Full-Sweep Gauss-Seidel (FSGS) and Full-Sweep Alternating
Group Explicit (FSAGE) methods respectively.

The remainder of this paper is organized in following way. In Section 2,
derivation of the full- and half-sweep finite difference approximation equations
will be elaborated. The latter section of this paper will discuss the implementation
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of FSAGE and HSAGE methods for solving generated linear systems. Some
numerical results will be presented in Section 4 to assert performance of the tested
methods and concluding remarks are given in Section 5.

2. Full- and Half-Sweep BTCS Approximation Equations

We start this section with the notation that used in the paper. The tilde sign
over a letter denote a fuzzy subset of real numbers. For a fuzzy subset of the real
numbers, U, it is characterized by the membership function evaluated at x,
written as U(x) as a number in [01]. An & -cut of U , written U («) is defined as

{X|J(x)2a} for O<a<1. The intervals of a-cut can be written as

U()=|u(2).U(a)], for all & because they are always closed and bounded [6].

In this section, we attempt to construct the full- and half-sweep finite
difference approximation equations for fuzzy heat equation. For further
discussions on formulating the full- and half-sweep finite difference
approximation equations, consider the interval that is divided uniformly as shown

in Figs. 1 and 2.
<L>
0 1 2 3 4 n-4 n3n2nl n

Fig. 1. Distribution of uniform node points for the full-sweep case

2h
0 1 2 3 4 n-4 n-3 n-2n-1 n

Fig. 2. Distribution of uniform node points for the half-sweep case
Based on Figs. 1 and 2, the full- and half-sweep iterative methods will compute
approximate values onto node points of type ® only until the convergence
criterion is satisfied. After the convergence criterion is achieved, the
approximation solutions for the remaining points are computed directly [5]. From
this section onwards, the values of p, which corresponds to one and two

represents the full- and half-sweep cases respectively.
Now, let consider the following fuzzy heat equation

ou (x,t)  o°U(xt)
-1 =0, O<x<lI, t>0
ot ox? : 1)

where F[x,t, K] =0 subject to the boundary and initial conditions
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u(0,t)=U(1,t)=0, t>0
U(x0)=f(x) O0<xs<I

Let divide the domain [0,1]x[0,T] into nxm mesh with spatial step size h = Lin
n

x -direction and k =l in t-direction. The discrete set of points of x and t are
m

given by X =ih (i=012--n) and tj=jk (j=012,--,m) respectively.

Denote the value of U at the representative discrete points by J(xi,t j):Ji, j

and parametric form of fuzzy number U; ; as Uj | = (U,JLTJ)

In this paper, we derive the formulation of full- and half-sweep finite
difference approximation equations based on the implicit scheme i.e. Backward
Time, Centered Space (BTCS). By using BTCS scheme,

oy Yijn-Yij

otk
— — )
U _Yiju-Ui]
ot k
o%u ~/1_Ui—p,j+1—2Ui,j+1+Ui+p,j+1_
and o (ph* - ®3)
o%U <] Uip js1—2Ui jia +VYirp, ju
ox? (ph)?

By subsituting (2) and (3) into problem (1), the generalized full- and half-sweep
BTCS approximation equations for problem (1) can be represented as follows

kA 2k kA
———=Uip,j 1+[—+1 Ui,j 1——Ui P, j 1:Ui,j
(ph)? == | (ph)? == (php = =
1 4)
J— ._ - 1+
(ph)2 1-p, ]+

M MU i ——2 Ui i =Us
(ph)2 i, j+1 (ph)2 i+p,j+1 1]

szz Y]

fori=p,2p,...,n=-2p,n—-pand j=12,...,,m.

Based on the Eq. (4), the only difference between these equations are on
the interval of the « -cuts which are upper and lower bounds. Therefore, for
simplicity, approximation Eq. (4) can be written as
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kA 2kA kA

_—Ui—p,j+l+[—+1Jui,j+l_—ui+p,j+1=Ui,j ®)
(ph)’ (phY? (ph)’

for i=p,2p,....,n=-2p,n—p and j=12,...,,m. The full- and half-sweep

BTCS approximation equations for U and U as shown in Eg. (5) can be

represented in matrix form as

AU =b (6)
where A is the tridiagonal matrix
2p+1 -p i
-p 28+1 -p 0
— 28+1 -—
A- SR
0 -p 2p+1 -p

MG

with g = k_/12 Implementation of the BTCS scheme requires to solve a linear

(ph)

system at each time step and it is unconditional stable.
3. AGE lIterative methods

In the section, an implementation of the FSAGE and HSAGE methods for
solving corresponding full- and half-sweep BTCS approximation equations will
be discussed. Now, let matrix A be decomposed into sum of two matrices, as
follows

