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DAMAGE DETECTION BY UPDATING USING
CORRELATION FUNCTIONS

Farid ASMA!

A finite element model updating method is proposed for damage detection in
mechanical structures using frequency measurements. The cost function is made up
of a frequency residual formulated by the gradient of a correlation function in the
frequency domain. An optimization algorithm is proposed for the resolution of the
numerical problem. The suggested technique is applied to simulated structures
considering the effect of noisy measurements. The simulation tests results show the
effectiveness of this new damage identification technique. Mathematical and
algorithmic analyses highlight very interesting characteristics of the proposed
optimization algorithm. The updating method thus obtained has application in
structural damage detection and finite elements models validation. It allows also a
structural health monitoring of large mechanical structures.
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1. Introduction

Damage detection in structures drew a great attention in civil, mechanical
and aerospace engineering. In this context, many vibration measurements based
methods were developed.

Genetic algorithms took a significant part in this field. These algorithms
are able to find global minima or maxima. They can thus be usable for the
minimization of cost functions. Larson and Zimmerman [1] developed an
effective program using genetic algorithms. Applied for a finite element model
updating of a six elements bar with 25 degrees of freedom, the results show a
considerable improvement even when the modes are disturbed by experimental
noise. Carlin and Garcia [2] used the algorithm for the detection of defects in
mechanical structures. After comparison with other damage detection methods,
they conclude that genetic algorithms are more powerful and avoid announcing
defects where they do not exist. Li et al. [3] proposed another type of methods
based on Perturbed Boundary Condition (PBC) in experimental test. The pmain
utility of the PBC is to overcome the principal problem of the updating methods
which is the insufficiency of information, and to improve conditioning of the
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systems. One of the problems of this type of methods is the difficulty of
associating measurements of the various tests in only one updating procedure,
because if one simply increases the number of equations, the resolution of the
system becomes more complex. Instead of using several sets of tests as for the
PBC, Ibrahim [4] used an analytical model with multiple disturbances. Even if
information on the structural behaviour comes from only one experimental test,
the method increases the quantity of information obtained, and consequently helps
to improve conditioning of equations.

Some researchers used antiresonance frequencies with the natural
frequencies, mode shapes, and Frequency Response Functions (FRFs) in the
updating method [5 — 7]. Even if there is a multitude of finite element model
updating methods, the problem remains always posed since none of them can
correctly update the FE model of all industrial structures. There are cases
considered to be satisfactory but their success is limited. A good outline of
existing methods is given by Sohn et al. [8]. These methods are based on the fact
that the defects cause usually the reduction in the rigidity of the structure which
results in the change of the vibratory characteristics (like damping, eigen
frequencies and eigen modes). The defects cause also the change of the
geometrical and mechanical parameters of the structure which one finds in the
mass, damping, stiffness and flexibility matrices. The finite element method can
be employed for damage detection by inverse techniques or models updating.

This work presents a new finite elements model updating method for the
detection and the quantification of defects using a correlation function in
frequency domain.

2. Parametrisation of the updating method

The dynamic behaviour of a linear mechanical structure is governed by the
following equation
My(t)+Cy(t)+ Ky(t)= f(t) L)
where M, C and K are mass, damping and stiffness real symmetric matrices which
can be discretized as follow

N N N
M=3M® c=3cl® and k=3 K )
i=1 i=1 i=1
For a harmonic excitation of pulsation o, the particular solution of Eq. 1 is
[ Mo?+ joC+Ky = f 3)
which we can deduce the expression of the displacement vector
-1
y(o)= (— Mo? + joC + K) f (4)

with oe{w; o .., ®s}
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Damping is considered proportional to the mass and the stiffness
C=oaM+ K
By introducing the parameterization of the structure, the global mass and
stiffness matrices from Eq. 2 can be expressed in the following form

N

M@zzmM@, (5)
’\Il

K =S kK © (6)
i=1

1
where M® et K© are mass and stiffness elementary matrices, and m; and k; are the
updating parameters. Case where m; = k; = 1 imply that the i"" element is well
modelized and thus doesn’t comprise any defect or errors. The updating process
consists then in quantifying parameters m; and k; to localize and quantify defects
in the considered structure. For this purpose we use a measurement set of
frequency response functions FRFs.

Lety ©(ca) be an incomplete measurement set of « s » frequency response
functions. In practice FRFs are not completely measured. This problem of
incomplete data can be solved by the extension of the experimental data or the
reduction of the analytical model. In the method presented here, the unmeasured
degrees of freedom are approximated by their analytical equivalents.

3. Cost function and minimization procedure

Before updating a finite elements model it is useful to have an idea on its
precision. For that, correlation functions exist; they make a comparison between
experimental measurements and values predicted by the analytical model. One of
the first correlation methods is based on modes correlation to evaluate the errors
modelling. Modal Assurance criterion (MAC) is the most used correlation
function; this is defined by Allemang and Brown [9]

N X 2
[Z¢Aki¢ijJ
) e — O
D0 aki® Aki D Xkj® Xkj
k=1 k=1
where ¢, is the analytical eigenvector and ¢ is the experimental eigenvector.
When measurements noise is important other quantities like frequency
response functions FRF are used. The use of FRF instead of modes is more
effective since experimental FRFs are directly obtained in experiments whereas
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the modes require calculations based on these measures. This passage of FRFs to
the modes utilizes thus additional error.

