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TOWARDS INTERACTIONS THROUGH DIFFERENTIABLE– 
NON–DIFFERENTIABLE SCALE TRANSITIONS IN SCALE 

RELATIVITY THEORY 
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It is shown that, in the framework of Scale Relativity Theory, correlations of 

type informational entropy/cross entropy – probability density, in the description of 
the dynamics of any complex system, can be perceived as interactions. Explaining 
these interactions for a Gaussian – type probability density, implies both attractive 
forces (of Newtonian type) and repulsive forces (oscillatory harmonic type). 
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1. Introduction 
 

Usually, models used to describe complex system dynamics are based on a 
combination of basic theories derived especially from physics and computer 
simulations [1-4]. Whilst the description of the complex system dynamics implies 
computational simulations based on specific algorithms [4 – 6] or developments on 
the standard theory from various classes of models: 
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i) based on the usual conservation laws, developed on spaces with integer 
dimensions, i.e. the ones from the differentiable class of models (differentiable 
models) [1 – 3]; 

ii) based on conservation laws, developed on spaces with non – integer dimensions 
and explicitly written through fractional derivatives, i.e. the ones from the non – 
differentiable class of models (Fractal or Multifractal models) [5, 6].  

Recently, a new class of models has arisen, based on Scale Relativity 
Theory, either in the monofractal dynamics as in the case of Nottale [7], or in the 
multifractal dynamics as in the case of the Multifractal Theory of Motion [8].  

Both in the context of Scale Relativity Theory [7], as well as in the one of 
Fractal Theory of Motion [8], supposing that any complex system dynamics are 
assimilated both structurally and functionally to a multifractal object, said dynamics 
can be described through motions of the complex system’s structural units 
(dependent on the chosen scale resolution) on continuous and non – differentiable 
curves (multifractal curves). Since for a large temporal scale resolution with respect 
to the inverse of the highest Lyapunov exponent [9], the deterministic trajectories 
of any structural units belonging to the complex system, can be replaced by a 
collection of potential (“virtual”) trajectories, the concept of definite trajectory can 
be substituted by the one of probability density.  

Then, the multifractality expressed through stochasticity becomes 
operational and correlations of type informational entropy/cross entropy – 
probability density, in the description of the dynamics of any complex system, can 
be established. This means that, instead of “working” with a single variable 
described by a strict non – differentiable function, it is possible to “work” only with 
approximations of this mathematical function, obtained by averaging them on 
different scale resolutions. As a consequence, any variable purposed to describe the 
complex system dynamics will perform as the limit of a family of mathematical 
functions, this being non – differentiable for null scale resolutions and differentiable 
otherwise [7]. 

In the present paper, it is shown that, correlations of type informational 
entropy/cross entropy – probability density, in the description of the dynamics (by 
means of Scale Relativity Theory) of any complex system, can be perceived as 
interactions. Explaining these interactions, both attractive- and repulsive-type 
forces are found.  
 

2. Conservation laws at various scale resolutions  
 

Assuming that any complex system can be assimilated to a multifractal object, 
its dynamics in the multifractal Theory of Motion are described through continuous 
but non-differentiable curves (multifractal curves). According to this theory, the 
following covariant derivative [8]: 
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𝑑̂𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝑡𝑡 + 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑙𝑙 + 𝐷𝐷𝑙𝑙𝑙𝑙𝜕𝜕𝑙𝑙𝜕𝜕𝑝𝑝 (1) 

where 

𝑉𝑉� 𝑙𝑙 = 𝑉𝑉𝐷𝐷𝑙𝑙 − 𝑖𝑖𝑖𝑖𝐹𝐹𝑙𝑙  (2a) 

𝐷𝐷𝑙𝑙𝑙𝑙 =
1
4

(𝑑𝑑𝑑𝑑)
2

𝑓𝑓(𝛼𝛼)−1�𝑑𝑑𝑙𝑙𝑙𝑙 + 𝑖𝑖𝑑̅𝑑𝑙𝑙𝑙𝑙� (2b) 

𝑑𝑑𝑙𝑙𝑙𝑙 = 𝜆𝜆+𝑙𝑙 𝜆𝜆+
𝑝𝑝 − 𝜆𝜆−𝑙𝑙 𝜆𝜆−𝑝𝑝  (2c) 

𝑑̅𝑑𝑙𝑙𝑙𝑙 = 𝜆𝜆+𝑙𝑙 𝜆𝜆+
𝑝𝑝 − 𝜆𝜆−𝑙𝑙 𝜆𝜆−𝑝𝑝  (2d) 

