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ITERATIVE SCHEMES FOR SOLVING NEW SYSTEM OF GENERAL
EQUATIONS

Muhammad Aslam Noor'* and Khalida Inayat Noor®

In this paper, we consider a new system of general equations, which can be used to
study the odd-order and nonsymmetric boundary value problems. It is shown that Lax-
Milgram Lemma and Reisz-Fréchet representation theorem can be obtained as special cases.
We use the auxiliary principle technique to prove the existence of a solution to the general
equations. This technique is also used to suggest some new iterative methods. The conver-
gence analysis of the proposed methods is analyzed under some mild conditions. Ideas and
techniques of this paper may stimulate further research.

1. Introduction

It is well known that a linear continuous functional can be represented by the in-
ner product in a Hilbert space, the origin of which can be traced back to Riesz [24] and
Fréchet [4]. This result is known as the Riesz-Fréchet representation theorem. By choosing
the Hilbert Space and inner product appropriately, this theorem furnishes one of the major
existence theory tools for even-order boundary value differential equations. The proof of the
Riesz-Fréchet theorem also shows another fact which is omitted in the final statement; but
is equivalent to it. This fact, the existence of a minimum to a certain quadratic form on a
closed convex set, is very useful in variational problems
It is clear that the inner product is a bilinear function. Then the question arises whether
such a representation result holds for an arbitrary bifunction. The answer to this is af-
firmative. Lax-Milgram [9] proved that a linear continuous function can be represented
by an arbitrary bifunction under suitable conditions. This representation is known as the
Lax-Milgram Lemma, which is a natural generalization of the Riesz-Fréchet theorem for
continuous bilinear forms, plays a significant role in the development of various branches
of mathematical and engineering sciences. From the day of discovery of the Riesz-Fréchet
theorem, many important contributions have been made in this direction, see [1, 2, 4, 6, 8,
9, 10, 11, 12, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31]. In every case, a new approach
and method is applied to generalize some of these results and the ideas they used.

We would like to point out that the Lax-Milgram lemma is equivalent to the optimization
problem, if the involved operator is positive and symmetric. It is known that only the even
order and self-adjoint boundary value problems can be studied by the classical Lax-Milgram
lemma. In fact, the Lax-Milgram lemma is the weak formulation of the boundary value
problems. It have been observed that the involved operator may not be positive and sym-
metric. To tackle such problems, the operator may be made positive and symmetric with
respect to an arbitrary map. For more details, see Fillopov [3], Noor et al.[19],Tonti [29]
and the references therein.

In this paper, we introduce and study a new system of general equations with respect to an
arbitrary operator. This system of general equations can be viewed as a weak formulation
of the non-positive and nonsymmetric odd-order boundary value problems. It is shown that
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the Lax-Milgram lemma can be obtained as special cases. We use the auxiliary principle
technique, which is mainly due to Lions et al.[10] and Glowinski et al. [7], to discuss the
existence of a solution for the system of general equations. The auxiliary principle technique
is used to suggest some iterative methods for solving the system of general equations. The
convergence analysis of these methods is investigated under suitable pseudomonotonicity,
which is a weaker condition.

In Section 2, we introduce new system of general equations and discuss its applications. It
is shown that the third order boundary value problems can be studied in the framework of
generalized equations. In section 3 and section 4, we use the auxiliary principle technique to
discuss the existence of a solution as well as to suggest some iterative methods for solving the
general equations. The convergence analysis of the proposed methods is considered under
some mild conditions. Several new iterative methods for solving the generalized equations
are obtained as novel applications of the results. The ideas and techniques of this paper
may the starting point for further research.

2. Formulations and basic facts

Let H be a Hilbert space, whose norm and inner product are denoted by | - || and
(-, -}, respectively.
For given operators L,g : H — H and a continuous linear functional f, we consider the
problem of finding v € H such that

(Lu,g(v)) = (f,9(v)), VveH, (1)

which is called the system of the general equations. This is also known as the general Lax-
Milgram Lemma. The alternative formulation (1) can be viewed as the weak formulation of
the odd-order boundary value problems.

