

VARIATIONAL PRINCIPLES AND A GENERALIZED DISTANCE

Georgiana GOGA¹

Scopul acestui articol este de a prezenta un principiu variational general de tip Ekeland, bazat pe un nou concept de distanță generalizată numită u -distanță, care a fost introdusă recent de către Ume. Ca aplicații, extindem principiul variational al lui Zhong și o teoremă de minimizare.

The aim of this paper is to present a general variational principle on Ekeland-type relied on a new concept of a generalized distance called u -distance, which was introduced recently by Ume. As applications, we extend Zhong's variational principle and a minimization theorem.

Key words: variational principles, u -distance, minimization theorem

2000 MSC: 54E45, 54E50, 58E30

1. Introduction

One of the most powerful tool in nonlinear analysis during the last four decades is surely given by Ekeland's variational principle for lower semi-continuous functionals on complete metric spaces, which has various applications. Let us begin with the original principle:

Theorem 1.1 ([1],[2]). *Let (X,d) be a complete metric space. Let $f : X \rightarrow (-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below. Then for every $\varepsilon > 0, \lambda > 0$ and $u \in X$ such that*

$$f(u) < \inf_{x \in X} f(x) + \varepsilon$$

there exists $v \in X$, satisfying the following inequalities:

$$(E_1) \quad f(v) \leq f(u);$$

$$(E_2) \quad d(u, v) \leq \lambda;$$

$$(E_3) \quad f(w) > f(v) - \frac{\varepsilon}{\lambda} d(v, w) \quad \text{for every } w \in X \setminus \{v\}.$$

Soon after its formulation, many extensions of Theorem 1.1. were proposed. One of these was obtained in 1997 by Zhong [3], [4]:

¹ Prof., Department. of Mathematics, "Nicolae Rotaru" College, Constanta, Romania; e-mail: georgia_goga@yahoo.com

Theorem 1.2 ([3],[4]). *Let (X, d) be a complete metric space and $x_0 \in X$ be fixed. Let $f : X \rightarrow (-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below and let $h : [0, \infty) \rightarrow [0, \infty)$ be a nondecreasing continuous function such that*

$$\int_0^\infty \frac{1}{1+h(r)} dr = +\infty.$$

Then, for every $\varepsilon > 0$, every $y \in X$ so that

$$f(y) < \inf_{x \in X} f(x) + \varepsilon,$$

and $\lambda > 0$, there exists some point $z \in X$ such that

$$(i) \quad f(z) \leq f(y);$$

$$(ii) \quad d(x_0, z) \leq r_0 + r^*;$$

$$(iii) \quad f(x) \geq f(z) - \frac{\varepsilon}{\lambda[1+h(d(x_0, z))]} d(z, x) \text{ for all } x \in X,$$

where $r_0 = d(x_0, y)$, and r^ is a number so that*

$$\int_{r_0}^{r_0 + r^*} \frac{1}{1+h(t)} dt \geq \lambda.$$

Recently, in 2010, Ume [5] presented a new concept of generalized distance called u – distance, which generalizes some distances anterior introduced (see, e.g., ω – distance [6], Tataru's distance [7], τ – distance [8]).

In this paper, starting by this concept of distance, we expand the Ekeland variational principle ([1],[2]) and prove a new minimization theorem by using this generalized variational principle. Our results extend and improve other known results due to Zhong ([3], [4]), Ekeland ([1], [2]), and Takahashi ([9]).

2. Preliminaries

The purpose of this section is to present former results necessarily in our approach. First, we recall the above-mentioned concept of Ume's [5] generalized distance in a metric space.

Definition 2.1. Let (X, d) be a metric space. A function $p : X \times X \rightarrow R_+$ is called u -distance on X if there exists a map $\Theta : X \times X \times R_+ \times R_+ \rightarrow R_+$ such that the following condition hold:

$$(u_1) \quad p(x, z) \leq p(x, y) + p(y, z), \quad \forall x, y, z \in X;$$

(u_2) $\Theta(x, y, 0, 0) = 0$ and $\Theta(x, y, s, t) \geq \min\{s, t\}$ for all $x, y \in X$, $s, t \in R_+$, and, for every $x \in X$ and $\varepsilon > 0$, there is $\delta > 0$ such that

$$|\Theta(x, y, s, t) - \Theta(x, y, s_0, t_0)| < \varepsilon$$

if $|s - s_0| < \delta, |t - t_0| < \delta$, $s, t, s_0, t_0 \in R_+$ whatever $y \in X$;

