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VARIATIONAL PRINCIPLES AND A GENERALIZED 
DISTANCE 

Georgiana GOGA1 

Scopul acestui articol este de a prezenta un principiu variaţional general de  
tip Ekeland, bazat pe un nou concept de distanţă generalizată numită u-distanţă, 
care a fost introdusă recent de către Ume. Ca aplicaţii, extindem  principiul varia-
ţional al lui Zhong şi o teoremă de minimizare. 

The aim of this paper is to present a general variational principle on 
Ekeland-type relied on a new concept of a generalized distance called u-distance, 
which was introduced recently by Ume. As applications, we extend Zhong’s 
variational principle and a minimization theorem. 
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1. Introduction 

One of the most powerful tool in nonlinear analysis during the last four 
decades is surely given by Ekeland's variational principle for lower semi-
continuous functionals on complete metric spaces, which has various applications. 
Let us begin with the original principle: 

            Theorem 1.1 ([1],[2]).  Let ),( dX be a complete metric space. Let  
],(: ∞−∞→Xf be a proper lower semicontinuous function which is bounded 

from below. Then for every 0,0 >> λε  and Xu∈ such that  

( ) ( ) ε+<
∈

xfuf
Xx

inf   

there exists  ,Xv∈  satisfying the following inequalities:  

( )1E   ( ) ( );ufvf ≤   

  ( )2E    ( ) ;, λ≤vud  

  ( )3E    ( ) ( ) ( )wvdvfwf ,
λ
ε

−>   for every  { }.\ vXw∈    

          Soon after its formulation, many extensions of Theorem 1.1. were proposed. 
One of these was obtained in 1997 by Zhong  [3], [4]:  
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         Theorem 1.2 ([3],[4]). Let ( )dX ,  be a complete metric space and Xx ∈0   
be fixed. Let ],(: ∞−∞→Xf be a proper lower semicontinuous function which is 
bounded from below and let  [ ) [ )∞→∞ ,0,0:h  be a nondecreasing continuous 
function such that  

( )∫
∞

+∞=
+0

.
1

1 dr
rh

 

Then, for every ,0>ε  every Xy∈   so  that  

( ) ( ) ,inf ε+<
∈

xfyf
Xx

 

and ,0>λ  there exists some point  Xz∈   such that 

 ( )i      ( ) ( );yfzf ≤  

 ( )ii     ( ) ;, 00
∗+≤ rrzxd  

 ( )iii   ( ) ( ) ( )( )[ ] ( )xzd
zxdh

zfxf ,
,1 0+

−≥
λ

ε   for all  ,Xx∈      

 where  ( )yxdr ,00 = ,  and  ∗r is a number  so that  

( )∫
∗+

≥
+

rr

r
dt

th
0

0

.
1

1 λ  

Recently, in 2010, Ume [5] presented a new concept of generalized 
distance called −u distance, which generalizes some distances anterior introduced 
(see, e.g., −ω distance [6] , Tataru's distance [7] ,  −τ distance [8] ). 

In this paper, starting by this concept of distance, we expand the Ekeland 
variational principle ([1],[2]) and prove a new minimization theorem by using this 
generalized variational principle. Our results extend and improve other known 
results due to Zhong  ([3], [4]),  Ekeland ([1], [2]), and Takahashi ([9]). 

2. Preliminaries 

The purpose of this section is to present former results necessarily in our 
approach. First, we recall the above-mentioned concept of Ume’s [5] generalized 
distance in a metric space. 
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  Definition 2.1. Let ( )dX ,  be a metric space. A function +→× RXXp :   
is called  −u distance on X  if there exists a map +++ →×××Θ RRRXX:  such 
that the following condition hold: 

 ( )1u    ( ) ( ) ( ),,,, zypyxpzxp +≤  ;,, Xzyx ∈∀  

 ( )2u    ( ) 00,0,, =Θ yx   and  ( ) { }tstsyx ,min,,, ≥Θ  for all  ,, Xyx ∈  +∈Rts, , and, 
for every Xx∈   and  ,0>ε  there is  0>δ   such that 

( ) ( ) ε<Θ−Θ 00 ,,,,,, tsyxtsyx  

if   ,, 00 δδ <−<− ttss +∈Rtsts 00 ,,,   whatever  ;Xy∈  

( )3u   xxnn =lim   and   ( ) ( )( ){ } 0:,,,,,suplim =≥Θ nmxzpxwpzw mnmnnnn     imply 

( ) ( )nn
xypxyp ,inflim,

∞→
≤   for ;Xy∈  

( )4u   

( ){ }
( ){ }

( )
( )

