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NUMERICAL SOLUTION FOR FUZZY HEAT EQUATION 
USING HSAGE METHOD 

A’qilah Ahmad DAHALAN1, Mohana Sundaram MUTHUVALU2, Jumat 
SULAIMAN3 

In this paper, application of the Half-Sweep Alternating Group Explicit 
(HSAGE) method to solve finite difference approximation equations arising from 
fuzzy heat equation is examined. The formulation and implementation of HSAGE 
method are also presented. In addition, numerical results by solving two test 
problems are included and compared with the standard Gauss-Seidel (GS) and 
Alternating Group Explicit (AGE) methods. 
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1. Introduction 

The Alternating Group Explicit (AGE) method is one of the widely used 
and successful two-stage iterative methods to solve sparse linear system. The 
AGE method employs the fractional splitting strategy which is applied alternately 
at each intermediate step on linear system. In a series of papers, the effectiveness 
of the AGE and its variants methods were studied and tested by solving a variety 
of scientific problems, for instance refer [1, 2, 3, 4]. Besides that, the concept of 
half-sweep iteration has been initiated by Abdullah [5] via the Explicit Decoupled 
Group (EDG) method for solving two-dimensional Poisson equations. The basic 
idea of the half-sweep iteration approach is to speed-up the computational time by 
reducing the computational complexity of the solution method.  

Consequently, in this paper, performance of the half-sweep iteration with 
AGE method i.e. Half-Sweep Alternating Group Explicit (HSAGE) method will 
be investigated for solving linear systems generated from the fuzzy heat equation. 
The performance of HSAGE method will be compared with the existing standard 
Gauss-Seidel (GS) and AGE methods. The standard GS and AGE methods are 
also known as Full-Sweep Gauss-Seidel (FSGS) and Full-Sweep Alternating 
Group Explicit (FSAGE) methods respectively.  

The remainder of this paper is organized in following way. In Section 2, 
derivation of the full- and half-sweep finite difference approximation equations 
will be elaborated. The latter section of this paper will discuss the implementation 
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of FSAGE and HSAGE methods for solving generated linear systems. Some 
numerical results will be presented in Section 4 to assert performance of the tested 
methods and concluding remarks are given in Section 5. 

2. Full- and Half-Sweep BTCS Approximation Equations 

We start this section with the notation that used in the paper. The tilde sign 
over a letter denote a fuzzy subset of real numbers. For a fuzzy subset of the real 
numbers, U~ , it is characterized by the membership function evaluated at x , 
written as ( )xU~  as a number in [ ]1,0 . An α -cut of U~ , written ( )αU~  is defined as 

( ){ }α≥xUx ~|  for 10 ≤<α . The intervals of α -cut can be written as 
( ) ( ) ( )[ ]ααα UUU ,~

= , for all α  because they are always closed and bounded [6].  
In this section, we attempt to construct the full- and half-sweep finite 

difference approximation equations for fuzzy heat equation. For further 
discussions on formulating the full- and half-sweep finite difference 
approximation equations, consider the interval that is divided uniformly as shown 
in Figs. 1 and 2. 

         h 
                                                ...                                                  
        0     1      2     3     4                   n-4   n-3  n-2  n-1    n       
  

Fig. 1. Distribution of uniform node points for the full-sweep case 
            2h 
                                                 ...                                                  
         0     1      2     3     4                   n-4   n-3  n-2  n-1    n       
   

Fig. 2. Distribution of uniform node points for the half-sweep case 
Based on Figs. 1 and 2, the full- and half-sweep iterative methods will compute 
approximate values onto node points of type  only until the convergence 
criterion is satisfied. After the convergence criterion is achieved, the 
approximation solutions for the remaining points are computed directly [5]. From 
this section onwards, the values of p , which corresponds to one and two 
represents the full- and half-sweep cases respectively.    

Now, let consider the following fuzzy heat equation 
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Let divide the domain [ ] [ ]T,01,0 ×  into mn×  mesh with spatial step size 
n

h 1
=  in 

x -direction and 
m
Tk =  in t -direction. The discrete set of points of x  and t  are 

given by ihxi =  ( )ni ,,2,1,0 "=  and jkt j =  ( )mj ,,2,1,0 "=  respectively. 

Denote the value of U~  at the representative discrete points by ( ) jiji UtxU ,
~,~ =  

 
and parametric form of fuzzy number jiU ,

~  as ( )jijiji UUU ,,, ,~ = . 