$$(u_3) \quad \lim_n x_n = x \text{ and } \lim_n \sup\{\Theta(w_n, z_n, p(w_n, x_m), p(z_n, x_m)) : m \geq n\} = 0 \quad \text{imply}$$

$$p(y, x) \leq \liminf_{n \rightarrow \infty} p(y, x_n) \text{ for } y \in X;$$

$$(u_4) \quad \left. \begin{array}{l} \lim_n \sup\{p(x_n, w_m) : m \geq n\} = 0, \\ \lim_n \sup\{p(y_n, z_m) : m \geq n\} = 0, \\ \lim_n \Theta(x_n, w_n, s_n, t_n) = 0, \\ \lim_n \Theta(y_n, z_n, s_n, t_n) = 0 \end{array} \right\} \Rightarrow \lim_n \Theta(w_n, z_n, s_n, t_n) = 0,$$

or

$$\left. \begin{array}{l} \lim_n \sup\{p(w_m, x_n) : m \geq n\} = 0, \\ \lim_n \sup\{p(z_m, y_n) : m \geq n\} = 0, \\ \lim_n \Theta(x_n, w_n, s_n, t_n) = 0, \\ \lim_n \Theta(y_n, z_n, s_n, t_n) = 0 \end{array} \right\} \Rightarrow \lim_n \Theta(w_n, z_n, s_n, t_n) = 0,$$

$$(u_5) \quad \left. \begin{array}{l} \lim_n \Theta(w_n, z_n, p(w_n, x_n), p(z_n, x_n)) = 0, \\ \lim_n \Theta(w_n, z_n, p(w_n, y_n), p(z_n, y_n)) = 0 \end{array} \right\} \Rightarrow \lim_n d(x_n, y_n) = 0,$$

or

$$\left. \begin{array}{l} \lim_n \Theta(a_n, b_n, p(x_n, a_n), p(x_n, b_n)) = 0, \\ \lim_n \Theta(a_n, b_n, p(y_n, a_n), p(y_n, b_n)) = 0 \end{array} \right\} \Rightarrow \lim_n d(x_n, y_n) = 0.$$

Example 2.2 ([5]). Let X be a normed space with norm $\|\cdot\|$. Then the function $p : X \times X \rightarrow R_+$ defined by $p(x, y) = \|x\|$ is a u -distance on X but it is not a τ -distance on X .

Example 2.3 ([5]). Let p be a u -distance on a metric space (X, d) and let c be a positive real number. Then the function $q : X \times X \rightarrow R_+$ defined by $q(x, y) = c \cdot p(x, y)$ for every $x, y \in X$ is also a u -distance on X .

By means of the generalized u -distance, Ume obtained in [5] the following version of Ekeland's variational principle. This result will play an important role in the proof of our main theorem.

Theorem 2.4 ([5]). Let (X, d) be a complete metric space, let $f : X \rightarrow (-\infty, \infty]$ be a proper lower semicontinuous function, which is bounded from below, and let $p : X \times X \rightarrow R_+$ be a u -distance on X . Then the following assertions hold:

(A) For each $x \in X$ with $f(x) < \infty$, there exists $v \in X$ such that

$$f(v) \leq f(x) \text{ and } f(w) > f(v) - p(v, w) \text{ for all } w \in X \setminus \{v\}.$$

(B) For each $\varepsilon > 0, \lambda > 0$, and $x \in X$ with $p(x, x) = 0$ and $f(x) < \inf_{a \in X} f(a) + \varepsilon$, there exists $v \in X$ such that $f(v) \leq f(x)$,

$$p(x, v) \leq \lambda \text{ and}$$

$$f(w) > f(v) - \frac{\varepsilon}{\lambda} p(v, w) \text{ for all } w \in X \setminus \{v\}.$$

3. The main statements

We begin this section by extending a result of Suzuki [10] using the u -distance.

Proposition 3.1. Let (X, d) be a complete metric space, and let $p : X \times X \rightarrow R_+$ be a u -distance on X . Let $q : X \times X \rightarrow R_+$ be a function with the properties:

- (a) $q(x, z) \leq q(x, y) + q(y, z)$, $\forall x, y, z \in X$;
- (b) q is lower semicontinuous in the second variable;
- (c) $q(x, y) \geq p(x, y)$ for all $x, y \in X$.

Then q is also u -distance on X .

Proof. The assumption (a) is equivalent with $(u_1)_q$.