𝑓𝑓(𝛼𝛼) = 𝑓𝑓[𝛼𝛼(𝐷𝐷𝐹𝐹)] (2e) 

𝜕𝜕𝑡𝑡 =
𝜕𝜕
𝜕𝜕𝑡𝑡

,𝜕𝜕𝑙𝑙 =
𝜕𝜕
𝜕𝜕𝑋𝑋𝑙𝑙

,𝜕𝜕𝑙𝑙𝜕𝜕𝑝𝑝 =
𝜕𝜕
𝜕𝜕𝑋𝑋𝑙𝑙

𝜕𝜕
𝜕𝜕𝑋𝑋𝑝𝑝

, 𝑖𝑖 = √−1, 𝑖𝑖, 𝑙𝑙,𝑝𝑝 = 1, 2, 3 (2f) 

becomes operational in the writing of conservation laws. 
In Eq. (1) and Eqs. (2𝑎𝑎), (2𝑏𝑏), (2𝑐𝑐), (2𝑑𝑑), (2𝑒𝑒), and (2𝑓𝑓), 𝑡𝑡 is the non-

multifractal time with the role of affine parameter of the motion curves, 𝑋𝑋𝑙𝑙 are the 
multifractal spatial coordinates, 𝑑𝑑𝑑𝑑 is the scale resolution, 𝑉𝑉� 𝑙𝑙 is the complex velocity 
field, 𝑉𝑉𝐷𝐷𝑙𝑙  is the differentiable part of the velocity field independent of scale 
resolution, 𝑉𝑉𝐹𝐹𝑙𝑙 is the non-differentiable part of the velocity field and dependent on 
the scale resolution; 𝜆𝜆±

𝑖𝑖  are constant coefficients associated to differential-non-
differential transition, 𝑓𝑓(𝛼𝛼) is the singularity spectrum of order 𝛼𝛼, 𝛼𝛼 is the 
singularity index and 𝐷𝐷𝐹𝐹 is the fractal dimension of the “movement curves” [9,10].  

There are many modes, and thus a varied selection of definitions of fractal 
dimensions: more precisely, the fractal dimension in the sense of Kolmogorov, the 
fractal dimension in the sense of Hausdorff-Besikovitch etc. [10]. In the case of 
many models, selecting one of these definitions and operating it in the context of 
any complex system dynamics, the value of the fractal dimension must be constant 
and arbitrary for the entirety of the dynamical analysis: for example, it is regularly 
found that 𝐷𝐷𝐹𝐹 < 2 for correlative processes in the dynamics of complex systems, 
𝐷𝐷𝐹𝐹 > 2 for non – correlative processes etc. [10]. 

Accepting the scale covariant principle in the describing of any complex 
system dynamics, the conservation law of the specific momentum (i.e. geodesic 
equations on a multifractal manifold) takes the form: 

𝑑̂𝑑𝑉𝑉� 𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝜕𝜕𝑡𝑡𝑉𝑉� 𝑖𝑖 + 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑖𝑖𝑉𝑉� 𝑖𝑖 +

1
4

(𝑑𝑑𝑑𝑑)�
2
𝑓𝑓(𝛼𝛼)� �−1𝐷𝐷𝑙𝑙𝑙𝑙𝜕𝜕𝑙𝑙𝜕𝜕𝑝𝑝𝑉𝑉� 𝑖𝑖 = 0 (3) 
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The explicit form of 𝐷𝐷𝑙𝑙𝑙𝑙 depends on the type of multifractalization used. It 
can be admitted that the multifractalization process can take place through 
stochastic Markovian (thus, memoryless) processes; however, since natural 
processes exhibit memory-like qualities, it is then necessary to employ a stochastic 
non-Markovian process. In this case, wherein it is possible to generalize many of 
the previous results [9,11], the following constraints are admitted: 

1
4

(𝑑𝑑𝑑𝑑)�
2
𝑓𝑓(𝛼𝛼)� �−1𝑑𝑑𝑙𝑙𝑙𝑙 = 𝛼𝛼𝛿𝛿𝑙𝑙𝑙𝑙 

1
4

(𝑑𝑑𝑑𝑑)�
2
𝑓𝑓(𝛼𝛼)� �−1𝑑̅𝑑𝑙𝑙𝑙𝑙 = 𝛽𝛽𝛿𝛿𝑙𝑙𝑙𝑙 

(4) 

where 𝛼𝛼 and 𝛽𝛽 are two constant coefficients associated to the differential-
nondifferential transition, and 𝛿𝛿𝑙𝑙𝑙𝑙 is Kronecker’s pseudotensor. Thus, (3) with the 
restriction (4) yield: 

