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FRACTALITY INFLUENCES ON A FREE GAUSSIAN
“PERTURBATION” IN THE HYDRODINAMIC VERSION OF
THE SCALE RELATIVITY THEORY. POSSIBLE
IMPLICATIONS IN THE BIOSTRUCTURES DYNAMICS

Radu CRISAN-DABIJAl, Avndrei ZALAZ, Eugen HNATIUC3, Andrei AGOP4,
Elena PUIU®, Dorin VAIDEANU®, lon PALAMARCIUC’, Gabriela
JIMBOREAN?®", Florin NEDEFF?, Mihaela Viviana IVAN°

Various differentiable models are frequently used to describe the dynamics of
complex systems (kinetic models, fluid models). Given the complexity of all the
phenomena involved in the dynamics of such systems, it is required to introduce the
dynamic variables dependences both on the space-time coordinates and on the
resolution scales. Therefore, in this case an adequate theoretical approach may be
the use of non-linear physical models. In such framework, using a simplified version
of the fractal hydrodynamic model, the dynamics of a free Gaussian ““perturbation”
is analyzed. Possible implications of the model in dynamics of biological structures
are also studied.

Keywords: complex systems, non-differentiability, fractal hydrodynamic model.
1. Introduction

The standard models [1, 2] used to study the complex system dynamics are
based on the hypothesis of the differentiability of the physical variables that
describes it. The success of the differentiable models must be understood
sequentially, i.e. there are domains large enough for the differentiability to be
valid.
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But differential methods fail when facing the physical reality, such as
instabilities of the complex system that can generate chaos or patterns through
self-structuring, and, therefore, we are “required” to work with non-differentiable
(fractal) method [3].

In order to describe some of the dynamics observed in a complex system by
means of the non-differentiable method, and still remaining treatable as
differential method, it is necessary to introduce, the scale resolution, both in the
expressions of the physical variables and the dynamics equations. This means that
any dynamic variable dependent, in a classical meaning, on the spatial coordinates
and time, become in a non-differential meaning dependent also on the scale
resolution. In other words, instead of working on a dynamic variable, described by
means of a mathematical function strictly non-differentiable, we will work just
with different approximations of the function, derived though their averaging at
different scale resolutions. Consequently, any dynamic variable acts as the limit of
a family of functions, the functions being non-differentiable for a non-zero
resolution scale and differentiable for a null scale resolution.

This approach, well adapted to the complex system dynamics, where any
real determination is conducted at a finite scale resolution, clearly implies the
development both of a new geometric structure and of a physical theory applied to
complex system dynamics, for which the motion laws, invariant to spatial and
temporal coordinate transformations, completed with scales laws, are invariant to
the scale transformations. Such a physical theory that includes the geometric
structure based on the above presented assumptions was developed in the Scale
Relativity Theory with fractal dimension 2 [4] and in Scale Relativity Theory with
an arbitrary constant fractal dimension [5]. In the field of complex system, if we
assume that the complexity of the interactions in the system is replaced by non-
differentiability (fractality), the constrained motion on continuous, but
differentiable curves in a Euclidian space of the complex system structural units
are replaced with the free motions, without any constrains, on continuous but non-
differentiable curves in a fractal space of the same complex system structural units
[6-9]. This is the reasoning for which at the time resolution scales that prove to be
large when compared with the inverse of the highest Lyapunov exponent, the
deterministic trajectories are replaced by a collection of potential states, so that the
concept of “definite position” is substituted by that of an ensemble of positions
having a definite probability density [10-13].

As a consequence, the determinism and the potentiality (non-determinism)
become distinct parts of the same “evolution” of a complex system, through
reciprocal interactions and conditioning, in such way that the complex system
structural units are substituted with the geodesics themselves [14-18].
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Considering the above affirmations, in this paper, we study the influence of
the fractality degree on a free Gaussian perturbation, using the hydrodynamic
version of Scale Relativity with constant arbitrary fractal dimension.