Let $\Theta : X \times X \times R_+ \times R_+ \rightarrow R_+$ be a function satisfying $(u_2) \sim (u_5)$. Clearly, $(u_3)_q$ follows from (b) . Now, we assume that

$$\begin{aligned} \lim_n \sup \{q(x_n, w_m) : m \geq n\} &= 0, \\ \lim_n \sup \{q(y_n, z_m) : m \geq n\} &= 0, \\ \lim_n \Theta(x_n, w_n, s_n, t_n) &= 0, \\ \lim_n \Theta(y_n, z_n, s_n, t_n) &= 0. \end{aligned} \tag{1}$$

By (1) and (c), we have

$$\lim_n \sup \{p(x_n, w_m) : m \geq n\} = 0$$

and

$$\lim_n \sup \{p(y_n, z_m) : m \geq n\} = 0.$$

Therefore, by (u_4) , we find $\lim_n \Theta(w_n, z_n, s_n, t_n) = 0$, and derive $(u_4)_q$.

Next, we assume that

$$\lim_n \Theta(w_n, z_n, q(w_n, x_n), q(z_n, x_n)) = 0, \tag{2}$$

and

$$\lim_n \Theta(w_n, z_n, q(w_n, y_n), q(z_n, y_n)) = 0. \tag{3}$$

Apply again (c) in (2) and (3) to obtain

$$\lim_n \Theta(w_n, z_n, p(w_n, x_n), p(z_n, x_n)) = 0,$$

And

$$\lim_n \Theta(w_n, z_n, q(w_n, y_n), q(z_n, y_n)) = 0.$$

By virtue of (u_5) , we have $\lim_n d(x_n, y_n) = 0$ and $(u_5)_q$ is also verified. ■

Next, we establish a general variational principle ([11], [12]), which is an extension of both Ekeland's and Zhong's variational principles.

Theorem 3.2. *Let (X, d) be a complete metric space, $a \in X$ a fixed element and let $p : X \times X \rightarrow R_+$ be a u -distance on X , lower semicontinuous in its second variable. Let $f : X \rightarrow (-\infty, \infty]$ be a proper lower semicontinuous function which is bounded from below and let $b : [0, \infty) \rightarrow (0, \infty)$ be a nonincreasing continuous function such that*

$$B(t) = \int_0^t b(r) dr,$$

is a C^1 – function from R_+ into itself such that $B(\infty) = \infty$. Let $y \in X$ be such that $p(y, y) = 0$ and

$$f(y) > \inf_{x \in X} f(x). \quad (4)$$

Then, for $\varepsilon_0 > 0$, there exists $z \in X$ such that

$$(i) \quad f(z) \leq f(y),$$

$$(ii) \quad p(a, z) \leq \beta(y) + \beta^*,$$

$$(iii) \quad f(x) > f(z) - \frac{\varepsilon_0}{\lambda} b(\beta(z)) p(z, x), \text{ for all } x \in X,$$

where $\beta(\cdot) = p(a, \cdot)$, and the number β^* is such that

$$\int_{\beta(y)}^{\beta(y) + \beta^*} b(t) dt \geq \alpha(y), \quad (5)$$

with $\alpha(y) = f(y) - \inf_{x \in X} f(x) \geq \lambda > 0$.

Proof. First, we define a function $q : X \times X \rightarrow R_+$ by

$$q(x, y) := \int_{p(a, x)}^{p(a, x) + p(x, y)} b(t) dt.$$

Since b is nonincreasing, for $(x, z) \in X \times X$, we deduce

$$\begin{aligned} q(x, z) &= \int_{p(a, x)}^{p(a, x) + p(x, z)} b(t) dt \leq \int_{p(a, x)}^{p(a, x) + p(x, y) + p(y, z)} b(t) dt = \\ &= \int_{p(a, x)}^{p(a, x) + p(x, y)} b(t) dt + \int_{p(a, x) + p(x, y)}^{p(a, x) + p(x, y) + p(y, z)} b(t) dt \leq \\ &\leq \int_{p(a, x)}^{p(a, x) + p(x, y)} b(t) dt + \int_{p(a, y)}^{p(a, y) + p(y, z)} b(t) dt = q(x, y) + q(y, z). \end{aligned}$$

In addition, q is obviously lower semicontinuous in its second variable.