𝜕𝜕𝑡𝑡𝑉𝑉� 𝑖𝑖 + 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑖𝑖𝑉𝑉� 𝑖𝑖 + (𝛼𝛼 + 𝑖𝑖𝑖𝑖)𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖 = 0 (5) 

After (5), the separation of complex system dynamics on various scale 
resolutions implies either a conservation law for the specific momentum at 
differentiable scale resolutions: 

�𝜕𝜕𝑡𝑡 + 𝑉𝑉𝐷𝐷𝑙𝑙𝜕𝜕𝑙𝑙 + 𝛼𝛼𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝑉𝑉𝐷𝐷𝑖𝑖 = �𝑉𝑉𝐹𝐹𝑙𝑙𝜕𝜕𝑙𝑙 − 𝛽𝛽𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝑉𝑉𝐹𝐹𝑖𝑖, (6) 

or a conservation law for the specific momentum at non-differentiable scale 
resolutions: 

�𝜕𝜕𝑡𝑡 + 𝑉𝑉𝐷𝐷𝑙𝑙𝜕𝜕𝑙𝑙 + 𝛼𝛼𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝑉𝑉𝐹𝐹𝑖𝑖 = �𝑉𝑉𝐹𝐹𝑙𝑙𝜕𝜕𝑙𝑙 − 𝛽𝛽𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝑉𝑉𝐷𝐷𝑖𝑖 , (7) 

Thus, any geodetic motion on multifractal manifolds (i.e non-constrained 
free motions on multifractal manifolds – see (5)) is found as correlated with non-
geodetic motions on Euclidian manifolds (i.e constrained motions on Euclidian 
manifolds – see (6) and (7)), induced either through a specific multifractal force at 
differentiable scale resolution: 

𝑓𝑓𝐷𝐷𝑖𝑖 = �𝑉𝑉𝐹𝐹𝑙𝑙𝜕𝜕𝑙𝑙 − 𝛽𝛽𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝑉𝑉𝐹𝐹𝑖𝑖, (8) 

or, through a specific multifractal force at non-differentiable scale resolution: 

𝑓𝑓𝐹𝐹𝑖𝑖 = −�𝑉𝑉𝐹𝐹𝑙𝑙𝜕𝜕𝑙𝑙 − 𝛽𝛽𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝑉𝑉𝐷𝐷𝑖𝑖 , (9) 

In order to correlate the non-geodetic dynamics on Euclidian manifolds, 
constraints arising from the multifractal-non-multifractal transition must be 
exploited. In this case, the velocity field associated to the differentiable – non – 
differentiable scale transition (multifractal – non – multifractal scale transition): 

𝑉𝑉�𝑙𝑙 = 𝑉𝑉𝐷𝐷𝑙𝑙 − 𝑉𝑉𝐹𝐹𝑙𝑙  (10) 
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satisfies, by subtracting (6) and (7), the conservation law of the relative specific 
momentum: 

�𝜕𝜕𝑡𝑡 + 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑖𝑖 + (𝛼𝛼 + 𝑖𝑖𝑖𝑖)𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝑉𝑉� 𝑖𝑖 = 2�𝑉𝑉𝐹𝐹𝑙𝑙𝜕𝜕𝑙𝑙 − 𝛽𝛽𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝑉𝑉𝐹𝐹𝑖𝑖 (11) 

Now, according with the self-similarity property of the movement curves 
(through which also dynamics on Euclidian manifolds should be geodetic or free), 
the supplementary constraint: 

𝑓𝑓𝑖𝑖 = 2�𝑉𝑉𝐹𝐹𝑙𝑙𝜕𝜕𝑙𝑙 − 𝛽𝛽𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝑉𝑉𝐹𝐹𝑖𝑖 ≡ 0 (12) 

correlated with the incompressibility of the multifractal fluid at non-differentiable 
scale resolution: 

𝜕𝜕𝑖𝑖𝑉𝑉𝐹𝐹𝑖𝑖 = 0 (13) 

will function as an intrinsic property of any complex system. The differential 
equations (12) and (13) are constituted as stationary Navier-Stokes type systems 
at non-differentiable scale resolution. This system of differential equations in 
dimensionless plane coordinates, with adequate initial and boundary conditions 
admits the following solutions [12]: 