One of the principal advantages of the use of FRF is that the damping
parameters can be corrected whereas the modal parameters are not sensitive to
damping. The use of FRF by selecting a sufficient number of measurement points
can attenuate the problem of incomplete measurements. This is due to the fact that
FRFs contain the influence of all the modes.

The objective of methods with cost function is to make a correlation
between the measured data and those of the analytical model. For the choice of the
cost function let us consider the various correlation functions used in frequency
domain. They are summarized what follows in

The Frequency Domain Assurance Criterion (FDAC) is given by Pascual
etal. [10]

N Y
2 H ajicH ik
i

FDAC(wa, 0y ), = €))

N N
[Z H ajic H Ajk }[Z H ik H ik ]
=1 j=1
where Hpa is the analytical FRF for an analytical frequency wa, and Hy is a
measured FRF for a corresponding working frequency wx. k is the excitation
degree of freedom.

The Frequency Response Scale Factor (FRSF) is given by Pascual et al.
[11]

H;(mA)[S]Hx(mx)

Ha(@a)SH (@A)
where [S] is the a weighting matrix.

The FRSF gives values between - 1 and 1. The FDAC gives a quantitative
comparison of FRFs; on the other hand the FRSF gives a qualitative comparison.
Consequently the FRSF is not sufficient to evaluate the degree of correlation.

The Frequency Response Assurance Criterion (FRAC) is given by Nefske
and Sung [12]

9)

FRSF(wa, 0% )=

FRAC j = (10)

(Dm . (Dm -
2 H i H ik | 22 H i H i
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J being the measurement dof and k the excitation dof.
Fotsch and Ewins [13] proposed the Modal FRF Assurance Criterion
(MFAC) defined by

\ 2
(Zd)Ajk H Xij
j=1

MFAC(wa, 0 ), = (11)

N N
[Z(I)Ajkd)Ajk ][Z H i H Xij
j=1 j=1

where ¢, is the analytical eigenvector for an analytical frequency .

Put aside the FRSF, all correlation functions vary between 0 and 1, value 1
indicates a perfect correlation and O indicates a bad correlation.

FRSF does not give a good quantitative correlation and thus cannot
quantify possible defects objectively. FDAC and FRAC are limited to the use of
frequency response functions only.

Some correlation functions are used in literature, Gao and Spencer [14]
used the total modal assurance criterion (TMAC) to determine the analytical
model to correlate for a damage localization method. Zang et al. [15] used global
shape criterion (GSC) and global amplitude criterion (GAC) to update finite
element model. In this present work, the method is based on the MFAC (11)
which uses the analytical modes in addition to FRFs. The cost function which
results is

S
3= [L-MFAC(0a, 0% ), ) (12)
k=1
The minimization of this cost function amounts minimizing the square of
the residue

=1 =1

2
N N N
Rk —(Zd)Ajk(l)Aij[szijXjk][Zd)AijXjk} (13)
j=1
what is equivalent to

2
T T* *
Rk :(¢Ak¢AkXHxHX)_(¢AkHXk) (14)
The minimization process is written then

min[S:iRE] (15)
m k=1
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4. Gradient of the cost function

The calculation of the gradient of the cost function requires derivations of
the analytical eigenvectors according to the updating parameters m; and kj. This
type of calculation is developed in [16] by the following form:

The mode vector derivative may be expressed as a linear combination of
all eigenvectors

N
ad)—Ak:Z:lvlkqd)Aq : (16)
6mi —
g=1
where the coefficients s4q are determined using the generalized eigenvalue and
orthogonalisation properties of eigenvectors

oK oM
[y 7 o} 0

1 oM
__(I)-;‘k@ O Ak q=k

Hkg = (17)

knowing that ¢a are the analytlcal eigenvectors and A are the analytical eigen
values.
In the same way, we have

Dk
— =D YkgPAq - (18)
Koo
with
oK oM

O pg S| e -ng ) a=k
_ ok Kok, 19)
KT 1 1 aM y

S0 5 o O Ak q=

On the other hand, for the calculation of derivations of the mass and
stiffness matrices we use the computation formulae clarified by Asma and
Bouazzouni [17]

The derivation of the global mass and stiffness are

Sﬂz Mi(e),g%zo, (20,21)

m; i

oK oK

8?20, aTz Kl(e) (22, 23)
| |

The FRF is expressed as
-1
H((D)zZ_l(m):(— Mo? + joC + K) (24)
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The derivation of this matrix is calculated by

-1
8: () _0Z (o) _ H (). 22 82((0) H(o) (25)
m 8mi
OH () _ 02 o) _ 62(0))
ok o —H(0).——H(0) (26)
Finally, the derivation of the damping stlffness matrix led to
0Z(®) _ s (e)
om = M; ( o’ + jocoo) (27)
0Z(w) (e)
" Ki¥(1+Bo) (28)

5. Optimization Algorithm

A good choice of the objective function influences the quality and the
effectiveness of the method. The cost function must be monotonous and
continuous compared to the updating parameters. When the cost function is well
chosen, the optimization method plays an important part. The least squares
method is one of the most used methods. Some methods based on genetic
algorithms improve the updating process.