In this paper, we derive the formulation of full- and half-sweep finite 
difference approximation equations based on the implicit scheme i.e. Backward 
Time, Centered Space (BTCS). By using BTCS scheme, 
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By subsituting (2) and (3) into problem (1), the generalized full- and half-sweep 
BTCS approximation equations for problem (1) can be represented as follows 
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for pnpnppi −−= ,2,,2, …  and mj ,,,2,1 …= . 
Based on the Eq. (4), the only difference between these equations are on 

the interval of the α -cuts which are upper and lower bounds. Therefore, for 
simplicity, approximation Eq. (4) can be written as 
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for pnpnppi −−= ,2,,2, …  and mj ,,,2,1 …= . The full- and half-sweep 
BTCS approximation equations for U  and U  as shown in Eq. (5) can be 
represented in matrix form as 

bAU =  (6)
where A

 
is the tridiagonal matrix 
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with 
( )2ph

kλβ = . Implementation of the BTCS scheme requires to solve a linear 

system at each time step and it is unconditional stable.  

3. AGE Iterative methods 

In the section, an implementation of the FSAGE and HSAGE methods for 
solving corresponding full- and half-sweep BTCS approximation equations will 
be discussed. Now, let matrix A  be decomposed into sum of two matrices, as 
follows  
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if n  is odd. Similarly, we define the following matrices 
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if n  is even, with 
2

12 +
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βγ . Based on the splitting of A , 1G  and 2G  satisfy the 

following conditions [7] 
a) ( )1GrI +  and ( )2GrI +  are non-singular for any 0>r  ( r  is called the 

acceleration parameter) 
b) it is practical to solve the systems          ( ) cyGrI =+ 1  and ( ) dzGrI =+ 2  
for any vectors c  and d  and, for any 0>r  in explicit form since they consist of 
only the ( )22×  subsystems.  

By using splitting (7), linear system (6) becomes 
( ) bUGG =+ 21  (8)

and the general formulation of FSAGE and HSAGE methods to compute ( )1+kU  is 
as follows  
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Since ( )1GrI +  and ( )2GrI +  are non-singular, then their respective inverses 
exist. Thus, the formulation of FSAGE and HSAGE methods can be rewritten in 
explicit form as 
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The rate of convergence of FSAGE and HSAGE methods is governed by the 
acceleration parameter, r . From (10), the iteration matrices for FSAGE and 
HSAGE methods are 

( ) ( )( ) ( )2
1

11
1

2 GrIGrIGrIGrITT HSAGEFSAGE −+−+== −−   (11)
and satisfy the following Theorem 1. 
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Theorem 1. 
If 1G  and 2G  are real positive definite matrices and 0>r , then ( ) 1<FSAGETρ  and 
( ) 1<HSAGETρ . 

Proof. The proof runs parallel to a standard proof given in [7]. ,   
Based on (10), the implementation of FSAGE and HSAGE methods to solve 
corresponding full- and half-sweep BTCS approximation equations is presented in 
Algorithm 1.  
Algorithm 1. FSAGE and HSAGE methods 
i. Initialize all the parameters 
ii. Iteration cycle 
 for ",2,1,0=k  
  a. Stage 1 
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iii. Convergence test. If the convergence criterion i.e. ( ) ( ) ε≤−
∞

+ kk UU 1

 

is satisfied, go 

to Step (iv).  Otherwise go back to Step (ii). 
iv. Stop. Display approximate solutions. 

4. Numerical results 

In order to compare the performance of the FSAGE and HSAGE methods, 
the following fuzzy heat equations were used as the test problems. 
Test Problem 1 [8] 
Consider the fuzzy heat equation  
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and    ( ) ( )atx
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Test Problem 2 [6] 
Consider the fuzzy heat equation 
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are                     ( ) ( ) xektxU t παα π sin;,

2−=  

and                              ( ) ( ) xektxU t παα π sin;,
2−=      respectively. 

For numerical results, there parameters i.e. number of iterations, execution 
time (in seconds) and Hausdorff distance [6] were measured and considered for 
comparative analysis. The value of initial datum, ( )0U  is set to be zero for all the 
test problems. The computations are performed on a personal computer with 
Intel(R) Core(TM) i3 CPU M370 and 2GB RAM and, the programs were 
compiled by using C++ language. Throughout the numerical experiments, the 
convergence test considered 1010−=ε  and carried out on several different values 
of n . All results of numerical simulations obtained from implementation of the 
FSGS, FSAGE and HSAGE methods for test problems 1 and 2 have been 
tabulated in Tables 1 to 5. Meanwhile, Table 6 described the percentage gains in 
terms of  number of iterations and execution time for FSAGE and HSAGE 
methods compared to FSGS method for both test problems. 