𝑈𝑈 =
1.5

(𝜈𝜈𝜈𝜈)
1
3

sech2 �
0.5𝜂𝜂

(𝜈𝜈𝜈𝜈)
2
3
� (14a) 

𝑉𝑉 =
1.9

(𝜈𝜈𝜈𝜈)
1
3
�

𝜂𝜂

(𝜈𝜈𝜈𝜈)
2
3

sech2 �
0.5𝜂𝜂

(𝜈𝜈𝜈𝜈)
2
3
� − tanh �

0.5𝜂𝜂

(𝜈𝜈𝜈𝜈)
2
3
�� (14b) 

where 𝜉𝜉 and 𝜂𝜂 are nondimensional spatial coordinates, 𝑈𝑈 and 𝑉𝑉 are the 
nondimensional components of the velocity field along the 𝑂𝑂𝜉𝜉 and 𝑂𝑂𝜂𝜂 axes, and 𝜈𝜈 
is the multifractality degree.  

Therefore, the velocity field along the 𝑂𝑂𝜉𝜉 axis is described by the 
multifractal soliton (14a), while the velocity field along the 𝑂𝑂𝜂𝜂 axis is described by 
the multifractal soliton – kink (14b).  

In such a context, when investigating the dynamic of a complex fluid 
expansion in a multifractal medium, there are two types of scales that need to be 
considered.      

Firstly, there are the internal interaction scales, which is an amalgam of 
dynamics induced by the properties of the complex fluid and by its nature. For 
example, if the complex fluid is considered as a multi element transient plasma [13-
18], this scale will be dominated by collision, chemical processes, molecular 
formation, ionization processes, excitations, etc. The external interaction scales 
contain the dynamic between the complex fluid and the multifractal medium in 
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which the fluid is embedded. Keeping the same example as before for the plasma 
as a complex fluid, this scale can relate to the overall dynamics of the plasma, gas-
plasma interactions or plasma confinement. These interactions can also be 
investigated on an interface separating the two fractal objects meaning one could 
potentially investigate just the double layer separating a flowing transient plasma 
and the background gas and explore all the phenomena mentioned before. In the 
following, let the influence of the fractalization degree on each of the two 
components (U and V) of the complex fluid for a 2D flow be explored. In Figure 1 
in 3D and contour plot are represented the velocity component (U) on the Oξ for 
three fractalization degrees (0.3, 1 and 3). For a low fractality degree it is noticed a 
very directional flow mainly across the Oξ with little spatial expansion. The 
enhancement of the fractality in the system leads to a decrease of the velocity and 
a strong lateral expansion. It is important to note that the main expansion direction 
does not change, only the contributions on the  Oη direction. The fractalization 
degree of the system on this velocity component acts as a fractal-like dispersion 
phenomenon. In Figure 2 in 3D and contour plot are represented the velocity 
component (V) on the Oη for three fractalization degrees (0.3, 1 and 3). Let it be 
noted that this component of the velocity is not influenced by the fractalization 
degree when investigating the absolute value of the velocity, thus remaining quasi 
constant. There is however a strong influence on the direction of the component.  

For low fractality degree there is a small angle with respect to the  Oξ  axis. 
Higher values of  fractalization degree induce a change in the expansion angle 
transitioning towards higher angles.  The fractalization degree of the system on this 
velocity component works towards the uniformization of the V component as the 
distribution tends to reach the maximum expansion velocity available for the 
system. 

The same considerations as with plasma, may be applied to other complex 
fluids (i.e. blood, polymers, biocomposites etc.) [19-27], or at organic materials [28] 
and liquid crystals (like behaviour of some fatty acids mixtures) [29].  

The algorithms employed for the theoretical fit of the empirical data, based 
on the multifractal analysis, were first used in the articles [30-35]. 
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Fig. 1. 3D and contour plot representation of the velocity component on the Oξ for three 

fractalization degrees (0.3, 1 and 3) 
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Fig. 2. 3D and contour plot representation of the velocity component on the Oη for three 

fractalization degrees (0.3, 1 and 3) 
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3. Correlation between informational entropy and cross entropy  
 
The informational entropy of a repartition is defined by the relation [36]: 

