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FRACTALITY INFLUENCES ON A FREE GAUSSIAN 
“PERTURBATION” IN THE HYDRODINAMIC VERSION OF 

THE SCALE RELATIVITY THEORY. POSSIBLE 
IMPLICATIONS IN THE BIOSTRUCTURES DYNAMICS 

Radu CRISAN-DABIJA1, Andrei ZALA2, Eugen HNATIUC3, Andrei AGOP4, 
Elena PUIU5, Dorin VĂIDEANU6, Ion PALAMARCIUC7, Gabriela 

JIMBOREAN8*, Florin NEDEFF9, Mihaela Viviana IVAN10 
Various differentiable models are frequently used to describe the dynamics of 

complex systems (kinetic models, fluid models). Given the complexity of all the 
phenomena involved in the dynamics of such systems, it is required to introduce the 
dynamic variables dependences both on the space-time coordinates and on the 
resolution scales. Therefore, in this case an adequate theoretical approach may be 
the use of non-linear physical models. In such framework, using a simplified version 
of the fractal hydrodynamic model, the dynamics of a free Gaussian “perturbation” 
is analyzed. Possible implications of the model in dynamics of biological structures 
are also studied. 

Keywords: complex systems, non-differentiability, fractal hydrodynamic model. 
1. Introduction 

The standard models [1, 2] used to study the complex system dynamics are 
based on the hypothesis of the differentiability of the physical variables that 
describes it. The success of the differentiable models must be understood 
sequentially, i.e. there are domains large enough for the differentiability to be 
valid.  
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But differential methods fail when facing the physical reality, such as 
instabilities of the complex system that can generate chaos or patterns through 
self-structuring, and, therefore, we are “required” to work with non-differentiable 
(fractal) method [3]. 

In order to describe some of the dynamics observed in a complex system by 
means of the non-differentiable method, and still remaining treatable as 
differential method, it is necessary to introduce, the scale resolution, both in the 
expressions of the physical variables and the dynamics equations. This means that 
any dynamic variable dependent, in a classical meaning, on the spatial coordinates 
and time, become in a non-differential meaning dependent also on the scale 
resolution. In other words, instead of working on a dynamic variable, described by 
means of a mathematical function strictly non-differentiable, we will work just 
with different approximations of the function, derived though their averaging at 
different scale resolutions. Consequently, any dynamic variable acts as the limit of 
a family of functions, the functions being non-differentiable for a non-zero 
resolution scale and differentiable for a null scale resolution. 

This approach, well adapted to the complex system dynamics, where any 
real determination is conducted at a finite scale resolution, clearly implies the 
development both of a new geometric structure and of a physical theory applied to 
complex system dynamics, for which the motion laws, invariant to spatial and 
temporal coordinate transformations, completed with scales laws, are invariant to 
the scale transformations. Such a physical theory that includes the geometric 
structure based on the above presented assumptions was developed in the Scale 
Relativity Theory with fractal dimension 2 [4] and in Scale Relativity Theory with 
an arbitrary constant fractal dimension [5]. In the field of complex system, if we 
assume that the complexity of the interactions in the system is replaced by non-
differentiability (fractality), the constrained motion on continuous, but 
differentiable curves in a Euclidian space of the complex system structural units 
are replaced with the free motions, without any constrains, on continuous but non-
differentiable curves in a fractal space of the same complex system structural units 
[6-9]. This is the reasoning for which at the time resolution scales that prove to be 
large when compared with the inverse of the highest Lyapunov exponent, the 
deterministic trajectories are replaced by a collection of potential states, so that the 
concept of “definite position” is substituted by that of an ensemble of positions 
having a definite probability density [10-13].  

As a consequence, the determinism and the potentiality (non-determinism) 
become distinct parts of the same “evolution” of a complex system, through 
reciprocal interactions and conditioning, in such way that the complex system 
structural units are substituted with the geodesics themselves [14-18]. 
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Considering the above affirmations, in this paper, we study the influence of 
the fractality degree on a free Gaussian perturbation, using the hydrodynamic 
version of Scale Relativity with constant arbitrary fractal dimension. 