 
Table 1: Numerical results of FSGS, FSAGE and HSAGE methods at 00.0=α  

  Methods n 
  512 1024 2048 4096 

Te
st

 P
ro

bl
em

 
1 

Number of 
iterations 

FSGS 36309 128720 448803 1528924 
FSAGE 5199 18926 67947 239878 
HSAGE 1417 5199 18926 67947 

Execution 
time 

FSGS 58.95 418.21 2917.95 19884.31 
FSAGE 9.80 71.25 511.46 3621.10 
HSAGE 1.35 9.73 71.02 516.65 
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Hausdorff 
Distance 

FSGS 4.6781e-04 4.5983e-04 4.2804e-04 3.0095e-04 
FSAGE 4.7013e-04 4.6910e-04 4.6513e-04 4.4929e-04 
HSAGE 4.7053e-04 4.7013e-04 4.6910e-04 4.6513e-04 

Te
st

 P
ro

bl
em

 2
 

Number of 
iterations 

FSGS 33287 45875 166259 596225 
FSAGE 1749 6462 23816 87009 
HSAGE 484 1749 6462 23816 

Execution 
time 

FSGS 54.03 149.03 1081.76 7751.73 
FSAGE 3.33 24.41 180.16 1310.31 
HSAGE 0.49 3.28 24.11 179.95 

Hausdorff 
Distance 

FSGS 1.3474e-03 3.7161e-03 3.6913e-03 3.5930e-03 
FSAGE 3.7252e-03 3.7232e-03 3.7198e-03 3.7071e-03 
HSAGE 3.7301e-03 3.7252e-03 3.7232e-03 3.7198e-03 

Table 2: Numerical results of FSGS, FSAGE and HSAGE methods at 25.0=α  
  Methods n 
  512 1024 2048 4096 

Te
st

 P
ro

bl
em

 1
 

Number of 
iterations 

FSGS 36511 129530 452066 1542351 
FSAGE 5224 19026 68348 241494 
HSAGE 1423 5224 19026 68348 

Execution 
time 

FSGS 59.25 420.54 2938.85 20122.23 
FSAGE 9.86 71.60 515.27 3644.49 
HSAGE 1.36 9.78 71.11 516.23 

Hausdorff 
Distance 

FSGS 4.2860e-04 4.2062e-04 3.8884e-04 2.6175e-04 
FSAGE 4.3092e-04 4.2990e-04 4.2593e-04 4.1009e-04 
HSAGE 4.3132e-04 4.3092e-04 4.2990e-04 4.2593e-04 

Te
st

 P
ro

bl
em

 2
 

Number of 
iterations 

FSGS 12609 46086 167104 599603 
FSAGE 1756 6488 23920 87430 
HSAGE 486 1756 6488 23920 

Execution 
time 

FSGS 20.50 149.72 1086.73 7812.72 
FSAGE 3.33 24.54 179.81 1315.17 
HSAGE 0.48 3.30 24.22 181.11 

Hausdorff 
Distance 

FSGS 3.4130e-03 3.4057e-03 3.3809e-03 3.2827e-03 
FSAGE 3.4147e-03 3.4129e-03 3.4095e-03 3.3967e-03 
HSAGE 3.4193e-03 3.4147e-03 3.4129e-03 3.4095e-03 

Table 3: Numerical results of FSGS, FSAGE and HSAGE methods at 50.0=α  
  Methods n 
  512 1024 2048 4096 

Te
st

 P
ro

bl
em

 1
 

Number of 
iterations 

FSGS 36640 130048 454150 1550896 
FSAGE 5240 19090 68605 242527 
HSAGE 1427 5240 19090 68605 

Execution 
time 

FSGS 59.46 422.29 2953.75 20232.25 
FSAGE 9.89 71.87 516.64 3662.89 
HSAGE 1.37 9.83 71.20 517.90 

Hausdorff 
Distance 

FSGS 3.8940e-04 3.8142e-04 3.4964e-04 2.2255e-04 
FSAGE 3.9172e-04 3.9070e-04 3.8673e-04 3.7089e-04 
HSAGE 3.9210e-04 3.9172e-04 3.9070e-04 3.8673e-04 

Te
st

 
Pr

ob
l

em
2 Number of 

iterations 

FSGS 12643 46221 167643 601762 
FSAGE 1760 6505 23987 87698 
HSAGE 487 1760 6505 23987 
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Execution 
time 

FSGS 20.63 150.29 1089.26 7840.89 
FSAGE 3.33 24.48 180.48 1319.19 
HSAGE 0.47 3.32 24.28 180.99 

Hausdorff 
Distance 

FSGS 3.1025e-03 3.0954e-03 3.0706e-03 2.9724e-03 
FSAGE 3.1043e-03 3.1025e-03 3.0991e-03 3.0864e-03 
HSAGE 3.1084e-03 3.1043e-03 3.1025e-03 3.0991e-03 

Table 4: Numerical results of FSGS, FSAGE and HSAGE methods at 75.0=α  
  Methods n 
  512 1024 2048 4096 