We remark that the problem (1) is equivalent to finding v € H such that

(Lu, g(v) — g(u)) = (f,9(v) = g(w)), Vve H. (2)

This equivalent formulation is used to discuss the unique existence to a solution of the odd-
order and nonsymmetric boundary value problems.
Clearly, the problem (1) reduces to the following problems of finding v € H such that

(Lu,v—g(u))z(f,v—g(u)% VUEH, (3)

which is a special case of general variational inequality [13].
Also, the problem(1) can be written as: Find u € H such that

(Lu,g(v) —u)) = (f,9(v) —u), VveH. (4)

We note that the problem (4) can be deuced from the general variational inequality [16].
Note that problems (2), (3) and (4) are distinctly different from each other.

We now discuss some special cases of general equations (1).
(I). If(Lu,g(v)—u)) = a(u,g(v)), where a(.,.) : Hx H — H is a bifunction, then problem
(1) reduces to finding u € H such that

a(u,g(v)) = (f,9(v)), VveH, (5)

which is called the general Lax-Milgram Lemmal[9, 17, 18]. We would like to point that,
if the bifunction af(,.,) is not positive and symmetric, then it can be made positive and
symmetric with respect an arbitrary functions. Consequently odd-order and nonsymmetric
boundary value can be studied in the general framework of the problem (5). This is the
novelty of the general Lax-Milgram lemma.
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(IT). If g = I, the identity operator, then the general Lax-Nilgram lemma (5) collapses
to finding v € H, such that

a(u,v) = (f,v), YveH, (6)
which is the classical Lax-Milgram Lemma.
(III). If L = I, then problem (1) reduces to finding u € H such that

(u,g9(v)) = (f,9(v)), VveH, (7)
which is called the general Riesz-Fréchet theorem and appears to be a new one.
(IV). If L =1 and g=1I, and then problem (1) reduces to finding u € H such that

(u,v) = (f,v), VveH, (8)

which is the celebrated Riesz-Fréchet representation theorem [11, 18].
We would like to emphasize that the problem (8) is equivalent to finding the minimum v € H
of the functional

I[v] = (v,v) — 2(f,v), YveH, (9)

which is called the energy (virtual work) functional and can be viewed as novel extension
of the variational principles. The function I[v] defined by (9 is a strongly convex function
and this equivalent formulation can be used to discuss the existence and uniqueness of the
representation theorems. This a fascinating feature of the Riesz-Fréchet representation the-
orem, which can be exploited to use the techniques and ideas of the quadratic programming
optimization.

Remark 2.1. For suitable and appropriate choice of the operators L,g, one can obtain
various classes of new and old classes of generalized equations. This shows that the system
of generalized equations is a unified one.

We now recall some well known concepts and basic results [3, 29], which play signifi-
cant part in deriving the main results.

Definition 2.1. [3, 29] An operator L : H — H with respect to an arbitrary operator
g: H — H is said to be :
(a). g-symmetric , if and only if,

(Lu, g(v)y = {g(u), Lv), Yu,v € H.
(b). g-positive, if and only if,
(Lu,g(u)) >0, YueH.
(c). g-coercive (g-elliptic), if there exists a constant o > 0 such that
(L, g(w)) > allg@)P, V€ I

Note that g-coercivity implies g-positivity, but the converse is not true. It is also
worth mentioning that there are operators which are not g-symmetric but g-positive. On
the other hand, there are g-positive , but not g-symmetric operators. Furthermore, it is
well-know [3, 29]] that, if, for a linear operator L, there exists an inverse operator L~! on
R(L), the range of L, with R(L) = H, then one can find an infinite set of auxiliary operators
g such that the operator L is both g-symmetric and g-positive.

If the operator L is linear, g-positive, g-symmetric and the operator g is linear,
then the problem (1) is equivalent to finding a minimum of the function I[v] on H, where

I[U] = <LU’9(U)> - 2<f,g(v)>, Vv e H, (10)

which is a nonlinear programming problem and can be solved using the known techniques
of the nonlinear optimization.
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We now consider the problem of finding the minimum of the functional I[v], defined by
(10) and this is the main motivation of our next result.