AZGJ_+GZ (7)
o vi ]
5y N Aud 3
where |7 2R I and ——l—j—'bi——zl——l———‘r ———————— T
I ECAS T R TN 1 S
1 A l o TR
”””” R R Ay I I N e A
| b= B | P ]

if n is odd. Similarly, we define the foI]owing matrices
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7By i i T
A A N N AN
| ! | |_ﬂ 14 | |
G =|----—--- R 1--| and G, =|--F-"---"-- P
A R IS
________ LiTh v | oy P
I T 7] | =B ]

if n is even, with y :%. Based on the splitting of A, G, and G, satisfy the
following conditions [7]
a) (r1+G,) and (rl +G,) are non-singular for any r>0 (r is called the

acceleration parameter)
b) it is practical to solve the systems (r+G,)y=c and (rl +G,)z =d
for any vectors ¢ and d and, for any r >0 in explicit form since they consist of
only the (2x 2) subsystems.

By using splitting (7), linear system (6) becomes
(G +G, I =b ®

and the general formulation of FSAGE and HSAGE methods to compute Uk s

as follows

k+1
2

(r1 +G1)J[ ]=b+(rl —G,u® o)
N
k+=
(rl +G, U Y =+ (rl —GJJ( 2)
Since (r1 +G,) and (rl +G,) are non-singular, then their respective inverses

exist. Thus, the formulation of FSAGE and HSAGE methods can be rewritten in
explicit form as

u(k%j —(r1+Gy) p+(r1 -G, "]
(k+) [ [“1}] | o
Uk =(r1 +G,) Y b+(r1 -G U" 2

The rate of convergence of FSAGE and HSAGE methods is governed by the
acceleration parameter, r. From (10), the iteration matrices for FSAGE and
HSAGE methods are

Trsace = Thsace = (11 +G,) (11 =G rl +G,)(rl -G,) (11)
and satisfy the following Theorem 1.
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Theorem 1.
If G, and G, are real positive definite matrices and r >0, then p(Tegpee )<1 and

P(THSAGE ) <1.

Proof. The proof runs parallel to a standard proof given in [7]. o

Based on (10), the implementation of FSAGE and HSAGE methods to solve
corresponding full- and half-sweep BTCS approximation equations is presented in
Algorithm 1.

Algorithm 1. FSAGE and HSAGE methods
i. Initialize all the parameters
ii. Iteration cycle
for k=0,1,2,--
a. Stage 1
Compute

1
k+=
U( g —(+G,) o+ (r -G, u®]
b. Stage 2
Compute

k+l
2

Ukt (vl +Gz)1[b+(rl —Gl)u( )}

iii-Convergence test. If the convergence criterion i.e. “U (k+1) —U(k)H < ¢ is satisfied, go

o0

to Step (iv). Otherwise go back to Step (ii).
iv. Stop. Display approximate solutions.

4. Numerical results

In order to compare the performance of the FSAGE and HSAGE methods,
the following fuzzy heat equations were used as the test problems.
Test Problem 1 [8]
Consider the fuzzy heat equation
Uy )= g0

x,t):4F(x,t), 0<x<1t>0 (12)
X

with the boundary conditions U(0,t)=U(1t)=0, t>0
and U(x,0)= T(x)=2Ksin  and, K[a]= lk(e).k(e)|=[0.5¢ +0.5,1.5-05a].
T

ou o%U

The exact solution for E(X’t;a) = 4§(x,t;a)
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2
and %(x,t;a)=4%

. (x,t;a) are g(x,t;a)zzg(a)e“‘”ztsin;zx
X P

and U(x,t;a):zﬁ(a)e“‘”ztsinﬂx respectively.
T

Test Problem 2 [6]

Consider the fuzzy heat equation
ou GLY
= (xt)="=
ot (X~) 6x2~(

subject to the conditions U(0,t)=U(1,t)=0, t>0

and U(x,0)=f(x)=ksinm, 0<x<1

and, k[o]= k() k(«)|=[052+0.5, 1.5-0.50].

2
The exact solution for ﬁ(x,t;a)z %(x,t;a)
ot OX

xt), 0<x<Lt>0 (13)

_ — 2

and %(x,t;a)zi—g(x,t;a) are U(x,t;a)=k(a)e™ " sinzx
X

and U(x,t;a)=k(ar)e ™ 'sinmx  respectively.

