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INTEGRATING VISION TOOLS IN ROBOTIC TASKS FOR 
SIGNATURE ANALYSIS, PART MEASUREMENT AND 

RECOGNITION  

Silvia ANTON1 

În aceastã lucrare, sunt prezentate aspecte de bazã privind analiza şi 
interpretarea imaginii pentru analiza de semnãturã. Prima parte analizeazã cele 
mai utile seturi de trãsãturi ale regiunii şi frontierei pentru descrierea formei; astfel 
de descriptori permit maparea spaţiului obiect în spaţiul trãsãturilor ce vor fi 
folosite în recunoaşterea statisticã a şabloanelor pentru construirea clusterelor şi 
identificarea şabloanelor. Trãsãturile standard intrinseci sunt funcţii predefinite 
global aplicabile oricãrei clase de obiecte; ele sunt extinse cu masurãri globale şi 
locale ce sunt aplicate claselor particulare de obiecte. Lucrarea este destinatã 
mãsurãrii şi recunoasterii obiectelor prin analiza de semnãturã. 

In this paper, the basic aspects concerning image analysis and interpretation 
for signature analysis are presented. The first part analyses the most useful sets of 
region- and boundary features for shape description; such descriptors allow 
mapping the object space into the feature space which will be used in statistical 
pattern recognition for cluster building and pattern identification. Standard intrinsic 
features are predefined as global functions applicable to any class of objects; they 
are extended with local and global measurements which are applied to particular 
classes of objects. The paper is devoted to object measurement and recognition by 
signature analysis.  

Keywords: robot vision, object recognition, signature analysis, inspection, 
learning. 

1. Introduction 

Part measurement and recognition are basic functions in merged Guidance 
Vision for Robots (GVR) and Automated Visual Inspection (AVI) tasks. Internal 
features describe a region in terms of its internal characteristics (the pixels 
comprising the body). An internal representation is selected either for the 
recognition of simple shapes based on sets of standard intrinsic features (number 
of holes, area, perimeter, compactness, eccentricity, invariant moments, etc) or 
when the primary interest is on reflectivity properties of the object's surface or by 
statistical, structural or spectral approaches).  
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Internal scalar transform techniques generate shape descriptors based on 
the region shape. One of the most frequently used methods is that of moments. 
The standard moments pqm of order )( qp +  of an image intensity function 

),( yxf  are:  
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A uniqueness theorem states that if ),( yxf  is piecewise continuous and 
has nonzero values only in a finite part of the visvis yx ,  plane, moments of all 
order exist and the moment sequence )( pqm  is uniquely determined by 

),( yxf [1]. Conversely, )( pqm  uniquely determines ),( yxf . 
In the discrete domain of digital images, equation (1) is transformed and 

the sum is carried out over the entire sub-image within which the shape of interest 
lies, to get the standard moments of )( qp +  order of an object O: 
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where: 

• )(Opqm   is the moment of )( qp +  order of object O; 

• YX ,   are the yx,  coordinates of the analysed pixel of object O; 

• 
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• yx NN ,  are the maximum values respectively for the YX ,  image 
coordinates, e.g. 480 ,640 == yx NN .  

However, because these moments are computed on the basis of the 
absolute position of the shape, they will vary for a given shape O depending on its 
location. To overcome this drawback, one can use the central moments of order 

)( qp + : 
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where 00010010 / ,/ mmYmmX ==  are the coordinates of the shape's centroid. Thus, 
these moments take the centroid of the shape as their reference point and hence are 
position-invariant. 



Integrating vision tools in robotic tasks for signature analysis 159

For binary images of objects O, 00m  is simply computed as the sum of all 
pixels within the shape. Assuming that a pixel is one unit area then 00m  is 
equivalent to the area of the shape expressed in raw pixels. 

If the binary image of the object was coded using the run-length coding 
technique, let us consider that kir ,  is the thk  run of the thi  line and that the first 

run in each row is a run of zeros. If there are im  runs on the thi  line, and a total 
of M  lines in the image, the area can be computed as the sum of the run lengths 
corresponding to ones in the image:  
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Note that the sum is over the even runs only.  
Similarly, 10m  and 01m  are effectively obtained respectively by the 

summation of all the x-coordinates and y-coordinates of pixels in the shape. 
The central moments up to order three are given as expressed in (5): 
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2
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The central moments can be normalized, defining a set of normalized 

central moments, pqη , and having the expression k
pqpq )(/)()( 00 OOO μμη = , 

where ... 3, ,2  ,12/)( =+++= qpqpk .  
Moment invariants are preferred for shape description as they generate 

values which are invariant to translation, rotation, and scale changes. Equation (6) 
describes a set of seven invariant moments which are derived from the second and 
third normalized central moments. 
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Shape descriptors based on moment invariants convey significant 
information for simple objects but fail to do so for complicated ones. Since we are 
dealing with internal scalar transform descriptors, it would seem that these 
moments can only be generated from the entire region. However, they can also be 
generated from the boundary of the object by exploiting the theorems of Stoke or 
Green, both of which relate the integral over an area to an integral around its 
contour [2]. 