On the other hand, we have

$$\begin{aligned} q(x, y) &= B(p(a, x) + p(x, y)) - B(p(a, x)) \geq \\ &\geq b(p(a, x) + p(x, y)) p(x, y). \end{aligned} \quad (6)$$

Taking into account of the definition of function b ,

$$b(p(a, x) + p(x, y)) > b(\infty) = M \geq 0. \quad (7)$$

Combining (6) and (7), we deduce

$$q(x, y) \geq M \cdot p(x, y),$$

with $M \geq 0$. The assumptions of *Proposition 3.1* are verified, since $M \cdot p(x, y)$ is a u -distance. Hence, $q(x, y)$ is also u -distance.

Now, from (4) and (5), we obtain

$$\begin{aligned} 0 < \lambda \leq f(y) - \inf_{x \in X} f(x) = \alpha(y) &\leq \int_{\beta(y)}^{\beta(y) + \beta^*} b(t) dt = \\ &= \int_0^{\beta^*} b(u + \beta(y)) du \leq \int_0^{\beta^*} b(u) du = B(\beta^*) \end{aligned} \quad (8)$$

So, by (8), we have

$$f(y) \leq \inf_{x \in X} f(x) + B(\beta^*),$$

and the *Theorem 2.4* is applicable to $q(x, y)$ for $\varepsilon = B(\beta^*) > 0$ and $\lambda = \alpha(y) > 0$. Therefore, there exists $z \in X$ such that

$$f(z) \leq f(y), \quad (9)$$

$$q(y, z) \leq \alpha(y), \quad (10)$$

and

$$f(x) > f(z) - \frac{B(\beta^*)}{\alpha(y)} q(z, x), \forall x \in X \setminus \{z\}. \quad (11)$$

By (u_1) , we know that

$$p(a, z) \leq p(a, y) + p(y, z) = \beta(y) + p(y, z). \quad (12)$$

On the other hand, from (5) and (10), it follows that

$$B(\beta(y) + p(y, z)) - B(\beta(y)) \leq \alpha(y) \leq B(\beta(y) + \beta^*) - B(\beta(y)).$$

Thereby, we find that

$$p(y, z) \leq \beta^*, \quad (13)$$

since B is a nondecreasing function. Thus, (ii) follows from (12) and (13). Moreover, since

$$q(z, x) = \int_{p(a, z)}^{p(a, z) + p(z, x)} b(t) dt \leq b(p(a, z)) p(z, x) = b(\beta(z)) p(z, x), \quad (14)$$

by multiplying (14) with (-1) and, using (8) and (11), for $0 < B(\beta^*) \leq \varepsilon_0$, we get

$$f(x) > f(z) - \frac{B(\beta^*)}{\alpha(y)} q(z, x) \geq f(z) - \frac{\varepsilon_0}{\lambda} b(\beta(z)) p(z, x),$$

for all $x \in X$ and (iii) is verified. This completes the proof. \blacksquare

Remark 3.3. Let $a, f, b, p, \alpha(y), \beta(y), \beta^*$ and X be as in Theorem 3.2.

(i) When $a = y, b(t) = 1, \beta^* = \lambda, \varepsilon_0 > \alpha(y) \geq \lambda > 0$, and $p(x, y) = d(x, y)$, Theorem 3.2 reduces to Theorem 1.1.

(ii) Take $a = x_0, b(t) = \frac{1}{1 + h(t)}$, where $h: [0, \infty) \rightarrow [0, \infty)$ is a continuous nondecreasing function such that

$$\int_0^\infty \frac{1}{1 + h(r)} dr = +\infty,$$

where $\varepsilon_0 > \alpha(y) \geq \lambda > 0, \beta(y) = d(x_0, y) = r_0, \beta^* = r^*$ and $p(x, y) = d(x, y)$. Then, Theorem 3.2 implies Theorem 1.2.

We give now our minimization theorem.

Theorem 3.4. Let X, a, f, p, b and B be as in Theorem 3.2. We assume that for any $\varepsilon > 0$ and for every $y \in X$ with

$$f(y) > \inf_{x \in X} f(x),$$

there exists $w \in X \setminus \{y\}$ such that

$$f(w) \leq f(y) - \varepsilon b(\beta(y)) p(y, w). \quad (15)$$

Then, there exists $x_0 \in X$ such that $\inf_{x \in X} f(x) = f(x_0)$.

