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VARIATIONAL PRINCIPLES AND A GENERALIZED
DISTANCE

Georgiana GOGA'!

Scopul acestui articol este de a prezenta un principiu variational general de
tip Ekeland, bazat pe un nou concept de distanta generalizatd numita u-distanta,
care a fost introdusa recent de cdatre Ume. Ca aplicatii, extindem principiul varia-
tional al lui Zhong §i o teorema de minimizare.

The aim of this paper is to present a general variational principle on
Ekeland-type relied on a new concept of a generalized distance called u-distance,
which was introduced recently by Ume. As applications, we extend Zhong'’s
variational principle and a minimization theorem.
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1. Introduction

One of the most powerful tool in nonlinear analysis during the last four
decades is surely given by Ekeland's variational principle for lower semi-
continuous functionals on complete metric spaces, which has various applications.
Let us begin with the original principle:

Theorem 1.1 ([1],[2]). Let (X,d)be a complete metric space. Let
f:X > (—wo,w]be a proper lower semicontinuous function which is bounded
from below. Then for everye > 0,4 >0 and u € X such that

flu)< inf fx)+e
there exists v e X, satisfying the following inequalities:

(£) )< ()
(E,) d(u,v)<A;

(E3) f(w)>f(v)—%d(v,w) for every weX\{v}.

Soon after its formulation, many extensions of Theorem 1.1. were proposed.
One of these was obtained in 1997 by Zhong [3], [4]:
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Theorem 1.2 ([3],[4]). Let (X,d) be a complete metric space and x, € X
be fixed. Let [ : X — (—oo,0] be a proper lower semicontinuous function which is
bounded from below and let h:[0,00)—[0,00) be a nondecreasing continuous
function such that

w ]
———dr =+,
L1+ma"+w

Then, for every € >0, every ye X so that

S(y)<inf f(x)+e,
and A >0, there exists some point ze€ X such that
() fl)= s

(i)  d(x,,z)<r+r;

(iii) f(x)Zf(z)—/i[ i d(z,x) forall xeX,

1+ h(d(x,,2))]

where 1, =d(x,,y), and r"is a number so that

ro+r” 1
[ s
"o 1+ h(t )
Recently, in 2010, Ume [5] presented a new concept of generalized
distance called u — distance, which generalizes some distances anterior introduced
(see, e.g., w —distance [6] , Tataru's distance [7], 7 — distance [8]).

In this paper, starting by this concept of distance, we expand the Ekeland
variational principle ([1],[2]) and prove a new minimization theorem by using this
generalized variational principle. Our results extend and improve other known
results due to Zhong ([3], [4]), Ekeland ([1], [2]), and Takahashi ([9]).

2. Preliminaries

The purpose of this section is to present former results necessarily in our
approach. First, we recall the above-mentioned concept of Ume’s [5] generalized
distance in a metric space.
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Definition 2.1. Let (X,d) be a metric space. A function p: X xX — R,
is called u —distance on X if there exists a map ®: X x X xR xR, — R, such
that the following condition hold:

(ul) p(x,Z)Sp(x,y)+p(y,z), anyaZGXQ

(uz) ®(x,y,0,0) =0 and ®(x,y,s,t) > min{s,t} forall x,yeX, s,teR,, and,
forevery xe X and &>0, thereis 6 >0 such that

|®(x, y,s,t)— @(x,y,so,tox <&
if |S — S
(;) lim,x, =x and lim, sup{®(w,,z,, p(w,.x, ), p(z,.x,)):m>n}=0 imply

ply,x)<liminf p(y,x,) foryeX;

,t—t0|<5, 8,t,8,,t, € R, whatever ye X,

lim, sup{p(x,,w, ):m>n}=

0,
lim,, sup{p(y,.z,): m > n}=0,
(”4) li
im, ©(x,,w,,s,,t,)=0,

no n’’n

= lim, ®(w,,z,,s,,t,) =0,

n’

lim, ©(y,,z,,s,,t,)=0

n’’n
or

lim, sup{p(w,,x,):

> m 0
lim, sup{p(z,,,y,): m > n}=0,
lim, ©(x,,w,,s,,t,)=

no n’’n

lim, ©(y,,z,,s,.,t,)=0

n’’n

= lim, ®(w,,2,,s,,t,) =0,

n>~n3"n

(zn ,X, )) =0

p 5 .
= lim,d(x,,y,)=0,
e )

n

hm @W Z,,,p( n’yn)’

(1)

0
(

lim, ®(w,,z,, p(w,,x,),
(

or
li =
m ®(Cl bn’p(xn’an)’p(xn’bn)) 0’} — llmn d(xn,yn)z 0.
hm ®(an’bn9p(yn’an)5p(yn’bn))= O
Example 2.2 ([5]). Let X be a normed space with norm |||| Then the
function p: X xX — R, defined by p(x,y)z ||x|| isa u—distance on X butit

isnota v— distanceon X.
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Example 2.3 ([5]). Let p be a u — distance on a metric space (X,d) and
let ¢ be a positive real number. Then the function q: X xX — R,  defined by
q(x,y) =c- p(x,y) for everyx,y € X is also a u—distance on X.

