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EXTENDING CLOSED ANALYTICAL FORMULAS TO 
CASCADE AERODYNAMICS BY USING CONFORMAL 

MAPPING AND FAST FOURIER TRANSFORM 

Corneliu BERBENTE 1, Maria-Ramona DINU 2 

Se extinde transformarea conformă a reţelelor de plăci la reţele de profile 
groase, de formă dată. Expresiile  analitice închise ale potenţialului complex al 
vitezelor sunt, de asemenea, menţinute. În acest scop, se utilizează interpretarea 
directă, dată de autori, efectelor vitezei introduse în amonte, ca singularităţi ale 
curgerii în planele transformate. De asemenea, se defineşte o re�ea de plăci 
ataşată de cea reală. Pentru obţinerea conturului circular, se utilizează 
Transformata  Fourier Rapidă în variabilă complexă, în combinaţie cu 
transformarea conformă Joukowsky, pentru accelerarea convergenţei. Metoda este 
validată. Se prezintă aplicaţii la  distribuţiile de viteze şi presiuni pe profile de 
turbină. 

The conformal mapping  for cascade blades is extended to cascade of thick 
profiles of given form. The closed analytical expressions for the complex potential of 
the velocity field are maintained. To this aim the author’s direct interpretation of the 
upstream velocity effects as flow singularities in the transformed planes is used. A 
row of plates attached, to the real one is defined. To obtain the circle contour the 
Fast Fourier Transform in complex variable is applied, combined with Joukowsky 
transform, to accelerate the convergence. The method is validated. Applications to 
velocity and pressure distributions for turbine profiles are given.    

Keywords: turbine profile; Fast Fourier Transform; complex velocity potential, 
conformal mapping. 

1. Introduction 

The determination of the velocity field in incompressible flow by using the 
conformal mapping has several advantages: a direct view of the flow geometry, 
more compact formulas and a straightforward implementation of the Joukowsky 
condition in order to determine the circulation. Although the numerical have been 
strongly developed, a combination between the analytical and numerical 
calculation could be the optimal strategy, as one point out in this paper. The 
incompressible flow is met in several applications like: hydraulic turbines [1], [2], 
[3], [4], wind turbines [5]. It can be as well a possible comparison and an initial 
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approximation for subsonic compressible flows [3], [6]. Of course, the 
compressor cascades are simpler to solve because the profiles are thinner. 

Unlike the other papers where particular profiles are obtained from 
transformation of particular contours [7], here more general profiles of given form 
are considered. In comparison with [8], a more general interpretation and an 
improvement of the method is achieved. 

2. The interpretation of the upstream velocity effects as singularities 
in the circle plan.  

Now let us consider a parallel stream of constant complex velocity at 
infinity in the z - plan, ∞w  (Fig.1), ∞i  being the angle of attack. 

The simplest problem for cascade flow is to determine the distribution of 
speeds and pressure on linear cascade of plates in incompressible stationary flow.  

One starts from a closed analytical formula for the conformal mapping of a 
row of blades on a circle of radius one [1], [2], [3], namely: 
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where t is the cascade pitch, λ- the angle of installation (λ  > 0 for turbine and  
λ  < 0 for compressor), ζ - complex variable in the circle plan, z - complex 
variable in the profile plan; R > 1 is a parameter to be determined and B an 
adjustment constant. 

 
Fig. 1. Linear cascade of plates 

 
The complex velocity is written under the form: 

∞⋅−
∞∞ ⋅= iieVw                                                                 (2.2) 

where ∞V  is the velocity modulus.  
 If ∞i  is different from zero, a circulation Γ will occur around every plate 
from the cascade.  
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 One proceeds in two steps: first one determines the effect of ∞w ; then one 
expresses the effect of  Γ. 

2.1. Determination of the velocity potential without circulation 

The relation between velocities in the two plans is:  

ζd
dz
Ww

p
=                                                                          (2.3) 

where W is the complex velocity in the plan ζ. 
From the expression (2.1) one notes that, for ∞→z  correspond two 

points outside the circle, namely R±=ζ . For the corresponding velocities in the 
plan ζ one obtains: 
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i.e. in points R±=ζ  one should have combinations of sources and vortices of the 
following intensities: 
                                        1

1
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∞ ⋅⋅±= ieVtI     ;      ∞−= iλϕ1  .                          (2.5) 
In order to conserve the circle as streamline, at points R/1±=ζ  

combinations of sources and vortices of complex-conjugate intensities have to be 
placed, as follows:  

                                                (2.6) 
One obtains the complex potential 

of the flow without circulation: 
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2.2. Determination of the velocity potential due to circulation 

The row of vortices placed on plates of intensity Γ disturbs the velocity at 

infinity, according to Joukowsky theorem, with a velocity 
t2
Γ  parallel to the front 

of the cascade (Fig.1).  
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Fig. 3. Sources and vortices 