Proof. Suppose that

$$f(y) > \inf_{x \in X} f(x),$$

for every $y \in X$. By Theorem 3.2, for any $\varepsilon > 0$, there exists $z \in X$ such that

$$f(z) > f(y) - \varepsilon b(\beta(z)) p(y, z), \text{ for all } x \in X. \quad (16)$$

Besides, the point z will satisfy

$$\inf_{x \in X} f(x) = f(z).$$

Otherwise, assuming that

$$f(y) \geq f(z) > \inf_{x \in X} f(x),$$

by (15) and (16), we get to

$$f(z) \geq f(w) + \varepsilon b(\beta(z))p(z, w) > f(z),$$

which is a contradiction. This completes the proof. ■

In the following, we illustrate how to satisfying the condition (15) of Theorem 3.4 by an elementary example.

Example 3.5. Consider the function $f: [0, \infty) \rightarrow [0, \infty)$ defined by $f(x) = \sqrt[3]{x}$ and $a = 0$. Clearly, $f(0) = \inf_{x \in [0, \infty)} f(x)$. For any $\varepsilon > 0$ and each $y \in (0, \varepsilon]$, we have $w \in (0, y)$ such that

$$\begin{aligned} p(y, w) &= |y - w| = y - w = \left(\sqrt[3]{y} - \sqrt[3]{w} \right) \left(\sqrt[3]{y^2} + \sqrt[3]{yw} + \sqrt[3]{w^2} \right) < \\ &< 3\sqrt[3]{y^2 + 1} \left(\sqrt[3]{y} - \sqrt[3]{w} \right) = \frac{f(y) - f(w)}{\varepsilon b(\beta(y))}, \end{aligned}$$

where $b(x) = \frac{1}{3\varepsilon\sqrt[3]{x^2 + 1}}$, and $\beta(y) = p(0, y) = |y| = y$. Then, we can apply Theorem 3.4 to conclude that there exists $x_0 \in [0, \infty)$ such that $f(x_0) = \inf_{x \in [0, \infty)} f(x)$. ■

R E F E R E N C E S

- [1] I. Ekeland, “On the variational principle”, J. Math. Anal. Appl. **47** (1974), pp. 324 – 353.
- [2] I. Ekeland, “Nonconvex minimization problems”, Bull. Amer. Math. Soc. **1** (1979), pp. 443 – 474.
- [3] C.-K. Zhong, “A generalization of Ekeland’s variational principle and applications to the study of the relation between the weak P.S. condition and coercivity”, Nonlinear Anal. **29** (1997), pp. 1421-1431.
- [4] C.-K. Zhong, “On Ekeland’s variational principle and a minimax theorem”, J. Math. Anal. Appl. **205** (1997), pp. 239-250.
- [5] J.S. Ume, “Existence theorems for generalized distance on complete metric spaces”, Hindawi Publ. Corp., Fixed Point Theory Appl., 2010, Art. ID 397150, 21 pp.
- [6] O. Kada, T. Suzuki, W. Takahashi, “Nonconvex minimization theorems and fixed point theorems in complete metric spaces”, Math. Japan. **44** (1996), pp. 381 – 391.

- [7] *D. Tataru*, “Viscosity solutions of Hamilton- Jacobi equations with unbounded nonlinear terms”, *J. Math. Anal. Appl.* **163** (1992), pp. 354 – 392.
- [8] *T. Suzuki*, “Generalized distances and existence theorems in complete metric spaces”, *J. Math. Anal. Appl.* **253** (2001), pp. 440 – 458.
- [9] *W. Takahashi*, Minimization theorems and fixed points theorems, *Nonlinear Analysis and Mathematical Economics*, Edited by T. Maruyama, RIMS Kokyuroku **829** (1991), pp.175-191.
- [10] *T. Suzuki*, “On the relation between the weak Palais-Smale condition and coercivity given by Zhong”, *Nonlinear Anal.* **68** (2008), pp. 2471 – 2478.
- [11] *T.Q. Bao, P.Q. Khanh*, “Are several recent generalizations of Ekeland's variational principle more general than the original principle ? ”, *Acta Math. Vietnam* **28** (2003), pp. 345-350.
- [12] *M. Turinici*, “Function variational principles and coercivity”, *J. Math. Anal. Appl.* **304** (2005), pp. 236-248.
- [13] *I. Meghea*, “Ekeland variational principle with generalization and variants”, Old City Publ., Philadelphia, PA, & Ed. Archives Contemp., Paris, 2009.
- [14] *Z. Wu*, “Equivalent extensions to Caristi-Kirk's fixed point theorem, Ekeland's variational principle and Takahashi's minimization theorem”, Hindawi Publ.Corp., Fixed Point Theory and Appl., vol. 2010, ID 970579.