2. The basis of a fractal model in the hydrodynamic representation 
Let us now reconsider the fractal hydrodynamic equations with an arbitrary 

fractal dimension (kept constant), i.e. the specific momentum and state density 
conservation laws [5]: 
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 is the non-standard 
non-differentiable (fractal) velocity, dependent on the resolution scale, ρ  is the 
state density, s  is the phase, U  is the external scalar potential, λ  is the fractal-
non-fractal transition coefficient and FD  is the fractal dimension of the motion 
curves. We note that the fractal dimension FD  is the ratio describing a statistical 
index of system complexity comparing the variation of a fractal pattern with 
changes in the measuring scale [3, 19]. For FD  one can choose different definition 
for the fractal dimensions, i.e. the fractal dimension in a Kolmogorov sense, in a 
Hausdorff-Besikovici sense, etc. (for details, see [3, 19]). But, once chosen the 
definition, it has to remain constant during whole analysis of the complex system 
dynamics. In our case, each specific process is characterized by specific geodesics 
(fractal trajectories) which correspond to a specific fractal dimension FD . 

The velocities vland ul define, in the fractal space, the complex velocity [5]: 
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with iseρΨ =  the equivalent of the wave function, ρ  the amplitude and s  the 
phase. 

Equations (1) and (2) will further be used to study the dynamics of a spatial 
Gaussian “perturbation” free of any external constrains.  

The influence of white Gaussian noise on the fluctuations of different 
physical systems is a problem intensively studied, especially interpreted as 
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positive influence of noise in the increasing of the predictability of apparently 
chaotic dynamics [20, 21]. Fractal or multifractal detrended fluctuation analysis 
are usually used to study, how the multifractality strength is increased by the 
noisy perturbation amplitude [22]. 

Given the non-linear nature of the equations it is difficult to obtain an 
analytical solution for a general case. However, there are some particular 
circumstances for which analytical solution can be obtained. Let us consider the 
one-dimensional case for the equations (1) and (2) in the absence of any external 
constraint ( 0=U ), i.e.: 
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In this case, we assume that at 0=t  the center of the spatial Gaussian 

“perturbation” ),( xaρ  is at 0)0( ==tx  and has the velocity ctv == )0(   The 
boundary conditions (9) and (10) mean that at any 0〉t  or 0〈t  one obtains 

0=∂ Qx  (for details, see [5]). A similar outcome is obtained for ctx = .  
Using the method presented in [5], the analytical solution for the equations 

(5) and (6), with the initial condition (7), (8) and the boundary ones (9), (10) 
becomes: 
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for the states density. One can further reconstruct the current density in the form: 
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For 0≠t  it results that the dynamics variables defined through (11) - (13) 
are non-homogeneous in x  and t , while for ctx =  these become non-
homogeneous either in x  or t .   

Given the multiple functional dependences of the dynamic variables 
( jv ,,ρ ) on the external parameters (α , c ,λ , 1)/2()( −FDdt , etc.) we will choose an 
adequate normalization that will allow us to obtain a more compact and simplified 
dependences. Basically, we want to reduce the explicit dependences on the 
external parameters. Thus, we will choose the normalization: 
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This leads to dependences of the complex system dynamics variables on the 
external parameters, which can be rewritten as: 
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iii) normalized current density: 
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3. Numerical simulation 
Using the mathematical approach given above, we performed a series of 

graphical representations to obtain information regarding the spatial and temporal 
evolution of the velocity, states density and current density. Also, we studied the 
effect of the value attributed to the parameter µ , which now implicitly contains 
the contribution of the external parameters. We remind that the parameter µ  
(fractal degree) is directly connected to the fractal contribution on the dynamic 
variables, which implies fractalization by means of different statistics (from Levy 
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type movements to Brownian ones, either by means of non-Markovian processes 
or Markovian ones [3, 4, 19]). From a physical point of view, these statistics are 
dictated by the fundamental processes involved in the evolution of the complex 
system (formation and expansion). 