2. The basis of a fractal model in the hydrodynamic representation

Let us now reconsider the fractal hydrodynamic equations with an arbitrary
fractal dimension (kept constant), i.e. the specific momentum and state density
conservation laws [5]:

oV +V'ov' =-0'(Q+U) (1)
0, +0,(V') =0 2)
with Q the specific fractal potential:
[ij-z 0.0" p% uu' [ij-l
Q=-24(dt)\°F/ =" 4 A(dt) " ou (3)
p2

2

v = Zl(dt)(DFj 18'5 the standard classical velocity which is differentiable and

2
independent of the scale resolution dt, u' = /1(dt)[DFJ 16' In o is the non-standard
non-differentiable (fractal) velocity, dependent on the resolution scale, p is the
state density, s is the phase, U is the external scalar potential, 4 is the fractal-
non-fractal transition coefficient and D. is the fractal dimension of the motion
curves. We note that the fractal dimension D, is the ratio describing a statistical
index of system complexity comparing the variation of a fractal pattern with
changes in the measuring scale [3, 19]. For D- one can choose different definition
for the fractal dimensions, i.e. the fractal dimension in a Kolmogorov sense, in a
Hausdorff-Besikovici sense, etc. (for details, see [3, 19]). But, once chosen the
definition, it has to remain constant during whole analysis of the complex system
dynamics. In our case, each specific process is characterized by specific geodesics
(fractal trajectories) which correspond to a specific fractal dimension D¢ .

The velocities v'and u' define, in the fractal space, the complex velocity [5]:

2
A — -1
V! =—2ii(dt)[DFj d'Iny =v' —iu' (4)
with ¥ = \/;eis the equivalent of the wave function, \/; the amplitude and s the
phase.

Equations (1) and (2) will further be used to study the dynamics of a spatial
Gaussian “perturbation” free of any external constrains.

The influence of white Gaussian noise on the fluctuations of different
physical systems is a problem intensively studied, especially interpreted as



284 Radu Crisan-Dabija et al.

positive influence of noise in the increasing of the predictability of apparently
chaotic dynamics [20, 21]. Fractal or multifractal detrended fluctuation analysis
are usually used to study, how the multifractality strength is increased by the
noisy perturbation amplitude [22].

Given the non-linear nature of the equations it is difficult to obtain an
analytical solution for a general case. However, there are some particular
circumstances for which analytical solution can be obtained. Let us consider the
one-dimensional case for the equations (1) and (2) in the absence of any external
constraint (U =0), i.e.:

[ijfz 1 1
ON+VO N ==22(dt)'°F p 20 p 2 (5)
OV + Ay oV =0 (6)
We consider the initial conditions:
v(x,t=0)=c (7)
p(x,t = O) = ,ooe(_x/')‘)2 (8)
and the boundary ones:
v(ix=ct,t)=c )
p(x=—m,t)=p(x=a,t) =0 (10)

In this case, we assume that at t=0 the center of the spatial Gaussian
“perturbation” p(a,x) is at (x(t =0))=0 and has the velocity (v(t=0))=c The
boundary conditions (9) and (10) mean that at any t)0 or t(0 one obtains
(04Q) =0 (for details, see [5]). A similar outcome is obtained for (x) =ct.

Using the method presented in [5], the analytical solution for the equations
(5) and (6), with the initial condition (7), (8) and the boundary ones (9), (10)
becomes:

2
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for the velocity and
-2 A2
p(x,t) = r T eXp] - (x—ct) (12)
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for the states density. One can further reconstruct the current density in the form:

(2/Dg )17
ca’ +{2Mdt)} xt

_ 2
j(X,t) :V(Xat)P(X:t) :7[71/2 = 2 3/2 'eXp - (X (EBDF)—I 2
{az + |:2/1(dt)(2/DF)_l} tz} a+ |:21(dt) } t?
o (04

(13)

For t =0 it results that the dynamics variables defined through (11) - (13)
are non-homogeneous in x and t, while for x=ct these become non-
homogeneous either in x or t.