Theorem 2.1. Let the operator L : H — H be linear, g-symmetric and let L be g-positive.
If the operator g : H — H s linear, then the function uw € H minimizes the functional I[v],
defined by (10), if and only if,

(Lu,g(v) — g(u)) = (f,9(v) —g(u)), VveH. (11)
Proof. Let u € H satisfy (11). Then, using the g-positivity of (L, we have
(Lv, g(v) — g(uw)) > (f,9(v) — g(u)). (12)

Yu,v € H, €2>0,let v.=u—+e(v—u) € H. Taking v = v, in (12) and using the fact that
g is linear, we have

(Lve, g(ve) — g(u)) = (f, g(ve) — g(u)). (13)
We now define the function
h(e) = e(Lu,g(v) — g(u)) + 65<L(v —u),g(v) — g(u)) — €(f, g(v) — g(u)), (14)

such that
W(€) = (Lu, g(v) — g(u)) + e(L(v — u), g(v) — g(uw)) — (f,9(v) — g(u)) >0, by (13) .

Using the g symmetry of L, we see that h(e) is an increasing function on [0, 1] and
so h(0) < h(1) gives us

<Luvg(u)> - 2<fvg(u)> < <L’l),g("0)> - 2<fag(v)>v
that is,
Iu] < Iv], YveH,

which shows that v € H minimizes the functional I[v], defined by (10).
Conversely, assume that v € H is the minimum of I[v], then

Iu] < Ifv], Yve H. (15)
Taking v = v, =u+€(v —u) € H,Vu,v € H in (15), we have
Iu] < Ifvg].
Using (10), g-positivity and the linearity of L, we obtain

(Lu, g(v) = g(u)) + 5 (L(g(v) — g(w)), g(v) — g(w)) > (f, 9(v) — g(w)),

from which, as e — 0, we hjve

(Lu,g(v) — g(u)) = (f,9(v) — g(u)), Vv€E H. (16)
Replacing g(v) — g(u) by (g(u) — g(v)) in inequality (16), we have

(Lu,g(v) — g(u)) < {f,9(v) — g(u)), VveH. (17)
From (16) and (17, it follows that v € H satisfies

(Lu, g(v) = g(u)) = (f,9(v) = g(u)), Vv e H, (18)
the required result (11). O

We now show that the third order boundary value problems can be studied via prob-
lem (1).
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Example 2.1. Consider the third order boundary value problem of finding u such that

D3u
o5 = f(z), V€ la,b], (19)
with boundary conditions
u(a) =0, u'(a)=0, u'(b)=0, (20)

where f(x) is a continuous function. This problem can be studied in the general framework
of the problem (1). To do so, let

H = {u€ Ha,b] :u(a) =0, /(a)=0, u'(b)=0}

be a Hilbert space, see [3, 7, 29]. One can easily show that the energy functional associated
with (1) 4s:

b By b dv dv
I — — - _ 2 _ - H2
[v] /a dxgvdz /a fdxdz, de € H;la, b
b 2 b
B d*v 4 dv
= L (E) — 2 . f@’l}dl’
= (Lv,g(v)) —2(f, 9(v)),
where
b 13 b 52 2
d>u dv d“u.  d“v
<Lu,g(v)> = — i @@dl’ —‘/a (@) @)dl’7 (21)
and

b
(o) = [ f4d

where g = % is linear operator. It is clear that the operator L defined by (21) is linear, g-
symmetric, g-positive. Thus the minimum of the functional I[v] defined on the Hilbert space
H can be characterized by equation (1). This shows that the third order absolute boundary
value problems can be studied in the framework of (1).

Definition 2.2. An operator L : H — H s said to be;
(i).  Strongly monotone, if there exists a constant o > 0, such that

(Lu — Lv,u —v) > allu —v||*, Vu,v € H.
(ii).  Lipschitz continuous, if there exists a constant 8 > 0, such that
|Lu — Lo| < Bllu—v||, Vu,ve€ H.
(ii)  monotone, if
(Lu — Lv,u —v) >0, Vu,v € H.
(iv) firmly strongly monotone, if
(Lu — Lv,u —v) > ||lu—v|?, VYu,ve H.

We remark that, if the operator L is both strongly monotone with constant a > 0
and Lipschitz continuous with constant 8 > 0, respectively, then from (i) and (ii), it follows
that o <f.
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3. Main results

In this section, we use the auxiliary principle technique, the origin of which can be
traced back to Lions and Stampacchia [10]and Glowinski et al [7], as developed by Noor [15]
and Noor et al. [18, 20, 23]. The main idea of this technique is to consider an auxiliary
problem related to the original problem. This way, one defines a mapping connecting the
solutions of both problems. To prove the existence of solution of the original problem, it is
enough to show that this connecting mapping is a contraction mapping and consequently
has a unique solution of the original problem. Another novel feature of this approach is
that this technique enables us to suggest some iterative methods for solving the generalized
absolute value equations.