For numerical results, there parameters i.e. number of iterations, execution
time (in seconds) and Hausdorff distance [6] were measured and considered for

comparative analysis. The value of initial datum, U ) s set to be zero for all the
test problems. The computations are performed on a personal computer with
Intel(R) Core(TM) i3 CPU M370 and 2GB RAM and, the programs were
compiled by using C++ language. Throughout the numerical experiments, the

convergence test considered £ =107'° and carried out on several different values
of n. All results of numerical simulations obtained from implementation of the
FSGS, FSAGE and HSAGE methods for test problems 1 and 2 have been
tabulated in Tables 1 to 5. Meanwhile, Table 6 described the percentage gains in
terms of number of iterations and execution time for FSAGE and HSAGE
methods compared to FSGS method for both test problems.

Table 1: Numerical results of FSGS, FSAGE and HSAGE methods at « = 0.00
n

Methods 512 1024 2048 4096
= numberor | FSGS 36300 128720 448803 1528924
§ ool FSAGE 5199 18926 67947 239878
g, lerons sace 1417 5199 18926 67947
& T ion | FSGS 58.95 41821 2017.95 1988431
g eout FSAGE 9.80 71.25 511.46 3621.10
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FSGS 4.6781e-04  4.5983e-04  4.2804e-04  3.0095e-04

'E‘;fgﬁgf FSAGE  4.7013¢-04  4.6910e-04  4.6513e-04  4.4929¢-04
HSAGE 4.7053e-04 4.7013e-04 4.6910e-04 4.6513e-04
Number of FSGS 33287 45875 166259 596225
) . FSAGE 1749 6462 23816 87009
S Merom  HsacE s 1749 6462 23816
% Execution FSGS 54.03 149.03 1081.76 7751.73
5 time FSAGE 3.33 24.41 180.16 1310.31
o UM HsAGE 049 328 2011 179.95
s Hausdorff FSGS 1.3474e-03 3.7161e-03 3.6913e-03 3.5930e-03
Distance FSAGE 3.7252e-03 3.7232e-03 3.7198e-03 3.7071e-03

HSAGE 3.7301e-03  3.7252e-03  3.7232e-03  3.7198e-03
Table 2: Numerical results of FSGS, FSAGE and HSAGE methods at « = 0.25

n
Methods 512 1024 2048 4096
Numberof 558 36511 129530 452066 1542351
_ lerations  FSAGE 5224 19026 68348 241494
o MO psace 1423 524 19026 68348
2 ecution FSGS 59.25 42054 2938.85 20122.23
8 - FSAGE 9.86 71.60 515.27 3644.49
= "M HsAGE 13 978 7111 51623
S Lausdorfr FSGS 42860e-04 4.2062e-04  3.8884e-04  2.6175e-04
Aewonell FSAGE  4.3092e-04 4.2990e-04  4.2593e-04  4.1009e-04
HSAGE  4.3132e-04  4.3092e-04  4.2990e-04  4.2593e-04
Numberof _FSGS 12609 46086 167104 599603
o lterations FSAGE 1756 6488 23920 87430
e ... HSAGE __ 486 1756 6488 . 23920
g FSGS 20.50 14972 1086.73 781272
g o FSAGE 3.33 24,54 179.81 1315.17
= o HSAGE 048 . ....330__ . .. 2422 181.11
8 Housdortt FSGS 34130e-03  3.4057¢-03  3.3809e-03  3.2827e-03
enal FSAGE  34147e-03 3.4129¢-03  3.4095¢-03  3.3967¢-03
HSAGE  3.4193¢-03  3.4147e-03  3.4129-03  3.4095e-03
Table 3: Numerical results of FSGS, FSAGE and HSAGE methods at « = 0.50
n
Methods 512 1024 2048 4096
Numberof 558 36640 130048 454150 1550896
_ lerations  FSAGE 5240 19090 68605 242527
o Merioms  psace 14 5240 19000 68605
2 recution FSGS 59.46 422.29 2953.75 20232.25
8 o FSAGE 9.89 71.87 516.64 3662.89
o "M HSAGE 137 983 7120 517.90
& ausdortt FSGS 38940604  3.8142¢-04  3.4964e-04  2.2055e-04
St FSAGE  39172e-04 3.0070e-04  3.8673e-04  3.7089e-04
HSAGE  3.9210e-04 39172e-04  3.9070e-04  3.8673e-04
— =~ Numberof | FSGS 12643 46221 167643 601762
g8 g UMb FSAGE 1760 6505 23987 87698
— a a Iterations
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Execution FSGS 20.63 150.29 1089.26 7840.89
time FSAGE 3.33 24.48 180.48 1319.19
e HSAGE 047 332 2428 180.99
Hausdorff FSGS 3.1025e-03  3.0954e-03  3.0706e-03  2.9724e-03
Distance FSAGE  3.1043e-03  3.1025¢-03  3.0991e-03  3.0864e-03