The simplest internal scalar feature of a region to be identified in robot-
vision tasks is its area, defined as the number of pixels contained within its 
boundary. Compactness and roundness can also be considered as scalar region 
descriptors, as their formulae contain the blob's area. Compactness is a 
dimensionless feature and thus is invariant to scale changes. 

The principal axes of a region are the eigenvectors of the covariance 
matrix obtained by using the pixels within the region as random variables.  

One solution adopted frequently to overcome this difficulty is to use as an 
internal scalar transform descriptor the ratio of the large to the small eigenvalue. 
Other simple internal scalar descriptors based on the region's area are: 

• The ratio of the areas of the original blob to that of its convex hull. 
• The ratio of the area of the original blob to that of its circumcircle. 
• The ratio of the area of the original shape to the area of the minimal bounding 

rectangle. This is a measure of rectangularity and is maximized for perfectly 
rectangular shapes. 

• The ratio of the area of the original blob to the square of the total limb-length 
of its skeleton. 

Topological properties are used for global descriptions of regions. Such 
properties are not affected by any deformation (e.g. stretching). Note that, as 
stretching affects distances, topological properties do not depend on the notion of 
distance or any properties implicitly based on the concept of distance measure. A 
widely used topological descriptor is the number of holes in the region, which is 
not affected by stretching or rotation transformations [3]. 

The number of holes H and connected components C in a region can be 
used to define another topological feature – the Euler number E of a region: 

  HCE −=              (7) 
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Recall that a connected component of a set is a subset of maximal size 
such that any two of its points can be joined by a connected curve lying entirely 
within the subset. Fig. 1 exemplifies the above defined topological descriptors for 
the blob image of a carburettor flange:  
 

 
 

Fig. 1. Topological descriptors of a region: number of holes, 7=H , number of connected 
components, 1=C , and Euler number, 6−=E . 

2. Space Domain Descriptors Of Boundaries: The Signatures 

External space domain features describe the spatial organization of the 
object's boundary. One frequently used technique is the use of syntactic 
descriptors of boundary primitives, e.g. atomic edges (lines and arcs), and corners. 
Thus, the list of shape descriptors (or string of primitive shapes) must follow 
given rules: the shape syntax or grammar. 

Signatures are 1-D functional representations of boundaries and may be 
generated in various ways, for example as polar radii signatures or linear offset 
signatures. Regardless of how a signature is generated, however, the main idea 
approached in the present research devoted to real-time visual analysis of parts 
handled by robots is to reduce the boundary representation to a 1-D function, 
which is easier to describe than the original 2-D boundary [4], [5]. 

A polar radii signature, encoding the distance from the shape centroid to 
the shape boundary as a function of angle θ , is shown in Fig. 2. 
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Fig. 2 Angular radii signature of a shape. A 15-element vector ],...,,[ 1521 RRR  is defined, where 
15,...,1 , =iRi  is the distance from the centroid to the edge of the blob, measured at an angle of 

)24( 0 i+θ  degrees, and 0θ  is the orientation derived from the greatest radius, 1R . 
 
Such polar radii signatures are invariant to translation, but they do depend 

on rotation and scaling. To rend such signatures invariant to rotation, there must 
be found a method to select the same starting point to generate the signature, 
regardless of the shape's orientation. One possibility is to choose the starting point 
as the point on the boundary farthest from the blob's centroid, but only if this 
point is unique and independent of rotational aberrations for each class of objects 
of interest. Another solution is to select the starting point on the axis of least 
inertia farthest from the centroid. This method requires more computation, but is 
more rugged because the direction of the major eigen axis is determined from the 
covariance matrix, which is based on all boundary points.  

Based on the assumption of uniformity in scaling with respect to both axes 
and that sampling is taken at equal intervals of θ , changes in size of a shape result 
in changes in the amplitude values of the corresponding signature. One simple 

Distance 
[mm] 

Angle θ

13R

14R

7R

4R

3R
1R

2R

5R

6R

8R 9R

10R
11R 12R

15R

Maximum 

0θ

0
15
2π

15
4π

15
28π π2



Integrating vision tools in robotic tasks for signature analysis 163

way to normalize for the result is to scale all functions so that they span the same 
range of values, e.g. ]1,0[ . The advantage of this method is simplicity, but the 
potential drawback is that scaling of the entire function depends on only two 
values: the minimum and the maximum. If the shapes are noisy, this dependence 
can be a source of error from one object class instance to the other. 