 
The additional velocity due to circulation at infinity, w’, is:  

        λ⋅−⋅
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By introducing (2.1) in the expression (2.6) one obtains: 
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that is vortices of intensity 
2
Γ  should be placed in points R±=ζ , as well as other 

vortices to maintain the circle as a streamline (Fig.3). 
The complex potential of the flow due to circulation is then: 
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The total complex potential of the flow in the plan ζ  is the sum: 
( ) ( ) ( )ζζζ 21 FFF +=  .                                                   

(2.10) 
The Joukowsky condition is a null velocity at the trailing edge i.e.: 
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Where from one obtains the circulation:  
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and the velocity, v, on the profile (plate): 
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The angle 0θ and the parameter R are determined from the system of two 
equations given bellow: 
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Remarks.1. According to Carafoli theory [2], for profiles with round 
trailing edge, the Joukowsky condition is maintained in the form (2.11), leading  
to a null velocity on the profile trailing edge.  

2. The intensity of singularities (sources and vortices) is conserved by 
conformal mapping, but these singularities are placed in changed positions with 
respect to the circle (points M, N - Fig.6). 

3. The cascade of profiles of given shape 

If the blade shape, thickness and angle of installation are specified, one 
will determine the function that transforms the outside of the unit circle to outside 
the cascade profiles. 

First one defines an attached cascade of plates (Fig.4) by choosing a 
chord plate attached to the given profile, satisfying the condition: 

           

 
 

Fig.4. The attached cascade of plates 
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( ) ( ) ( )θλθθ +<−+− cos
2

cossin tyyxx cc                                            (3.2) 

where t - cascade pitch, λ – cascade profiles installation angle, (xc, yc) is the center 
of the attached plate chord and θ its inclination angle (Fig.4).   

The total transformation consists of the relation (2.1) applied to the 
attached cascade of plates which transforms the cascade of profiles into a shape E 
(z2 plane) and the transformation g witch is leading this shape on the unit circle 
(Fig. 5 - plane K) [4], [5]: 
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Fig. 5. Successive transformations 
 

To determine the transformation, one will first calculate the contour E 
coordinates using Newton-Raphson method.  

Then one will determine a closest to the contour E ellipse of equation: 
               2 2

2 2 2 2 2 2 1 0ax by cx y dx ey+ + + + + =                                        (3.3) 
 The contour coordinates (x2i,y2i) verify the equation (3.2) with 

approximation εi. 
  2 2
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One defines closest an ellipse whose coefficients (a, b, c, d, e) verify the 

condition of minimum amount with the weights iw : 
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Then one will apply the Joukowsky transform to obtain a circle from 
ellipse: 
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where: z0 is centre, τ the axial inclination and a and b are the semi-axes of the 
closest ellipse. 
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  The advantage is that the transformed contour C (Fig.5) is close to a circle 
and the transformation to a final circle K is accelerated. The five parameters  
(a, b, c, d, e) are obtained by applying the least squares method. 

If z1 is the function that transforms the unit circle in the contour C, for 
finding this transform one uses the Fast Fourier Transform (FFT). A FFT is a way 
to compute the result more quickly because one obtains the result in only 
( )NNO log  instead of ( )2NO  operations. Then one uses the development: 
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The above truncated Laurent series takes into account that in a flow 
outside a contour, the points at infinity have to correspond to each other by 
conformal mapping [9]. One takes equally spaced points on circle and one writes: 
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Fig. 6. The position of singularities 

 
The coefficients ju−  are determined so that the coordinates (xi,yi) are close 

enough to the curve C. The velocity potential is easily written as before (see also 
(2.7)), the outer singularities being placed in the new points M, N (Fig.6).One 
obtains the total potential in a closed analytical formula: 
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The Joukowsky condition is imposed at the point F’, the correspondent of 
the trailing edge point 0F  of the given profile. 

The velocity distribution results from the relation: 

                           / pdzdFV
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                                                          (3.11) 

Then one calculates the pressure coefficient, pC : 
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4. Validation and applications  

 4.1. Test and validation. To validate and test the proposed method, 
especially as regard the FFT, one remarks that, if the first obtained contour (E-
Fig.5) would be exact an ellipse, the calculation is completely analytical. We 
proceed as follows: 

a. one takes an ellipse of semi-axis s = 1.4, l = 1.1 with the centre at  
(-0,0675; 0,2923) and τ = 103˚ in the plan z2, transformed in a cascade of profiles 
(b = 50; t/b = 1.4; λ = 25˚; i∞ = 10˚; s = 1.4; l = 1.1) in plan zp (Fig. 7); 

b. then one chooses an attached cascade of plates as in Fig. 7 and applies 
the general procedure. The results are compared in Fig. 8 and Fig. 9.  One obtains 
a very good agreement and thus the method is validated ( mainlyregarding the 
truncated Laurent series and FFT). 