HSAGE 3.1084e-03  3.1043e-03  3.1025e-03  3.0991e-03

Table 4: Numerical results of FSGS, FSAGE and HSAGE methods at « =0.75

n

Methods 517 1074 5048 1098

Numberof _FSCS 36713 130338 455318 1555677

- iterations FSAGE 5248 19125 68749 243106
£ ... HSAGE 1429 . 5248 19125 68749
2 Execution FSGS 59.59 423.29 3007.30 2023645
2 time FSAGE 9.91 71.98 517.61 3673.02
% oo HSAGE 137 98 7136 519.77
g ausdorff FSGS 35020e-04  3.4222¢-04  3.1044e-04  1.8335e-04
Distanee  FSAGE  35251e04  35150e-04  34753¢-04  33169e-04
HSAGE  3.5288e-04 35251e-04 3.5150e-04  3.4753¢-04

Numberof | FSGS 12662 46296 167946 602972

~ iterations FSAGE 1762 6514 24025 87849
e . HSAGE 487 1762 6514 24005
S ecution FSGS 20.58 150.46 1093.66 7840.69
2 fime FSAGE 3.33 24,62 180.76 1322.73
... HSAGE 048 331 2432 18140
ke Hausdorff FSGS 57921603 2.7850e-03  2.7603¢-03  2.6620e-03
Distarne  FSAGE  27938e-03  27921e-03  2.7888e-03  2.7761e-03

HSAGE 2.7976e-03  2.7938e-03  2.7921e-03  2.7888e-03

Table 5: Numerical results of FSGS, FSAGE and HSAGE methods at « =1.00

n
Methods 512 1024 2048 4096
Number of FSGS 36736 130432 455695 1557218
- iterations FSAGE 5251 19137 68795 243293
e . HSAGE 1430 5251 19137 68795
% Execution FSGS 59.62 423.54 2964.55 20247.36
g time FSAGE 9.91 72.07 518.22 3677.87
7 HSAGE 138 984 7159 5198
& Hausdorff FSGS 3.1099¢e-04 3.0302e-04 2.7124e-04 1.4415e-04
Distance FSAGE 3.1331e-04 3.1230e-04 3.0833e-04 2.9249e-04
HSAGE 3.1366e-04 3.1331e-04 3.1230e-04 3.0833e-04
Number of FSGS 12668 46321 168043 603363
i FSAGE 1763 6517 24037 87897
s feraons  psaGe 487 1763 6517 24037
= Execution FSGS 20.60 150.67 1093.01 7845.54
g time FSAGE 3.36 24.54 181.32 1322.75
P PR . ' SR 048  _.....332 ... 2432 18141
é Hausdorff FSGS 2.4816e-03 2.4747e-03 2.4499¢e-03 2.3517e-03
Distance FSAGE 2.4834e-03 2.4818e-03 2.4785e-03 2.4658e-03

HSAGE 2.4867e-03  2.4834e-03  2.4818e-03  2.4785e-03
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Table 6. Percentage gains for HSGS and QSGS methods compared to FSGS method
Test Problem 1 Test Problem 2
o Methods  Execution time l\_lumb_er of Exe_cution l\_lumb_er of
%) iterations time iterations
(%) (%) (%)
0.00 FSAGE 81.79 - 83.38 84.31 - 85.68 83.10-93.84 85.41 - 94.74
B HSAGE _ 97.40-97.71  9556-96.10 97.68-99.09 96.01-98.55
0.25 FSAGE 81.89 - 83.36 84.34 - 85.69 83.17 - 83.76 85.42 - 86.08
e HSAGE _ 97.43-97.70  9557-9610 97.66-97.80  96.01-96.19
0.50 FSAGE 81.90 - 83.37 84.36 - 85.70 83.18 - 83.86 85.43 - 86.08
mmem———— H SAGE ...... 9 744' 9770 ......... 9 5 58' 9611 ............ 9 _7__6_9_ :_9_7 _Z_Q ......... 96 01 - 96 19 ———-
0.75 FSAGE 81.85 - 83.37 84.37 - 85.70 83.13-83.81 85.43 - 86.08
7 HSAGE  9743-9771 9558-9611 ! 97.67-97.80  96.02-96.19
1.00 FSAGE 81.84 - 83.38 84.38 - 85.71 83.14-83.71 85.43 - 86.08
' HSAGE 97.43 - 97.69 95.58 - 96.11 97.67 - 97.80 96.02 - 96.19

5. Conclusions

In this paper, the performance of HSAGE method for the numerical
solution of fuzzy heat equation has been investigated. The results show that
HSAGE method is superior to FSGS and FSAGE methods, particularly in the
aspect of number of iterations and execution time. Apart from the concept of full-
and half-sweep iterations, further investigation based on quarter-sweep [9]
iteration can also be considered in order to speed up the convergence rate of the
iterative methods.
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