Theorem 3.1. Let the operator L be a strongly monotone with constant o > 0 and Lips-
chitz continuous with constant 8 > 0, respectively. Let the operator g be a firmly strongly
monotone and Lipschitz continuous with constant [51. If there exists a constant p > 0 such
that

< O‘Q_ﬁ;:@_”), a>BVr2—v), v<l, (22)

o
"

where
v = 6% -1 (23)
then the problem (1) has a solution.

Proof. We use the auxiliary principle technique to prove the existence of a solution of (2).
For a given u € H, consider the problem of finding w € H such that,

{(pLu, g(v) = g(w)) + (9(w) = g(u), g(v) = g(w)) = {pf, 9(v) = g(w)), Vv e H,  (24)

which is called the auxiliary problem, where p > 0 is a constant. It is clear that (24) defines a
mapping w connecting the both problems (1) and (24)). To prove the existence of a solution
of (1), it is enough to show that the mapping w defined by (24) is a contraction mapping.
Let w1 # wy € H (corresponding to w; # ug) satisfy the auxiliary problem (24). Then

(pLui,g(v) — g(w1)) + (g(wi) —g(u1),g(v) — g(w1))

= (pf,9(v) —g(w1)), Vve€EH, (25)
(pLuz,g(v) — g(w2)) + (g(wz2) — g(u2), g(v) — g(w2))

= (pf,9(v) —g(w2)), Yove H. (26)

Taking v = wq in (25) and v = w; in (26) and adding the resultant, we have

I# = (glwr) — g(wa), g(wr) — g(w2))

(9(ur) = g(uz) — p(Lur — Lug). (27)

lg(w1) — g(w2)

From (27), we have

lg(wi) = g(w2)[I” < llg(ur) — g(uz) — p(Lus — Lus)|l,
from which, it follows that
[wi —ws| < [[g(w1) = g(w2)]

< lg(ur) — g(u2) — p(Lur — Lusz)||
< lur —u2 — g(ur) — g(u2)|| + [[ur — ua — p(Luy — Lus)|. (28)
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Using the strongly monotonicity and Lipschitz continuity of the operator L with constants
a > 0and 8 > 0, we have

I?

|lur — ug — p(Lug — Lug) (ug —ug — p(Lug — Lug),uy — ug — p(Luy — Lus))

(ug — ug,u; —ug) — 2p(Luy — Lug,u; — us)
+p2<LU1 — LUQ, LU1 — LUQ>
< (1=2pa+ 26 fur — wall”. (29)

Similarly, using the strongly firmly monotonicity and Lipschitz continuity of the operator g
with constant (1, we have

lur — w2 — (g(ur) — g(u2))|* < {4/B7 — 1}|ur — ualf*. (30)
Combining (28),(29) and (30), we have

lwr —wsl < (/B =1+ V(1= 2pa+ p25?))|Jur — us|

= Ollur — uzl], (31)
where
9 = (@+W)
= v+ V1= 20+ 522,
and

v=/p -1

From (22), it follows that § < 1, so the mapping w is a contraction mapping and consequently,
it has a fixed point w(u) = v € H satisfying the problem (2). O

Remark 3.1. We point out that the solution of the auziliary problem (24) is equivalent to
finding the minimum of the functional I|w], where

1

Iw] = 5{g(w) = g(u), g(w) = g(u)) = p{Lu = f, g(w) = g(u)),

which is a differentiable convex functional associated with the inequality (24), if the operator
g 1is differentiable. This alternative formulation can be used to suggest iterative methods
for solving general equations. This auziliary functional can be used to find a kind of gap
function, whose stationary points solves the problem (2), see [5].

It is clear that, if w = w, then w is a solution of (1). This observation shows that
the auxiliary principle technique can be used to suggest the following iterative method for
solving the general equations (2).

Algorithm 3.1. For a given initial value ug, compute the approrimate solution x,41 by the
iterative scheme

(Lun + g(unt1) = g(un), 9(v) = g(uns1)) = (£, 9(v) = g(unt1)), Yo € H.