𝐻𝐻 = −�𝜌𝜌(𝑥𝑥) ln𝜌𝜌(𝑥𝑥)𝑑𝑑𝑑𝑑 (15) 

where 𝜌𝜌(𝑥𝑥) is the probability density and 𝑥𝑥 denotes (globally), the random 
variables of the problem, 𝑑𝑑𝑑𝑑 being the elementary measure of the domain. 
 In such a context, admitting that the maximum of the informational entropy 
in the inference upon the probabilities (when only a partial information is 
available), is equivalent to frankly admitting the fact that no more knowledge is 
possible. The obtained distributions must be as such, the ones which are the least 
deriving from the real ones, because no restrictive hypothesis is inferred upon the 
missing information.  
 The partial information which, in most cases, is available, is given in the 
form of the average of a function 𝑓𝑓(𝑥𝑥), or in the form of multiple functions: 

𝑓𝑓̅ = �𝜌𝜌(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 (16) 

Relation (16) together with the relation of the measurement of distribution 
of densities 

�𝜌𝜌(𝑥𝑥)𝑑𝑑𝑑𝑑 = 1 (17) 

are now constraints to which the functional variation (15) must be subjected to, in 
order to offer the repartition density corresponding to the maximum of the 
informational entropy. In this case, Lagrange’s method of undetermined multipliers 
leads directly to the exponential repartition 

𝜌𝜌(𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒[−𝑎𝑎 − 𝑏𝑏𝑏𝑏(𝑥𝑥)] (18) 

which can be multivariant as well, in the case in which multiple constraints of type 
(16) are dealt with. If, besides these types of constraints, the following variance is 
further specified: 

(Δ𝑓𝑓)2 = �𝜌𝜌(𝑥𝑥)�𝑓𝑓(𝑥𝑥) − 𝑓𝑓�̅
2
𝑑𝑑𝑑𝑑 (19) 

then the nature of the repartition changes. It becomes the Gaussian: 

𝜌𝜌(𝑥𝑥) = 𝑒𝑒𝑒𝑒𝑒𝑒[𝑎𝑎 − 𝑏𝑏𝑏𝑏(𝑥𝑥) − 𝑐𝑐𝑓𝑓2(𝑥𝑥)] (20) 

From the point of view of group theory, (15) is not invariant, as it can be 
observed. The informational entropy can be however rewritten in a manifest 
invariant form, through the introduction of a measure 𝑚𝑚(𝑥𝑥), to which (15) becomes: 
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𝐻𝐻(𝜌𝜌,𝑚𝑚) = �𝜌𝜌(𝑥𝑥) ln �
𝜌𝜌(𝑥𝑥)
𝑚𝑚(𝑥𝑥)� 𝑑𝑑𝑑𝑑 (21) 

This functional is usually determined through the “cross entropy”/variation 
of entropy term. Now, the minimization of the entropy variation leads to the same 
type of repartitions, which differ from one another through the change of the 
elementary measure of the random variables, as the entropy maximization does: 

𝑑𝑑𝑑𝑑 → 𝑚𝑚(𝑥𝑥)𝑑𝑑𝑑𝑑 (22) 

As such, (18) and (20) become, for example: 

𝜌𝜌(𝑥𝑥) = 𝑚𝑚(𝑥𝑥)𝑒𝑒𝑒𝑒𝑒𝑒[−𝑎𝑎 − 𝑏𝑏𝑏𝑏(𝑥𝑥)] (23) 

and 

𝜌𝜌(𝑥𝑥) = 𝑚𝑚(𝑥𝑥)𝑒𝑒𝑒𝑒𝑒𝑒[−𝑎𝑎 − 𝑏𝑏𝑏𝑏(𝑥𝑥) − 𝑐𝑐𝑓𝑓2(𝑥𝑥)] (24) 

Therefore, the principle of the minimal entropy variation generalizes the 
principle of maximal informational entropy, them being identical only in the case 
in which 𝑚𝑚(𝑥𝑥) is a constant, meaning the operation with uniform repartitions.  

Because many times this is indeed the case, the discussion will revolve 
around one principle or the other, without making any difference between them. 
Regarding the same aspect, 𝑚𝑚(𝑥𝑥) is presented as a “candidate” for apriori 
probabilities, produced with the help of measurable continuous groups; as such, it 
can be taken as a invariant function on these groups. This is, for example, the case 
of the 𝑆𝑆𝑆𝑆(2𝑅𝑅) group [37], which admits as an integral invariant function the unity.  

From a stochastic point of view, it can be said that the variables pertaining 
to this group are distributed, so the discussion is linked to one of the previously – 
mentioned cases, in which the principle of the minimal variation of entropy is 
identified with the one of the maximal informational entropy. 