 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

 
 

 
 

 
 

 
Fig. 1: Space-time evolution of the expansion velocity (a), states density (b), current density (c) for 

6≡µ  
 

In Fig. 1 is represented the space-time evolution of the previously 
mentioned dynamic variables determined by the equations (15)–(17). All the 
graphical depictions (Fig. 1) were made for a constant value of µ 1〉  (at a scale 
resolution 5=dt  and motions on fractal curves with the fractal dimension 

28.1=fD ). The dependences reveal a space-time decrease of all the complex 
system dynamic variables during evolution. Both states density and current 
density present a quasi-exponential decrease in both time and space.  

The changes to the states density, with variations of the external constraints, 
will also be seen in the shape of the complex system “perturbation”. This 



Fractality influences of a free Gaussian “perturbation” […] possible implications in …      287 

 
 

States density 

b) μ = 45 States density 

States density μ = 95 d) c) μ = 75 

mathematical approach allows us to investigate these changes for different values 
of the external parameters described through µ . In Fig. 2 we present the contour 
plot of the states density for different values of µ . We observe that for smaller 
values ( 4=µ ) the “perturbation” has a longer life time, presents a higher states 
density and has an elongated shape. With the increase of the external parameter’s 
value, a decrease both of the states density and of the life time of the  
“perturbation” is observed. The decrease is most probable an effect given by the 
properties of the expanding “medium” and it is attributed to strong interaction 
processes. The “perturbation” becomes confined for values higher than 45.  
 The values of the fractal degree for our system ( µ ) affects not only the 
values and evolution of the states density, but also all the other investigated 
complex system dynamic variables. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figs. 2: Contour plot of the space-time dependence of the states density for μ=4 (a), μ=45 (b), 
μ=75 (c) and μ=95 (d) 

We now focus on the influence of µ  on the temporal evolution of the 
complex system. In Fig. 3 are represented the contour plot of the functions 
depicted in (15) – (17) for a constant distance. We observed that the current 

a) μ = 4 States density 
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density presents two maxima as the value of µ  is increased. The first one is 
observed for values of 1〈µ  and short evolution times, while the second maximum 
is observed for 1〉µ  and longer evolution times. We attribute the presence of these 
two maxima to the temporal evolution given by changes in the “perturbation” 
dynamics and to the structure induced by the external parameters (through µ ). 
 There are several parameters like background pressure, external potential, 
etc., which influences the structure and shape of the perturbation. Given the 
manner in which we defined µ , we cannot differentiate between various external 
parameters and it is difficult to attribute the presence of these two maxima in 
current density strictly to only one of them. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figs. 3: Contour plot of the following normalized complex system dynamic variables: 
expansion velocity (a), states density (b),  current density (c) for a constant distance 6=ξ  

 
From these representations, we find that the current density has a decrease 

in its amplitude and presents a shift towards higher space-time coordinates.  
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4. Blood as a complex fluid 

Previous results can be applied to the blood dynamics, considered a 
complex system, i.e. complex fluid. Therefore, both the “changing” of 
“perturbation” shape (Fig. 2), and its “breaking” (Fig. 3) can be assimilated to the 
initiation of the self-organization process having as consequence the blockage of 
blood flow through “stopper effect” (for example, the acute arterial occlusion). 
Let us note that without contradicting the above stated theory, which is sustained 
by some morphopathological evidence, we prove through the mathematical 
modeling that the blocking of the lumen of an absolutely healthy artery can 
happen as a result of the “stopping effect” (even in the absence of the at least 
disputable cracked and non-protrusive atheroma plaque), in the conditions of a 
normal sanguine circulation [23]. 