A more robust approach is to divide each sample by the variance of the 
signature, assuming that the variance is greater than a residual value and hence 
does not create computational difficulties. Use of the variance yields a variable 
scaling factor that is inversely proportional to changes in the shape's size.  

 

 
 

Fig. 3 Linear offset signature of a lathe-turned shape. An 8-element vector ],...,,[ 821 DDD  is 
defined, where 8,...,1 , =iDi  is the twice the distance from the minimum inertia axis to the edge of 

the blob, measured respectively at 8,...,1, =idi  mm from the "small lateral" edge of the shape. 
 
A linear offset signature, encoding the distance from the axis of least 

inertia to the shape boundary as a function of distance d, is also a space descriptor 
of the contour. The shape in Fig. 3 has contour segments parallel to its major 
eigen axis. 

It can be observed that in this case sampling is not taken at equal intervals 
of d , i.e. 8 ..., 1,  const,1 =≠− − idd ii .  

External space domain descriptors based on signatures are generally 
simple, and require reduced storage capability. 

More complex space domain descriptors are often based on the Fourier 
series expansion of a periodic function derived from the boundary. For example, 
the boundary could be traversed at the angle plotted between a line tangent to the 
boundary and a reference line as a function of position along the boundary. 
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Consider, for example, the shape depicted in Fig. 4. The rotation angle θ  
of the tangent at the boundary of the object varies between 0 and π2  radians as 
the boundary is traversed. In particular, θ  will vary with the distance s  around 
the perimeter and can be expressed as a function, )(sθ , called slope of the 
boundary. 

 
 

Fig. 4 The slope is obtained by rotation of tangent to the boundary of the shape. 
 

If L is the length of the boundary of the shape, 0)0( =θ  and πθ 2)( −=L . 
However, the function )(sθ  is not periodic, and consequently it cannot be 
expressed in terms of a Fourier series expansion. An alternative formulation, 
suggested by Zhan and Roskies [6], defines a new function, )(tφ : 

  tLtt += )
2

()(
π

θφ              (8) 

Now, 0)2()0( == πφφ , and the function )(tφ  is invariant to scaling, 
translation and rotation of the shape; hence, the low-order coefficients of its 
Fourier expansion can be used as features for translation, rotation, and scaling in 
shape recognition. 

A variation of this approach is to use the so-called slope density function 
as a signature. This function is simply a histogram of tangent-angle values. As a 
histogram is a measure of concentration of values, the slope density function 
highlights sections of the boundary with constant tangent angles (straight or 
nearly straight segments) and has deep valleys in sections producing rapidly 
varying angles (corners or sharp inflexions). 

The curvature is defined as the rate of change of the slope. In general, 
obtaining reliable measures of curvature at a point in a digital boundary is difficult 
because the boundaries tend to be locally "ragged". A solution consists into using 
the difference between the slopes of adjacent atomic boundary segments (e.g. 
represented as straight lines) as a descriptor of curvature at the point of 
intersection of the segments. 
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3. Conclusions  

The research presented in this paper was directed towards integrating a set 
of efficient, high-speed vision tools: Windows Region of Interest (WROI), point-, 
line-, and arc finders, and linear and circular rulers into an algorithm of 
interactive signature analysis of classes of mechanical parts tracked by robots in a 
flexible production line. To check the geometry and identify parts using the 
signature, you must follow the steps: 

1. Train an object 
The object must represent very well its class – it  must be "perfect". The 

object is placed in the plane of view and then the program which computes the 
signature is executed; the position and orientation of the object is changed and the 
procedure is repeated for a few times. 

The user must specify for the first sample the starting point, the distances 
between each ruler and the length of each ruler. For the example in Fig. 5 of a 
linear offset signature, one can see that the distances between rulers 
(measurements) are user definable. 

 

 
 

Fig. 5 The linear offset signature of a lathe-turned shape 
 

If we want to compute a polar signature the user must specify the starting 
point and the angle between each measure. 

During the training session, the user can mark some edges (linear or 
circular) of particular interest that will be further searched and analysed in the 
recognition phase. For example if we want to verify if a linear edge is inclined at a 
certain angle with respect to the part's Minimal Inertia Axis (MIA), the start and 
the end point of this edge will be marked with the mouse of the IBM PC terminal 
of the robot-vision system.  In a similar way, if a circular edge must be selected, 
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we will mark the start point, the end point and a third point on that arc-shaped 
edge. 