Given the multiple functional dependences of the dynamic variables
(v,p, j) on the external parameters (¢« ,c, A, (dt)?’PF)™ etc.) we will choose an

adequate normalization that will allow us to obtain a more compact and simplified
dependences. Basically, we want to reduce the explicit dependences on the
external parameters. Thus, we will choose the normalization:
EosX 158 25, @) @R 2=y (14)
(04 (04
This leads to dependences of the complex system dynamics variables on the

external parameters, which can be rewritten as:

) normalized velocity:
1+

Vier)=1e (15)

i) normalized state density:
— C 2

N(&,7)= [1+ 1 2_2]4/2 exp{— (% (16)

iii) normalized current density:
1+ pét (&—ce)
Jér)=—""—= - = 17
() g {2 @)

3. Numerical simulation

Using the mathematical approach given above, we performed a series of
graphical representations to obtain information regarding the spatial and temporal
evolution of the velocity, states density and current density. Also, we studied the
effect of the value attributed to the parameter x, which now implicitly contains

the contribution of the external parameters. We remind that the parameter u

(fractal degree) is directly connected to the fractal contribution on the dynamic
variables, which implies fractalization by means of different statistics (from Levy
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type movements to Brownian ones, either by means of non-Markovian processes
or Markovian ones [3, 4, 19]). From a physical point of view, these statistics are
dictated by the fundamental processes involved in the evolution of the complex
system (formation and expansion).

=1

o
~
—
=
=

States dengity

Expansion velocity
=

Fig. 1: Space-time evolution of the expansion velocity (a), states density (b), current density (c) for
u=6

In Fig. 1 is represented the space-time evolution of the previously
mentioned dynamic variables determined by the equations (15)—(17). All the
graphical depictions (Fig. 1) were made for a constant value of )1 (at a scale
resolution dt=5 and motions on fractal curves with the fractal dimension
D, =1.28). The dependences reveal a space-time decrease of all the complex
system dynamic variables during evolution. Both states density and current
density present a quasi-exponential decrease in both time and space.

The changes to the states density, with variations of the external constraints,
will also be seen in the shape of the complex system “perturbation”. This
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mathematical approach allows us to investigate these changes for different values
of the external parameters described through «. In Fig. 2 we present the contour
plot of the states density for different values of . We observe that for smaller
values (u =4) the “perturbation” has a longer life time, presents a higher states
density and has an elongated shape. With the increase of the external parameter’s
value, a decrease both of the states density and of the life time of the
“perturbation” is observed. The decrease is most probable an effect given by the
properties of the expanding “medium” and it is attributed to strong interaction
processes. The “perturbation” becomes confined for values higher than 45.

The values of the fractal degree for our system () affects not only the
values and evolution of the states density, but also all the other investigated
complex system dynamic variables.
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Figs. 2: Contour plot of the space-time dependence of the states density for u=4 (a), u=45 (b),
=75 (c) and p=95 (d)
We now focus on the influence of x on the temporal evolution of the
complex system. In Fig. 3 are represented the contour plot of the functions
depicted in (15) — (17) for a constant distance. We observed that the current
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density presents two maxima as the value of u is increased. The first one is
observed for values of (1 and short evolution times, while the second maximum
is observed for )1 and longer evolution times. We attribute the presence of these

two maxima to the temporal evolution given by changes in the “perturbation”
dynamics and to the structure induced by the external parameters (through ).

There are several parameters like background pressure, external potential,
etc., which influences the structure and shape of the perturbation. Given the
manner in which we defined x, we cannot differentiate between various external

parameters and it is difficult to attribute the presence of these two maxima in
current density strictly to only one of them.

a) Expansion velocity b) States density

Fractal degree

]

Fractal degree

a0 Time 0 5 10 5rjme 20 25 30

c) Current density

Figs. 3: Contour plot of the following normalized complex system dynamic variables:
expansion velocity (a), states density (b), current density (c) for a constant distance & =6

From these representations, we find that the current density has a decrease
in its amplitude and presents a shift towards higher space-time coordinates.
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4. Blood as a complex fluid

Previous results can be applied to the blood dynamics, considered a
complex system, i.e. complex fluid. Therefore, both the *“changing” of
“perturbation” shape (Fig. 2), and its “breaking” (Fig. 3) can be assimilated to the
initiation of the self-organization process having as consequence the blockage of
blood flow through “stopper effect” (for example, the acute arterial occlusion).
Let us note that without contradicting the above stated theory, which is sustained
by some morphopathological evidence, we prove through the mathematical
modeling that the blocking of the lumen of an absolutely healthy artery can
happen as a result of the “stopping effect” (even in the absence of the at least
disputable cracked and non-protrusive atheroma plaque), in the conditions of a
normal sanguine circulation [23].