( ) ,0,,,lim

0,,,lim
,0,,,lim

,0:,suplim
,0:,suplim

=Θ⇒

⎪
⎪
⎭

⎪
⎪
⎬

⎫

=Θ
=Θ

=≥
=≥

nnnnn

nnnnn

nnnnn

mnn

mnn

tszw

tszy
tswx

nmzyp
nmwxp

 

or 

         

( ){ }
( ){ }

( )
( )

( ) ,0,,,lim

0,,,lim
,0,,,lim

,0:,suplim
,0:,suplim

=Θ⇒

⎪
⎪
⎭

⎪
⎪
⎬

⎫

=Θ
=Θ

=≥
=≥

nnnnn

nnnnn

nnnnn

nmn

nmn

tszw

tszy
tswx

nmyzp
nmxwp

 

 ( )5u  
( ) ( )( )
( ) ( )( ) ⇒

⎭
⎬
⎫

=Θ
=Θ

0,,,,,lim
,0,,,,,lim

nnnnnnn

nnnnnnn

yzpywpzw
xzpxwpzw

 ( ) ,0,lim =nnn yxd  

or    

         
( ) ( )( )
( ) ( )( ) ⇒

⎭
⎬
⎫

=Θ
=Θ

0,,,,,lim
,0,,,,,lim

nnnnnnn

nnnnnnn

bypaypba
bxpaxpba ( ) .0,lim =nnn yxd  

  Example 2.2 ([5]).  Let  X   be a normed space with norm  ..   Then the 

function +→× RXXp :  defined by ( ) xyxp =,   is a  −u distance on  X   but it 
is not a  −τ  distance on  .X  
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Example 2.3 ([5]).  Let  p  be a −u distance on a metric space ( )dX ,   and 
let  c   be a positive real number. Then the  function +→× RXXq :     defined by 
( ) ( )yxpcyxq ,, ⋅=  for every Xyx ∈, is also a  −u distance  on  X.    

By means of the generalized −u distance, Ume obtained in [5]  the 
following version of Ekeland's variational principle. This result will play an 
important role in the proof of our main theorem.  

  Theorem 2.4 ([5]).  Let ( )dX ,  be a complete metric space, let 
],(: ∞−∞→Xf  be a proper lower semicontinuous function, which is bounded 

from below, and let +→× RXXp :  be a  −u distance on X.  Then the following  
assertions  hold: 

 ( )A  For each  Xx∈   with  ( ) ,∞<xf   there exists  Xv∈   such that 

( ) ( )xfvf ≤  and ( ) ( ) ( )wvpvfwf ,−>     for all  { }.\ vXw∈  

 ( )B  For each ,0,0 >> λε  and Xx∈ with ( ) 0, =xxp  and ( ) ( ) ,inf ε+<
∈

afxf
Xa

  

there exists Xv∈   such that  ( ) ( ),xfvf ≤  

                                                ( ) λ≤vxp ,  and 

( ) ( ) ( )wvpvfwf ,
λ
ε

−>   for all { }.\ vXw∈  

3. The main statements 

     We begin this section by extending a result of Suzuki [10] using the 
−u distance. 

  Proposition 3.1. Let ( )dX ,  be a complete metric space, and 
let +→× RXXp :  be a  −u distance on  X.  Let  +→× RXXq :   be a function 
with the properties: 

( )a   ( ) ( ) ( ),,,, zyqyxqzxq +≤  ;,, Xzyx ∈∀  

( )b    q  is lower semicontinuous in the second variable; 

( )c    ( ) ( )yxpyxq ,, ≥   for all  , .x y X∈                                                                   
Then  q  is also  −u  distance on  X. 

  Proof. The assumption ( )a is equivalent with  ( ) .1 qu  
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Let +++ →×××Θ RRRXX:  be a function satisfying  ( ) ( ).~ 52 uu  Clearly, 
( )qu3 follows from ( )b . Now, we assume that 

                        

( ){ }
( ){ }

( )
( ) .0,,,lim

,0,,,lim
,0:,suplim
,0:,suplim

=Θ
=Θ

=≥
=≥

nnnnn

nnnnn

mnn

mnn

tszy
tswx

nmzyq
nmwxq

                                         ( )1  

By  ( )1   and  ( ),c  we have  

( ){ } 0:,suplim =≥ nmwxp mnn  

and 

( ){ } .0:,suplim =≥ nmzyp mnn  

Therefore, by  ( ),4u  we find  ( ) ,0,,,lim =Θ nnnnn tszw  and derive  ( ) .4 qu  