By means of the generalized u —distance, Ume obtained in [5] the
following version of Ekeland's variational principle. This result will play an
important role in the proof of our main theorem.

Theorem 2.4 ([5]). Let (X,d) be a complete metric space, let
f:X > (—w,0] be a proper lower semicontinuous function, which is bounded

from below, and let p: X x X — R_be a u—distance on X. Then the following
assertions hold:

(A) Foreach xe X with f(x)<w, there exists ve X such that
f(v)< f(x) and f(w)> f(v)-plv,w) forall we X \{v}.
(B) For each £>0,A>0, and x € X with p(x,x)=0 and f(x)< inf fla)+e,
there exists ve X such that f(v)< f(x),
p(x,v)< A and

f(w)> f(v)—%p(v,w) forall we X\{v}.

3. The main statements

We begin this section by extending a result of Suzuki [10] using the
u —distance.

Proposition 3.1. Let (X ,d ) be a complete metric space, and
letp: XxX >R, bea u-—distance on X. Let q:XxX — R, be a function
with the properties:

(a) gq(x.z)<qlxy)+q(y.2), Va,y,zeX;
(b) q is lower semicontinuous in the second variable;

() q(x.y)=plx,y) forall x,yeX.
Then q is also u— distance on X.

Proof. The assumption (a)is equivalent with (u, )q.
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Let ®: X x X xR, xR, = R, be a function satisfying (u,)~ (u). Clearly,

(u )q follows from (b). Now, we assume that

n}=0.
=0, )

lim sup{ (x,,w,):m

>
im, supla(y,.2,):m >
lim, ©(x,,w,,s,,t,)=0,
0.

nd " 'n> n>

hmn®(yn’ n’ n )

By (1) and (c), we have
lim, sup{p(x,,w, ):m>n}=0
and
lim, sup{p(y, .z, ):m > nj=0.
Therefore, by (), we find lim, ©(w,,z,,s,.¢,)=0, and derive (u4)q.

Next, we assume that
hm ®(W ’Zn’q( ) q(zn’xn))zo’ (2)

and

0. (3)

limn®(W Z,,,C]( nﬂyn)q( n’yn))

Apply again (c) in (2) and (3) to obtain
lim, ©(,,2,, p(w,,%,) p(z,,%,))= 0,
And
lim, ©(w,.2,.q(w,.»,)4(z,.,))=0.
By virtue of (u), we have lim, d(x,,y,)=0and (u; )q is also verified. m

Next, we establish a general variational principle ([11], [12]), which is an
extension of both Ekeland's and Zhong's variational principles.

Theorem 3.2. Let (X,d) be a complete metric space, a€ X a fixed ele-
ment and let p: X x X — R, be a u—distance on X, lower semicontinuous in its
second variable. Let f : X — (—o,0] be a proper lower semicontinuous function
which is bounded from below and let b:[0,00)— (0,0) be a nonincreasing
continuous function such that
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isa C'— function from R, into itself such that B(oo): o, Let ye X be such
that p(y,y) =0 and

S (y)>inf £(x). 4)

xeX

Then, forg, >0, there exists ze€ X such that

0) r)<sk)
(it) pla,z)< py)+ 5",

i) f(x)> f(z)- %b(ﬂ(z))p(z,x), forall xeX,
where B()= p(a,.), and the number " is such that

o bleds = ey ()

Ay)
with a(y)= f(y)-inf f(x)= 2> 0.