This happens due to the fact that blood is a complex non-Newtonian fluid
made of: plasma and formed cells, cholesterol vesicles and other suspended
elements [24]; thus, the laws of fractal physics are completely applicable to
sanguine circulation. For conformity, the perfect Newtonian fluid is a fluid in
which viscosity is independent of the shear stress, thus having no relation to the
sanguine fluid. However, not only the complex structure of blood justifies the
using of fractality, but also the complex structure of the arterial system, with its
multiple ramifications, which generate turbulence areas and interruptions of the
linear flow that make classical physics not applicable in this context. We really
discuss about multi fractality: a morphological one due to complex structure of the
arterial tree as well as a functional one due to blood flow “regimes” [25-27].

To explain the above statements, let us observe first that blood as non-
Newtonian complex fluid has a behavior of Bingham type [28]. This results from
the conservation law of the specific momentum in the one dimensional case with
axial symmetry, i.e. for the velocity field (v, =0,v, =0,v, # 0) under the form [5]:

r=ro+v% (18)

where 7 is the tangential unitary type effort, 7z, is the deformation unitary type
effort that is direct correspondence with the specific fractal potential (3),
v = A(dt)?°*)* is the viscosity type coefficient and dv, /dr is the radial gradient
of the velocity field. From (18), for 7, — 0, results the Newtonian type behavior

of the complex fluid. Bingham type behavior of the complex fluid through a
circular pipe of radius R and length | implies the simultaneous existence of two
flow sub-domains: a) a sub-domain for r €[0,r,], where the tangential unitary

type effect is lower than the flow limit z,. As a consequence, the complex fluid
moves as an apparently undistorted rigid system (in the form of a stopper with
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quasi-parallel walls to those of the pipe). The solid stopper flows with constant
velocity, without changing its structure; b) a sub-domain for r e [ro, R] where the

tangential unitary type effort excludes the value z,. As a consequence, the

complex fluid flows so that a layer with finer structural units and lower
concentration appears. In these conditions, following the procedure from [29], the
stopper radius is obtained in the form:
A
Ap
where Ap is the pressure drop on the pipe. This result can be applied in the
analysis of blood dynamics, both in arteries and capillaries, by calculating the
diameter of the thrombus assimilated with a cylinder of radius r, and length |

subjected to a pressure drop Apin the form D =4z, /Ap. This result is validated

experimentally, as it results from [30, 31].

Regarding the recovery of such biological diseases, there are a vast number
of techniques. We remind that the external electrical stimulation can cause
changes in the blood vessels. Although atherosclerosis cause vasodilation in the
affected area and blood flow remains unchanged for an extended period of time,
the vascular wall stiffness will increase the pulse pressure. James E. Tracy et al.
developed, in 1950, a study whose purpose was to measure the effects of electrical
stimulation (ES) on blood flow and blood pressure. All subjects received electrical
stimulation of intensity sufficient to produce torque equal to 15% of the
predetermined maximal voluntary contraction of their right quadriceps femoris
muscle. The conclusions were that the increase in blood flow occurred within 5
minutes after the onset of ES and dropped to resting levels within 1 minute after a
10-minute period of ES [32].

From the physiotherapeutic point of view, treatment is directed towards
improving blood flow and towards decreasing the disparity between the demand
for blood and its supply [33].

(19)

0

5. Conclusions

We formulated a simplified version of the fractal hydrodynamic model and
used it to describe the dynamic of a fractal fluid which is assimilated to a complex
system. The space and time evolution of expansion velocity, current density and
state density were investigated. The model manages to simulate the formation and
expansion of complex system perturbation taking into account the scale
differences between different mechanisms.
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