Next, we assume that 

                                     ( ) ( )( ) ,0,,,,,lim =Θ nnnnnnn xzqxwqzw                               ( )2  

and 

                                    ( ) ( )( ) .0,,,,,lim =Θ nnnnnnn yzqywqzw                               ( )3   

 Apply again  ( )c   in  ( )2   and  ( )3   to obtain  
( ) ( )( ) ,0,,,,,lim =Θ nnnnnnn xzpxwpzw  

And 
( ) ( )( ) .0,,,,,lim =Θ nnnnnnn yzqywqzw  

By virtue of  ( )5u , we have ( ) 0,lim =nnn yxd and  ( )qu5  is also verified.  ■ 

Next, we establish a general variational principle  ([11], [12]),  which is an 
extension of both Ekeland's  and Zhong's variational principles. 

  Theorem 3.2. Let ( )dX ,  be a complete metric space,  Xa∈   a  fixed ele-
ment and let +→× RXXp :  be a  −u distance on  X, lower semicontinuous in its 
second variable.  Let ],(: ∞−∞→Xf   be a proper lower semicontinuous function 
which is bounded from below and let  [ ) ( )∞→∞ ,0,0:b  be a nonincreasing 
continuous function such that  

( ) ( )∫=
t

drrbtB
0

,  
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 is a −1C  function from  +R  into itself such that  ( ) .∞=∞B  Let  Xy∈  be such 
that  ( ) 0, =yyp   and  

 ( ) ( ).inf xfyf
Xx∈

>                                              ( )4  

Then,  for ,00 >ε  there exists  Xz∈   such that 

 ( )i     ( ) ( ),yfzf ≤   

 ( )ii    ( ) ( ) ,, ∗+≤ ββ yzap   

( )iii   ( ) ( ) ( )( ) ( ),,0 xzpzbzfxf β
λ
ε

−>   for all  ,Xx∈                                                                

where ( ) ( ),,.. ap=β   and  the number ∗β is such that  

( ) ( )
( )

( )
∫

∗+
≥

ββ

β
α

y

y
ydttb ,                                         ( )5  

with  ( ) ( ) ( ) .0inf >≥−=
∈

λα xfyfy
Xx

 

 Proof. First, we define a function  +→× RXXq :   by  

( ) ( )
( )

( ) ( )
∫

+
=

yxpxap

xap
dttbyxq

,,

,
.:,  

Since  b  is nonincreasing,  for  ( ) ,, XXzx ×∈  we deduce 

( ) ( ) ( )
( )

( ) ( ) ( )

( )

( ) ( )

( )
( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

( )

( ) ( )
∫ ∫

∫∫

∫ ∫

+ +

++

+

+

+ ++

+=+≤

≤+=

=≤=

yxpxap

xap

zypyap

yap

zypyxpxap

yxpxap

yxpxap

xap

zxpxap

xap

zypyxpxap

xap

zyqyxqdttbdttb

dttbdttb

dttbdttbzxq

,,

,

,,

,

,,,

,,

,,

,

,,

,

,,,

,

.,,

,

 

In addition,  q  is obviously lower semicontinuous in its second variable. 

On the other hand, we have  

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ).,,,

,,,,
yxpyxpxapb

xapByxpxapByxq
+≥

≥−+=
                            ( )6  

Taking into account of the definition of function ,b    

        ( ) ( )( ) ( ) .0,, ≥=∞>+ Mbyxpxapb                                      ( )7  

Combining  ( )6   and  ( )7 ,  we deduce 
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( ) ( ),,, yxpMyxq ⋅≥  

with  .0≥M  The assumptions of Proposition 3.1 are verified, since  ( )yxpM ,⋅   
is a  −u distance.  Hence,  ( )yxq ,   is also  −u distance. 

Now, from  ( )4   and  ( )5 , we obtain 

                            
( ) ( ) ( ) ( )

( )

( )

( )( ) ( ) ( ).

inf0

0 0∫ ∫

∫
∗ ∗

∗

∗

+

∈

=≤+=

=≤=−≤<

β β

ββ

β

ββ

αλ

Bduubduyub

dttbyxfyf
y

yXx                      ( )8  

So, by  ( )8 ,  we have  

( ) ( ) ( ),inf ∗

∈
+≤ βBxfyf

Xx
 

and the Theorem 2.4 is applicable  to ( )yxq , for  ( ) 0>= ∗βε B  and ( ) .0>= yαλ   
Therefore, there exists  Xz∈    such that  