From Algorithm 3.1, one can easily obtain the Picard type iterative method for solving
the general equation (7) and appears to be a new one.

Algorithm 3.2. For a given initial value ug, compute the approrimate solution x,41 by the
iterative scheme

g(un+1) = g(un) — p(Luy, — f), n=0,1,2,3...
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We again use the auxiliary principle technique to suggest an implicit method for
solving the problem (2).
For a given u € H, consider the problem of finding w € H such that,
(pLw, g(v) — g(w)) + {g(w) — g(u), g(v) — g(w)) = p(f,9(v) —g(w)), Vv e H, (32)

which is called the auxiliary problem. We note that the auxiliary problems (24) and (32)
are quite different.

Clearly w = u € H is a solution of (2). This observation allows us to suggest the following
iterative method for solving the problem (2).

Algorithm 3.3. For a given initial value ug, compute the approximate solution x, 1 by the
iterative scheme

(pLtpi1 + g(unt1) — g(un), 9(v) = g(unt1)) = (pf, 9(v) — g(unt1)), Vv € H, (33)

which is an implicit method.
From this implicit method, we can obtain the following iterative method for solving (5)

Algorithm 3.4. For a given initial value ug, compute the approximate solution x,1 by the
iterative scheme
g(tunt1) = g(un) — pLupy1 — f), n=0,1,2,3..

This is a new implicit method for solving the equations (7).
To implement the implicit method (3.3), one uses the explicit method as a predictor and
implicit method as a predictor. Consequently, we obtain the two-step method for solving
the problem (2).

Algorithm 3.5. For a given initial value ug, compute the approximate solution x, 1 by the
iterative schemes

(pLuy + g(yn) — 9(un), g(v) = g(unt1)) = (pf,9(v) —g(yn)), Vv € H,
(PLyn + g(unt1) — g(un), g(v) — g(unt1)) = (pf,9(v) — g(un+1)), Vv € H,

which is known as two-step iterative method for solving problem (2).
Based on the above arguments, we can suggest a new two-step(predictor-corrector) method
for solving the equations (5).

Algorithm 3.6. For a given initial value ug, compute the approximate solution x,1 by the
iterative schemes

9(yn) = g(un) — pLuy, — f
9(uns1) = g(un) —pLyn — f, n=0,1,2..
For the convergence analysis of the iterative methods, we need the following concept.
Definition 3.1. The operator L is said to be pseudo g-monotone, if

(Lu, g(v) — g(u)) = (f,9(v) — g(w)), VveEH,
=

(Lv,g(v) —g(u)) = (f,9(v) —g(u)), VveH.

We now consider the convergence analysis of Algorithm 3.3 and this is the main
motivation of our next result.

Theorem 3.2. Let u € H be a solution of problem (2) and let u,41 be the
approximate solution obtained from Algorithm 3.3. If L is a g-monotone operator, then

lg(uns+1) = g(@)|* < llg(un) = g(w)lI* = lg(unt1) — g(un)ll*. (34)
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Proof. Let uw € H : g(u) € H be a solution of (2). Then

(Lu,g(v) = g(w)) = (f,9(v) — g(w)), VveH,

which implies that

(Lv,g(v) = g(u)) = (f,g(v) — g(u)), VveH, (35)

since the operator L is a pseudo g-monotone.
Taking v = up41 in (35) and v = u in (33), we have

(Ltng1, 9(uns1) — g(u)) > (f, g(tng1) — g(u)), Vv € H, (36)

and

<pLun+1 + g(un+1) - g(un)vg(u) - g(un+1)> = <,0f,g(u) - g(un+1)>7vv €H. (37)

From (37), we have

(9(unt1) = g(un),g(uw) = g(unt1)) = p{(Luny1, g(unt1) = g(w))
_p<fa g(un-‘rl) - g(u)> =0, (38)
where we have used (36).
Using the relation 2(a,b) = ||a + b||* — ||a||*> — ||b]|*>, Va,b € H, the Cauchy inequality and
from (38), we have

lg () = g(uns1)l* < llg(w) — g(un)lI* = llg(un) = g(unt)l?,

which is the required (34). O

Theorem 3.3. Let 4 € H be a solution of (2) and let un4+1 be the approzimate solution
obtained from Algorithm 3.3. Let L be a pseudo g-monotone operator and g~ exist. If g is
linear, then

lim wupq1 = . (39)
n—oo

Proof. Let 4 € H be a solution of (2). From ((34), it follows that the sequence {|g(@) —
g(uy,)||} is noncreasing and consequently the sequence {g(u,)} is bounded. Also, from (34),
we have

D g (unta) = glun)lI* < llg(uo) — g(@)]?,
n=0

which implies that

lim |lg(uny1) — g(un)|| =0 = nh_)rr;o [Unt1 — unll =0, (40)

n—oo

since ¢ is linear and ¢! exits.