Te
st

 P
ro

bl
em

 1
 

Number of 
iterations 

FSGS 36713 130338 455318 1555677 
FSAGE 5248 19125 68749 243106 
HSAGE 1429 5248 19125 68749 

Execution 
time 

FSGS 59.59 423.29 3007.30 20236.45 
FSAGE 9.91 71.98 517.61 3673.02 
HSAGE 1.37 9.85 71.36 519.77 

Hausdorff 
Distance 

FSGS 3.5020e-04 3.4222e-04 3.1044e-04 1.8335e-04 
FSAGE 3.5251e-04 3.5150e-04 3.4753e-04 3.3169e-04 
HSAGE 3.5288e-04 3.5251e-04 3.5150e-04 3.4753e-04 

Te
st

 P
ro

bl
em

 2
 

Number of 
iterations 

FSGS 12662 46296 167946 602972 
FSAGE 1762 6514 24025 87849 
HSAGE 487 1762 6514 24025 

Execution 
time 

FSGS 20.58 150.46 1093.66 7840.69 
FSAGE 3.33 24.62 180.76 1322.73 
HSAGE 0.48 3.31 24.32 181.40 

Hausdorff 
Distance 

FSGS 2.7921e-03 2.7850e-03 2.7603e-03 2.6620e-03 
FSAGE 2.7938e-03 2.7921e-03 2.7888e-03 2.7761e-03 
HSAGE 2.7976e-03 2.7938e-03 2.7921e-03 2.7888e-03 

Table 5: Numerical results of FSGS, FSAGE and HSAGE methods at 00.1=α  
  Methods n 
  512 1024 2048 4096 

Te
st

 P
ro

bl
em

 1
 

Number of 
iterations 

FSGS 36736 130432 455695 1557218 
FSAGE 5251 19137 68795 243293 
HSAGE 1430 5251 19137 68795 

Execution 
time 

FSGS 59.62 423.54 2964.55 20247.36 
FSAGE 9.91 72.07 518.22 3677.87 
HSAGE 1.38 9.84 71.59 519.8 

Hausdorff 
Distance 

FSGS 3.1099e-04 3.0302e-04 2.7124e-04 1.4415e-04 
FSAGE 3.1331e-04 3.1230e-04 3.0833e-04 2.9249e-04 
HSAGE 3.1366e-04 3.1331e-04 3.1230e-04 3.0833e-04 

Te
st

 P
ro

bl
em

 2
 

Number of 
iterations 

FSGS 12668 46321 168043 603363 
FSAGE 1763 6517 24037 87897 
HSAGE 487 1763 6517 24037 

Execution 
time 

FSGS 20.60 150.67 1093.01 7845.54 
FSAGE 3.36 24.54 181.32 1322.75 
HSAGE 0.48 3.32 24.32 181.41 

Hausdorff 
Distance 

FSGS 2.4816e-03 2.4747e-03 2.4499e-03 2.3517e-03 
FSAGE 2.4834e-03 2.4818e-03 2.4785e-03 2.4658e-03 
HSAGE 2.4867e-03 2.4834e-03 2.4818e-03 2.4785e-03 
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Table 6. Percentage gains for HSGS and QSGS methods compared to FSGS method 

α  Methods 

Test Problem 1 Test Problem 2 

Execution time 
(%) 

Number of 
iterations 

(%) 
 

Execution         
time 
(%) 

Number of 
iterations 

(%) 

0.00 FSAGE 81.79 - 83.38 84.31 - 85.68  83.10 - 93.84 85.41 - 94.74 
HSAGE 97.40 - 97.71 95.56 - 96.10  97.68 - 99.09 96.01 - 98.55 

0.25 FSAGE 81.89 - 83.36 84.34 - 85.69  83.17 - 83.76 85.42 - 86.08 
HSAGE 97.43 - 97.70 95.57 - 96.10  97.66 - 97.80 96.01 - 96.19 

0.50 FSAGE 81.90 - 83.37 84.36 - 85.70 83.18 - 83.86 85.43 - 86.08 
HSAGE 97.44 - 97.70 95.58 - 96.11  97.69 - 97.79 96.01 - 96.19 

0.75 FSAGE 81.85 - 83.37 84.37 - 85.70  83.13 - 83.81 85.43 - 86.08 
HSAGE 97.43 - 97.71 95.58 - 96.11  97.67 - 97.80 96.02 - 96.19 

1.00 FSAGE 81.84 - 83.38 84.38 - 85.71  83.14 - 83.71 85.43 - 86.08 
HSAGE 97.43 - 97.69 95.58 - 96.11  97.67 - 97.80 96.02 - 96.19 

5. Conclusions 

In this paper, the performance of HSAGE method for the numerical 
solution of fuzzy heat equation has been investigated. The results show that 
HSAGE method is superior to FSGS and FSAGE methods, particularly in the 
aspect of number of iterations and execution time. Apart from the concept of full- 
and half-sweep iterations, further investigation based on quarter-sweep [9] 
iteration can also be considered in order to speed up the convergence rate of the 
iterative methods. 
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