Usually in damage detection and finite element model updating the
optimization process is ill-conditioned and causes local entrapments. To avoid
this, Duan et al. [18] propose a float-encoding genetic algorithm. The optimization
algorithm used for the minimization of the cost function & is the Gauss — Newton
algorithm, which is an iterative algorithm with Jacobian matrix. The nonlinear
system of N unknown and N equations is obtained by

05

_0, (29)
om;
X _y (30)
ok,

|
The resolution by Gauss — Newton method led to an iterative system of the
form
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Y
D\ omy
5
my _ my a (J (V)Tl amN (31)
ky ky 9
ok,
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ok

where J is the Jacobian matrix

The system is completely constructed using equations (16) to (28). The
convergence criterion is based on the relative difference between two successive
m- and k-values during the iteration process; a relative value of 0.1% is acceptable
to have a good accuracy with 5% measurement noise. To assure a numerical
stability a relaxation coefficient is used to limit the variation of the m- and k-
values at each iteration.

6. Simulated cases studied

First case:

To test the suggested method, we consider the structure of Fig. 1. Meshez
with into 70 finite elements and 120 degrees of freedom, with E=2.1-10"N/m?
and p =7800kg/m®. The simulating model of the structure is built by introducing
simultaneous defects of +40% and -30% of the stiffness respectively in elements
24 and 59 with -20% and +15% of the mass, respectively in elements 14 and 69,
by adding 5% of random noise. Measurements are taken according to degrees of
freedom 94, 95, 97, 98, 100, 101, 103, 104, 106, 107, 109, 110, 112, 113, 115,
116, 118 and 119 of the structure (which are the displacement of nodes 35 to 43 in
Fig. 1.).
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Fig. 1. Simulated test structure
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Fig. 2. Mass updating results obtained

Solid vertical line denotes detected mass modelling error. We can see on
the defect ratio in Fig. 2. that the introduced errors in the 14" and 69" elements
have been detected and quantified close to -0.2 and 0.15 respectively. Other not
perturbed elements like 5, 11, 25, 32, 33, 37, 45, and 56 are also updated.

We can see in the defect ratio in Fig. 3. that the introduced stiffness errors
in elements 24 and 59 are detected and well quantified respectively 0.4 and -0.3.
Some other elements are also considered to be corrected like 10, 17, 37, 45 and
61.

The obtained results represented in Figs. 2. and 3. show that the simulated
defects are localized and quantified. Some other element are lightly updated, this
is because these elements are geometrically close to the damaged elements, and
probably because of the measurement noise.
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Fig. 3. Stiffness updating results obtained
Second case:

In this second example the suggested method is used to detect damages.
We consider the structure represented in Fig. 4.
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Fig. 4. Simulated damaged structure

This is discretized into 30 finite elements and 39 degrees of freedom. The
simulating model of the structure is built by introducing damages 40%, 25%, and
30% of the stiffness respectively in elements 4, 13 and 26, adding 5% of random
noise. Measurements are taken according to degrees of freedom 7, 8, 13, 14, 16,
17, 22, 23, 25, 26, 31 and 32 (which are the displacement of nodes 4, 6, 7, 9, 10
and 12 in Fig. 4.).
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Fig. 5. Detected damages

Fig. 5. shows that introduced damages in elements 4, 13 and 26 are
localized and well quantified.

In this work, a correlation is made using the Modal Assurance Criterion
(MAC). Fig. 6. and Fig. 7. represent respectively the correlation before and after
using the damage detection algorithm. This shows a bad correlation of the initial
finite elements model. In fact from the 19" mode to the 35", MAC diagonal
values are less than 1 in Fig. 6.
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miode index

Fig. 6. MAC correlation before using Fig. 7. MAC correlation after using
the damage detection algorithm MAC correlation after using the damage
detection algorithm

After application of the proposed algorithm, the diagonal values of the
MAC (Fig. 7.) are all close to 1. This shows that the corrected finite elements
model is well correlated.

Finally this second example highlights the performance of the method to
detect damages in structures.

7. Conclusion

A damage detection method in mechanical structures based on the
correlation function MFAC (Modal FRF Assurance Criterion) is proposed. This
uses the inverse technique by updating the finite element model. This method is
expensive from the point of view of calculation but a numerical stability is
acquired since it considers in the derivative only the eigen modes.

The tests carried out on a simulated truss structure shows very interesting
qualities of detection and correction in term of quantification and localization. The
correlation function and the optimization algorithm used show good
characteristics of stability and convergence. The updating method thus obtained
will find its application in detection of damage and modelling errors, as for the
validation of finite elements models. It allows also the structural health
monitoring of large mechanical structures.
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