Let @ be a cluster point of {u,} and the subsequences {uy;} of the sequence {u,,} converges
to u € H. Replacing u, by u,;in (33), taking the limit as n; — oo and using (40), we have

(La, g(v) — g(a)) = (f,g(v) — g(a)), Vv e H,
which shows that & € H satisfies (1) and
1 = wnll* < flun —all.

From the above inequality, it follows that the sequence {u,} has exactly one cluster point
w and lim,,—y oo Uy, = U. O
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We now use the auxiliary principle technique involving the Bregman function to sug-
gest and analyze the proximal method for solving general equations (2). For the sake of
completeness and to convey the main ideas of the Bregman distance functions, we recall the
basic concepts and applications.

The Bregman distance function is defined as

B(u,w) = E(g(u)) — B(g(w)) — (E'(g(w)), g(u) — g(w)) = vg(u) — g(w)]1?, (41)

using the strongly general convexity with modulus v.

The function B(u,w) is called the general Bregman distance function associated with general
convex functions.

For g = I, we obtain the original Bregman distance function

B(u,w) = E(u) — B(w)) = (E'(w),u —w)) > v|u—w]|?

For the applications of Bregman distance functions, see [15, 20, 32] and the references
For a given u € H, find a solution w € H satisfying

(pLu+ E'(g(w)) — E'(g(u)), g(v) — g(w)) = (pf, g(v) — g(w)), Yo € H, (42)

where E'(u) is the differential of a strongly general convex function F.
Note that, if w = u, then w is a solution of (2). Thus, we can suggest the following iterative
method for solving (2).

Algorithm 3.7. For a given ug € H, calculate the approzimate solution by the iterative
scheme

(pLuy, + El(g(un-&-l) - E'(g(un)),g(v) = g(un+t1)) = (pf,9(v) — g(unt1)),Yv € H, (43)

which is known as the proximal point method.
We again use the auxiliary principle technique involving the Bregman function to suggest
and analyze the proximal implicit method for solving equations (2).
For a given v € H, find w € H satisfying the auxiliary equation

(pLw + E'(g(w)) — E'(g(w)), 9(v) — g(w)) = {pf, g(v) — g(w)), Vv € H, (44)

where E'(u) is the differential of a strongly general convex function E.
It is clear that, if w = u, then w is a solution of (2). Thus, we can suggest the following
iterative method for solving (2).

Algorithm 3.8. For a given ug € H, calculate the approzimate solution u,41 by the iterative
scheme

(pLunyy +  E'(g(uni1)) — E'(9(un)), 9(v) — g(tiny1))
= (pf,9(v) = g(tns1)), Vv € H,

which is known as the proximal implicit point method.

Remark 3.2. One can consider the convergence analysis of Algorithm 3.7 and Algorithm
3.8 using the technique of Noor [15] and Noor et al. [20]. We would like to emphasize
that for appropriate choice of the operators L,g one can suggest and analyze several new
iterative methods for solving general equations and related problems. The implementation
and comparison with other techniques need further efforts.
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Conclusion

In this paper, we have considered a new system of general equations, which includes
Lax-Milgram Lemma and the Riesz-Fréchet representation theorems as special cases. It is
shown that the third order boundary value problems can be studied in the framework of
general equations. We have used the auxiliary principle technique to study the existence of
the unique solution of the system of the general equations. Some new iterative methods are
suggested for solving the equations using the auxiliary principle technique. The convergence
analysis of these iterative methods is investigated using the pseudo monotonicity, which
is weaker condition than monotonicity. This is a new approach for solving the general
equations. We would like to emphasize that these ideas and techniques may motivate a
number of novel applications and extensions of the general equations and their variant forms
in these areas.
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