This happens due to the fact that blood is a complex non-Newtonian fluid 
made of: plasma and formed cells, cholesterol vesicles and other suspended 
elements [24]; thus, the laws of fractal physics are completely applicable to 
sanguine circulation. For conformity, the perfect Newtonian fluid is a fluid in 
which viscosity is independent of the shear stress, thus having no relation to the 
sanguine fluid. However, not only the complex structure of blood justifies the 
using of fractality, but also the complex structure of the arterial system, with its 
multiple ramifications, which generate turbulence areas and interruptions of the 
linear flow that make classical physics not applicable in this context. We really 
discuss about multi fractality: a morphological one due to complex structure of the 
arterial tree as well as a functional one due to blood flow “regimes” [25-27]. 

To explain the above statements, let us observe first that blood as non-
Newtonian complex fluid has a behavior of Bingham type [28]. This results from 
the conservation law of the specific momentum in the one dimensional case with 
axial symmetry, i.e. for the velocity field ( )0,0,0 ≠== zr vvvθ  under the form [5]: 

dt
dvzνττ += 0       (18) 

where τ  is the tangential unitary type effort, 0τ  is the deformation unitary type 
effort that is direct correspondence with the specific fractal potential (3), 

( )( ) 12 −= FDdtλν  is the viscosity type coefficient and drdvz  is the radial gradient 
of the velocity field. From (18), for 00 →τ , results the Newtonian type behavior 
of the complex fluid. Bingham type behavior of the complex fluid through a 
circular pipe of radius R  and length l  implies the simultaneous existence of two 
flow sub-domains: a) a sub-domain for [ ]0,0 rr∈ , where the tangential unitary 
type effect is lower than the flow limit 0τ . As a consequence, the complex fluid 
moves as an apparently undistorted rigid system (in the form of a stopper with 
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quasi-parallel walls to those of the pipe). The solid stopper flows with constant 
velocity, without changing its structure; b) a sub-domain for [ ]Rrr ,0∈  where the 
tangential unitary type effort excludes the value 0τ . As a consequence, the 
complex fluid flows so that a layer with finer structural units and lower 
concentration appears. In these conditions, following the procedure from [29], the 
stopper radius is obtained in the form: 

 
p
lr

∆
= 0

0
2τ      (19) 

where p∆  is the pressure drop on the pipe. This result can be applied in the 
analysis of blood dynamics, both in arteries and capillaries, by calculating the 
diameter of the thrombus assimilated with a cylinder of radius 0r  and length l  
subjected to a pressure drop p∆ in the form plD ∆= 04τ . This result is validated 
experimentally, as it results from [30, 31]. 

Regarding the recovery of such biological diseases, there are a vast number 
of techniques. We remind that the external electrical stimulation can cause 
changes in the blood vessels. Although atherosclerosis cause vasodilation in the 
affected area and blood flow remains unchanged for an extended period of time, 
the vascular wall stiffness will increase the pulse pressure. James E. Tracy et al. 
developed, in 1950, a study whose purpose was to measure the effects of electrical 
stimulation (ES) on blood flow and blood pressure. All subjects received electrical 
stimulation of intensity sufficient to produce torque equal to 15% of the 
predetermined maximal voluntary contraction of their right quadriceps femoris 
muscle. The conclusions were that the increase in blood flow occurred within 5 
minutes after the onset of ES and dropped to resting levels within 1 minute after a 
10-minute period of ES [32].  

From the physiotherapeutic point of view, treatment is directed towards 
improving blood flow and towards decreasing the disparity between the demand 
for blood and its supply [33]. 

5. Conclusions 

We formulated a simplified version of the fractal hydrodynamic model and 
used it to describe the dynamic of a fractal fluid which is assimilated to a complex 
system. The space and time evolution of expansion velocity, current density and 
state density were investigated. The model manages to simulate the formation and 
expansion of complex system perturbation taking into account the scale 
differences between different mechanisms.  
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