Proof. First, we define a function ¢: X xX — R, by
pla.x)+p(x.y)
q(x,y):= J. b(z )dt.
pla.x)
Since b is nonincreasing, for (x,z)e X x X, we deduce

q(sz):J. pla,x)+p(x,2) ( )d[ < J-p(u )+ p(,y)+p(y, Z)b([)d[ _

pla.x) pla.x)

_J‘ pla.x)+p( xy J- pla,x)+p(x,)+p(y, Z)b(t)dt <
P

(a,x) (a,x)+p(x,»)

< J‘p((a x)+P(x y)b(t)dt 4 J‘P(a,y)H?(y,z)b(t)dt _ q(x’y)-l,- q(y’z)

a,x) pla.y)
In addition, ¢ is obviously lower semicontinuous in its second variable.
On the other hand, we have
q(x,y)=B(p(a,x)+ p(x,»))~ B(pla,x))2 ()
> b(p(a,x)+ pl(x,y))p(x,y)

Taking into account of the definition of function b,
b(p(a,x)+ p(x,y))> b(oo)=M > 0. (7)
Combining (6) and (7), we deduce
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q(x.y)= M- p(x,y).

with M > 0. The assumptions of Proposition 3.1 are verified, since M - p(x, y)
isa u—distance. Hence, ¢(x,y) isalso u— distance.

Now, from (4) and (5), we obtain

B b(t)dt - (8)

) J‘Oﬁ* b(” " ,B(y))du = J‘oﬂ* b(”)du = B(ﬂ*)

So, by (8), we have

0<22 f(y)-inf f(v)=aly)< [

F(v)<int £(x)+ B(g").

and the Theorem 2.4 is applicable to q(x,y) for ¢= B(,[)’*)> 0 and 4= a(y)> 0.
Therefore, there exists z< X such that

S 1() ©)
q(v.z)<aly) (10)

and
f(x)> f(z)—%é—?q(z,x),VxeX\{z}. (11)

By (u,), we know that
pla.z)< pla.y)+ ply.z)= B(y)+ p(y.2) (12)
On the other hand, from (5) and (10), it follows that
B(B(y)+ p(r.2) - BB() < av) < BIB()+ B')- B(A(»))
Thereby, we find that
ply.2)< B, (13)

since B is a nondecreasing function. Thus, (ii) follows from (12) and (13).
Moreover, since

a(e.0)=["" b0t <b(pla. ez )= B(BE)pEx). (19)

plaz)
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by multiplying (14) with (~1) and, using (8) and (11), for 0<B(ﬁ*)£ &>
we get

695 76)- B ez 1) b Yol

a(y) Y

forall xe X and (iii) is verified. This completes the proof. m
Remark 3.3. Leta, f, b, p, a(y), B(y), p* and X be as in Theorem 3.2.
(i) When a =y b(t) =1, B=2,¢> a(y)=A>0, and p(x,y)=d(x,y),

Theorem 3.2 reduces to Theorem 1.1.

(ii) Take a = x,, b(t)= where h:[0,00)—>[0,00) is a continuous

L
1+ A(t)

nondecreasing function such that

o ]
- dr=
J a) T

whereg, > a(y)=1>0, B(y)=d(x,.y)=r, B =r"and p(x,y)=d(x,y). Then,
Theorem 3.2 implies Theorem 1.2.

We give now our minimization theorem.

Theorem 3.4. Let X,a, f, p, b and B be as in Theorem 3.2. We assume
that for any € >0 and for every ye X with

S (y)>inf £(x)
there exists we X \{y} such that

S )< f(y)-ab(B)p(y. w) (15)
Then, there exists x, € X such thatirel)f; f(x)=1(x,)

Proof. Suppose that
£(3)> i £ (),
for every y € X. By Theorem 3.2, for any & > 0, there exists z € X such that
f(x)> f(z)-eb(B(z))p(z,x), forall xe X. (16)

Besides, the point z will satisfy
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inf /(x)= f(2)

xeX

Otherwise, assuming that

()= f(z)>inf f(x),

xeX

by (15) and (16), we getto
S(2)= 1 (w)+eb(B(z))p(z.w)> /(2)

which is a contradiction. This completes the proof. m

In the following, we illustrate how to satisfying the condition (15) of
Theorem 3.4 by an elementary example.

Example 3.5. Consider the function f:[0,00)—[0,0) defined by
f(x)= VYx anda=0. Clearly, f(0)= Yg(l)f;o)f(x) For any &>0 and each

ye(O,g], we have WE(O,y) such that
plrw)=ly ==y = w= [y -V R + 3w+ )<

<3/v2 +16[y = 3w f( )_f(w)
A a7
1

where blx)=———, and =pl0,y)=y|=y. Then, we can appl
(x) T B(y)=p(0.y)=y|=y pply

Theorem 3.4 to conclude that there exists x,€[0,0) such that

f(x)= inf f(x)m
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