The program computes one type of signature according to the object's 
class. The class is automatically defined by the program from the numerical 
values of a computed set of standard scalar internal descriptors: compactness, 
eccentricity, roundness, invariant moments, number of bays, a.o.  

After the training the object has associated a class, a signature, a name and 
two parameters: the tolerance and the percentage of verification. 

2. Setting the parameters used for recognition 

• The tolerance: each measure of the recognized object must be into a range: 
(original measure ± the tolerance value). The tolerance can be modified 
anytime by the user and will be applied at run time by the application 
program. 

• The percentage of verification: specifies how many measures can be out of 
range (100% – every measure must be in the range, 50% – the maximum 
number of rulers that can be out of range is ½ of the total number). The 
default value of the percentage of verification proposed by the application 
is 95%. 
3. The recognition stage 

The sequence of operations used for measuring and recognition of 
mechanical parts includes: taking a picture, computation of the class to which the 
object in the WROI belongs, and finally applying the associated set of vision tools 
to evaluate the particular signature for all trained objects of this class. 

The design of the signature analysis program has been performed using 
specific vision tools on an Adept Cobra 600 TT robot, equipped with a GP-
MF602 Panasonic camera and AVI vision processor. 

The length measurements were computed using linear rulers (VRULERI), 
and checking for the presence of linear and circular edges was based respectively 
on the finder tools VFIND.ARC and VFIND.LINE [7].  

The pseudo-code below summarizes the principle of the interactive 
learning (developped in this paper) during the training stage and  the real time 
computation process during the recognition stage. 

i) Training 

1. Picture acquisition 
2. Selecting the object class (from the computed values of internal 

descriptors:  compactness, roundness,...) 
3. Suggesting the type of signature analysis: 

3.1.Linear Offset Signature (LOF) 
3.1.1. specify the starting point and the  linear offsets 
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3.2.Polar Signature (PS) 
3.2.1. specify the starting point and the incremental angle 

4. Specify the particular edges to be verified 
5. Improve the measurements? 

5.1.Compute repeatedly only the signature (the position of the object is 
changed every time) 

5.2.Update the mean value of the signature.  
6. Compute the recognition parameters (tolerance, percentage of 

verification) and name the learned model. 
7. Display the results and terminate the training sequence. 

ii) Run time measurement and recognition 

1. Picture acquisition  
2. Identifying the object class (using the compactness, roundness,... 

descriptors) 
3. Computing the associated signature analysis for each class model trained. 
4. Checking the signature against its trained value, and inspecting the 

particular edges  (if any) using finder and ruler tools 
5. Returning the results to the AVI program or GVR robot motion planner 

(the name of the recognized object, or void). 
6. Updating the reports about inspected and/or manipulated (assembled) 

parts; sequence terminated. 
Fig. 6 and Table 1 show the results obtained for a polar signature of a leaf-shaped 
object. 

 
Fig. 6. Computing the polar signature of a blob. 
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Table 1 
 Statistical results for the polar radii signature of the leaf-shaped object 

Statistics
[mm]

 
Parameter 

Min value

( min ) 

 

Max value

( max ) 

Mean value

( avg ) 

Dispersion

( disp ) 

Number of
ruler tools

used 

1R  68.48 70.46 68.23 1.98 1 
2R  56.59 58.44 57.02 1.85 1 
3R  26.68 28.42 27.41 1.74 1 
4R  32.24 34.03 33.76 1.52 1 
5R  44.82 45.92 45.42 1.10 1 
6R  54.07 55.92 54.83 1.85 1 
7R  51.52 52.76 52.05 1.24 1 
8R  50.39 51.62 50.98 1.23 1 
9R  49.15 51.18 49.67 2.03 1 

RA  25.41 26.98 26.22 1.57 1 
RB  47.41 48.68 47.91 1.27 1 
RC  53.71 55.30 54,64 1.59 1 
RD  57.79 59.51 58.61 1.72 1 
RE  35.69 37.39 36.80 1.70 1 
RF  35.42 36.72 36.17 1.30 1 

The dispersion was calculated for each parameter 10,...,1 , =iPi  as: 
)min()max()( iii PPPdisp −= , and is expressed in the same units as the parameter 

(millimetres or degrees). The min/max values are: )min(min iP= , 

)max(max iP= . The expression of the mean value ∑=
i

iPavg
10
1 .  
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