 
4. The interactions as differentiable – non – differentiable scale 

transitions 
 
According with the previous considerations - in the sense that the 

multifractality expressed through stochasticity becomes operational and 
correlations of type informational entropy/cross entropy – probability density, in 
the description of the dynamics of any complex system can be established, in what 
follows, it will be shown that the differentiable – non – differentiable scale 
transitions are responsible for the generation of interactions. 

In such a context, let it be considered for irrotational motions of the complex 
system dynamics. Then, the complex velocity fields (2a) become: 
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𝑉𝑉� 𝑖𝑖 = −2𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖 𝑙𝑙𝑙𝑙𝛹𝛹 (25) 

where 𝛹𝛹 is the function of states. If it is chosen 𝛹𝛹 of the form: 

𝛹𝛹 = �𝜌𝜌𝑒𝑒𝑖𝑖𝑖𝑖, (26) 

where  �𝜌𝜌 is the amplitude and 𝑠𝑠 is the phase, the complex velocity fields (25) take 
the explicit form: 

𝑉𝑉� 𝑖𝑖 = 2𝜆𝜆(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖𝑠𝑠 − 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)�
2

𝑓𝑓(𝛼𝛼)�−1𝜕𝜕𝑖𝑖 ln 𝜌𝜌 (27) 

such that, the specific multifractal potential 𝑄𝑄 and  the specific multifractal force 
𝐹𝐹𝑖𝑖, become: 

𝑄𝑄 = −2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2
𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝜌𝜌

�𝜌𝜌
 (28) 

respectively 

𝐹𝐹𝑖𝑖 = −𝜕𝜕𝑖𝑖𝑄𝑄 = −2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2𝜕𝜕𝑖𝑖
𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙�𝜌𝜌

�𝜌𝜌
 (29) 

In such a framework, (26) for 𝑓𝑓(𝑥𝑥) ≡ 𝑟𝑟 and a convenient choice of constants 
𝑎𝑎, 𝑏𝑏 and 𝑐𝑐, will take the form: 

𝜌𝜌(𝑟𝑟) =
1

(2𝜋𝜋)
1
2𝜎𝜎
𝑒𝑒𝑒𝑒𝑒𝑒 �−

(𝑟𝑟 − 𝑟𝑟0)2

𝜎𝜎2
� (30) 

with 𝑟𝑟0 is the average and 𝜎𝜎 is the variance. From here, using (29), it results the 
multifractal specific force: 

𝑭𝑭(𝑟𝑟) =
−𝜕𝜕𝜕𝜕
𝜕𝜕𝒓𝒓

= −
𝜇𝜇2𝑟𝑟0
𝜎𝜎2

𝒓𝒓
𝑟𝑟3

+
𝜇𝜇2(𝑟𝑟 − 𝑟𝑟0)

2𝜎𝜎4
𝒓𝒓
𝑟𝑟

 (31) 

where 

𝜇𝜇2 = 2𝜆𝜆2(𝑑𝑑𝑑𝑑)�
4

𝑓𝑓(𝛼𝛼)�−2 (32) 

Thus, both the multifractal specific force of attractive type/of Newtonian 
type  

𝑭𝑭𝑁𝑁(𝑟𝑟) = −
𝜇𝜇2𝑟𝑟0
𝜎𝜎2𝑟𝑟3

𝒓𝒓 (33) 

and the multifractal force of repulsive type 
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𝑭𝑭(𝑟𝑟) =
𝜇𝜇2(𝑟𝑟 − 𝑟𝑟0)

2𝜎𝜎4
 
𝒓𝒓
𝑟𝑟

 (34) 

are natural consequences of the information variation. 
 

5.  Conclusions 
 

In the framework of Scale Relativity Theory, dynamics of any complex 
system on  a multifractal manifold are analyzed. Thus, the momentun Conservation 
Laws both at differentiable and fractal scale are obtained. 

Furthermore, the same Conservation Law is obtained for the differentiable– 
non–differentiable scale transition. Explaining the correlations of type 
informational entropy/cross entropy–probability density induce various types of 
interactions. Moreover, explaining these interactions for a Gaussian–type 
probability density imply attractive-and repulsive-type forces.  

The differentiable – non – differentiable scale transition is the one which 
can allow the explaining of interactions for various types of given probabilities. It 
can be concluded that the force is just a model which can be found as differentiable–
non–differentiable scale transitions, based on correlations of type informational 
entropy/cross entropy–probability density. 
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