Remark. If the chord Ca of the attached cascade is even the chord AF one 
obtains an exact solution. However, in general, the chord AF of the given profile 
is not the best selection.  

 
Fig. 7 Turbine cascade: Profile b=50; t/b=1.4; λ=25˚; i∞=10˚; s=1.4; l=1.1 
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Fig. 8. The distribution of speeds 

 
Fig. 9. The distribution of pressure 

 
4.2. Applications 
 
The following parameters were varied: 1) t/b - the relative cascade pitch;  

λ – cascade installation angle. From Table 1 one observes:  
- when the installation angle λ is constant and the relative pitch decreases, 

R increases and the contour E is deformed very much; 
- when the relative pitch is constant, the installation angle increases, R 

decreases. 

analytical  
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Table 1 
Variation of cascade profiles parameters 

λ  5 10 20 30 40 45 

t/b R R R R R R 
0,80 1,32512 1,32078 1,30346 1,27480 1,23522 1,21154 
0,90 1,42146 1,41675 1,39795 1,36672 1,32322 1,29695 
0,95 1,47175 1,46691 1,44757 1,41542 1,37057 1,34344 
1,00 1,52322 1,51827 1,49851 1,46566 1,41982 1,39207 
1,10 1,62915 1,62406 1,60376 1,57004 1,52311 1,49477 
1,20 1,73834 1,73320 1,71266 1,67865 1,63154 1,60326 
1,30 1,85013 1,84498 1,82444 1,79056 1,74392 1,71613 
1,40 1,96401 1,95889 1,93852 1,90506 1,85931 1,83227 
1,50 2,07959 2,07453 2,05446 2,02160 1,97702 1,95087 
1,60 2,19657 2,19160 2,17190 2,13978 2,09652 2,07134 
1,70 2,31472 2,30985 2,29057 2,25928 2,21740 2,19321 
1,80 2,43386 2,42910 2,41028 2,37985 2,33938 2,31615 
1,90 2,55384 2,54919 2,53084 2,50129 2,46222 2,43993 
2,00 2,67453 2,66999 2,65214 2,62346 2,58575 2,56435 

One proposes a given airfoil design (Fig.7-9) the simulation is performed 
for the attached chord plate (Ca) by varying its inclination angle θ and center 
position (Table 2). 
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                                           Fig. 10. Turbine profile: Profile b=50_t/b=1.5_λ=30 

 
Fig. 11. The distribution of speeds 
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Fig.12. The distribution of pressure 

                                                                                                                         Table 2 
Effects of attached chord   

Nr. 
crt. 

b θ 
[˚] 

λ’ 
[˚] 

R t/b1 b1 Ch/Ca 

1 50,51224 2 37 1,449303 1,00068 50,47784 1,01420 
2 4 39 1,451820 1,00131 50,44593 1,02881 
3 5 40 1,478071 1,00200 50,41165 1,05708 
4 7 42 1,503385 1,00284 50,36901 1,09170 
5 9 44 1,553692 1,00385 50,31845 1,14942 
6 11 46 1,574308 1,00442 50,29016 1,17924 
7 -1 34 1,459136 1,00008 50,50818 1,01010 
8 -3 32 1,482677 1,00006 50,50915 1,02459 
9 -5 30 1,515388 1,00027 50,49815 1,04821 

b - initial plate chord, Ch-cascade chord, t/b1- the new relative pitch, b1 – new chord plate,  
Ca-attached chord plate. 

For positive angles θ one achieves an increase of angle of installation, a 
decrease of density, but also an increase of R (Table 3). 

                Table 3 
Effects of θ angle 

Nr. 
crt. 

θ 
[˚] 

λ’ 
[˚] 

R Ch/Ca b1  t/b1 

1 1 36 1,590844 1,14416 50,37777 1,00266 
2 3 38 1,580900 50,36384 1,00294 
3 5 40 1,570441 50,34968 1,00323 
4 7 42 1,559470 50,33516 1,00351 
5 8 43 1,553794 50,32991 1,00362 
6 -2 33 1,604785 50,40204 1,00218 
7 -3 32 1,609171 50,40491 1,00212 
8 -4 31 1,613425 50,41532 1,00192 
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5. Conclusions 

The proposed method is stable, fast convergent and determines a variety of 
profiles, with velocities and pressure distributions in the full spectrum of motion. 

The main advantages of the conformal mapping are preserved and 
analytical expressions for velocity potentials are obtained. 

In order to apply the FFT to conformal mappings, the Laurent series 
relating the flows in two complex plans was conveniently applied, in combination 
with Joukowsky transform. 

The proposed method allows a detailed study of the influence of the 
cascades parameters with reduced computational effort, as done in this paper. 
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