( ) ( ),yfzf ≤                                                    ( )9  

( ) ( ),, yzyq α≤                                                  ( )10  

and 

( ) ( ) ( )
( ) ( ) { }.\,, zXxxzq
y

Bzfxf ∈∀−>
∗

α
β                       ( )11  

By  ( ),1u   we know that  

  ( ) ( ) ( ) ( ) ( ).,,,, zypyzypyapzap +=+≤ β                      ( )12  

On the other hand, from  ( )5   and  ( )10 ,  it follows that 

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )., yByByyBzypyB βββαββ −+≤≤−+ ∗  

Thereby, we find that 

( ) ,, ∗≤ βzyp                                                   ( )13  

since B  is a nondecreasing function. Thus, ( )ii  follows from ( )12  and ( )13 .  
Moreover, since 

                 ( ) ( ) ( )( ) ( ) ( )( ) ( )
( )

( ) ( )
∫

+
=≤=

xzpzap

zap
xzpzbxzpzapbdttbxzq

,,

,
,,,,, β           ( )14  
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by multiplying  ( )14   with  ( )1−   and, using  ( )8   and  ( )11 ,  for ( ) ,0 0εβ ≤< ∗B  
we get   

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ),,, 0 xzpzbzfxzq
y

Bzfxf β
λ
ε

α
β

−≥−>
∗

 

for all  Xx∈  and ( )iii  is verified.  This completes the proof. ■ 

Remark 3.3.  Let a,  f,  b,  p, ( ),yα ( ),yβ ∗β and X be as in Theorem 3.2. 

( )i   When a = y, b(t) = 1, ,λβ =∗ ( ) ,00 >≥> λαε y  and ( ) ( ),,, yxdyxp =   
Theorem 3.2 reduces to Theorem 1.1. 

( )ii  Take  a = 0x , ( ) ( ) ,1
1

th
tb

+
=  where  [ ) [ )∞→∞ ,0,0:h   is a continuous 

nondecreasing  function such that 

( )∫
∞

+∞=
+0

,
1

1 dr
rh

 

where ( ) 00 >≥> λαε y , ( ) ( ) ,, 00 ryxdy ==β ∗∗ = rβ and  ( ) ( ).,, yxdyxp =  Then, 
Theorem 3.2 implies Theorem 1.2. 

We give now our minimization theorem.   

Theorem 3.4. Let X, , , ,a f p b  and  B  be as in Theorem 3.2. We assume 
that for any 0>ε  and for every  Xy∈   with 

( ) ( ),inf xfyf
Xx∈

>  

there exists  { }yXw \∈   such that    

( ) ( ) ( )( ) ( ).,wypybyfwf βε−≤                                ( )15  

Then, there exists  Xx ∈0   such that ( ) ( ).inf 0xfxf
Xx

=
∈

    

  Proof. Suppose that  

( ) ( ),inf xfyf
Xx∈

>  

for every .Xy∈  By Theorem 3.2, for any ,0>ε  there exists Xz∈ such that  

( ) ( ) ( )( ) ( )xzpzbzfxf ,βε−> , for all  .Xx∈                                 ( )16  

Besides, the point  z   will satisfy  
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( ) ( ).inf zfxf
Xx

=
∈

 

Otherwise, assuming that  

( ) ( ) ( ),inf xfzfyf
Xx∈

>≥  

by  ( )15   and  ( )16 ,  we get to  

( ) ( ) ( )( ) ( ) ( ),, zfwzpzbwfzf >+≥ βε  

which is a contradiction. This completes the proof. ■  

 

In the following, we illustrate how to satisfying the condition ( )15  of 
Theorem 3.4 by an elementary example. 

  Example 3.5. Consider the function f: [ ) [ )∞→∞ ,0,0  defined by  
( ) 3 xxf =  and .0=a  Clearly, ( )

[ )
( ).inf0

,0
xff

x ∞∈
=   For any  0>ε   and each  

( ],,0 ε∈y   we have  ( )yw ,0∈   such that    

( ) ( )( )
( ) ( ) ( )

( )( ) ,13

,

333 2

3 233 233

yb
wfyfwyy

wywywywywywyp

βε
−

=−+<

<++−=−=−=
 

 where  ( ) ,
13

1
3 2 +

=
x

xb
ε

  and ( ) ( ) .,0 yyypy ===β  Then, we can apply 

Theorem 3.4 to conclude that there exists [ )∞∈ ,00x  such that 
( )

[ )
( ).inf

,00 xfxf
x ∞∈

= ■ 
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