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IMPROVED LIGHTWEIGHT MULTISCALE FINGER VEIN 

RECOGNITION FOR VISION TRANSFORMER 

Zhiyong TAO1, Yajing GAO1*, Sen LIN2 

Finger vein recognition methods suffer from ignoring local information, 

complexity and slow recognition speed when applying Transformer architecture. In 

this paper, an improved visual transformer multi-scale finger vein recognition method 

is proposed. Specifically, the network backbone adopts the improved visual 

transformer architecture and grouped convolutional structure. The improved vision 

transformer architecture can extend the global features of an image while 

simultaneously reducing the computational cost-effectively. Group convolution 

realizes low-cost multi-scale image feature extraction. The experiment showed that 

the method proposed in this paper has a recognition accuracy of 99.86%, which is 

more suitable for industrial deployment than other state-of-the-art works. 

Keywords: Convolutional neural network, Finger vein recognition, Near-infrared 

image, Light-weight networking, Feature extraction 

1. Introduction 

Biometrics is one of the most common identification methods, including: 

human face, fingerprints, palm print, iris, finger vein, etc. Because each person's 

vein texture is hidden in the body, it is not easy to steal and has uniqueness, so 

biometrics of finger veins has great advantages in vivo recognition. As far as current 

research is concerned, light and angle of finger placement all affect the recognition 

performance of finger veins. It is very important to study more accurate and robust 

recognition algorithms. The common finger vein recognition process usually 

includes image acquisition, preprocessing, feature extraction, and comparison. The 

acquisition of finger vein images necessitates the use of a device that combines an 

image sensor and an infrared light source. The acquired finger vein image is 

preprocessed to facilitate the subsequent feature extraction process. 

As deep learning technology advances, deep learning-based recognition 

techniques have shown greater advantages over traditional methods, which is due 

to the fact that deep learning-based methods can obtain deeper image features 

through Convolutional neural networks (CNN) and can show more stable 

recognition results. Therefore, some researchers proposed CNN based finger vein 
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recognition methods, for example, Fang et al. [1] proposed a lightweight dual 

channel network to improve finger vein verification by extracting mini region of 

interest (ROI). The Vision Transformer (ViT) [2] method, proposed by researchers 

recently, has attracted a lot of attention in the field of deep learning. Compared with 

CNN, ViT focuses more on global features and has shown excellent performance 

in several domains. In addition, researchers have proposed some improved methods, 

such as Liu et al. [3] proposed Swin Transformer, which obtains global and local 

features by constructing hierarchical feature maps and sliding windows, with better 

experimental results but high model complexity; Peng et al. [4] proposed Parallel 

Network Architecture, which utilizes convolution and the mechanism of multiple 

self-attention[5] (MHSA) for parallel extracts local and global features, which 

improves the network performance but is ineffective for small datasets. Based on 

the advantages shown by Transformer, researchers started to apply it to finger vein 

recognition. Huang [6] proposed the Finger Vein Transformer (FVT) model for 

recognition, which realizes multi-scale feature extraction by reducing the number 

of Token layer by layer but increases the complexity and computation. 

From the above analysis, it can be seen that the existing approaches have 

achieved better results in terms of recognition performance, but there are still some 

shortcomings in terms of recognition time and model complexity. In this paper, we 

conduct an in-depth study on the problems of low accuracy and high model 

complexity arising from applying Transformer architecture in finger vein 

recognition. Lightweight multi-scale finger vein recognition with improved Vision 

Transformer is designed to extract local and global features in finger vein images 

by improved E-Transformer Block and grouped Group-Conv Block together, 

avoiding the problem of low accuracy caused by insufficient feature extraction. 

MHSA is utilized in the E-Transformer Block to maximize the acquisition of global 

features, while the recognition accuracy is improved by improving MLP. The group 

convolution in the Group-Conv Block effectively reduces the computational cost in 

the feature extraction process and realises the lightweight and multi-scale extraction 

of image features. Finally, comprehensive experiments on self-constructed datasets 

and three public datasets show that our proposed methods achieve better recognition 

results with lower model parameters and computational complexity, as well as 

shorter recognition time and lower equal error rate (EER). 

2. Finger Vein Image Recognition Network 

How to take into account the simplicity and light weight of the CNN model 

while utilizing the Transformer architecture for finger vein recognition is a major 

challenge in current research. Therefore, this paper designs a multi-scale finger vein 

recognition method with an improved Vision transformer, as shown in Fig. 1. The 

network is composed of two components: the E-Transformer Block, which 
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enhances the ViT, and the Group-Convolution Group-Conv Block. One of the E-

Transformer Block is responsible for obtaining the global features in the image. By 

making the multi-head self-attention mechanism more efficient, the computational 

cost can be decreased, and the complexity can be minimized, resulting in a 

lightweight design. Another Group-Conv Block is responsible for obtaining some 

subtle features in the image, and group convolution can realize feature amplification 

and multi-scale acquisition of effective information in the image. After feature 

extraction by the above two blocks, the learning process of the classifier is 

supervised using the cross-entropy loss function to output more accurate 

recognition results. 

 
Fig. 1 Network structure diagram 

2.1 Group-Conv Block 

To further improve the network's effectiveness in recognizing finger veins, 

Group-Conv Block utilizes group convolution to achieve feature amplification. The 

details are shown in Fig. 2. Group-Conv Block contains one DW3 3 , one Conv1 1  

and one batch normalization (BN) layer. A DW convolution operation for the input 

features allows the number of channels that would otherwise be C  to be increased 

to 'C . The number of parameters required for a regular convolution operation on a 

given input feature map is: 

'convF H W C C=                                              (1) 

Nevertheless, when employing DW convolution, the operation necessitates 

a certain number of parameters: 

( / group) ( '/ group) groupdwF H W C C=                    (2) 

The above formula shows that grouped convolution can obtain more finger 

vein features with a smaller number of parameters, the network parameters and 

computational workload are decreased while still guaranteeing recognition 

accuracy. 
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Fig. 2 Grouped convolutional structure 

2.2 E-MLP Block 

In E-Transformer, this paper focuses on improving the MLP structure in the 

vision transformer. To show the superiority of the improved MLP in this paper, we 

compare it with the common converter structure papers such as ResT V2 [7], ViT, 

Next-ViT [8], and EfficientFormer [9], as shown in Fig. 2. Next-ViT uses ReLU as 

the activation function, but GELU performs better and converges faster than ReLU. 

In addition, we find that the BN layer prevents overfitting and speeds up training. 

For these reasons, in this paper, we use GELU as the activation function and add 

BN layer and Dropout layer to improve the performance. We demonstrated the 

effectiveness of E-MLP in the ablation experiment section. 

 
Fig. 3 Comparison of MLP in different methods 

2.3 MHSA Block 

MHSA can adaptively learn the relationship between different regions in an 

image to extract more comprehensive feature information. Therefore, this paper 

uses MHSA from ViT structure for global feature extraction. In ViT, the input 

image is first divided into multiple subgraphs as input vectors. Then, these vectors 

are encoded using the multi-head attention mechanism, the correlation between 
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them is calculated, and the attention weights are obtained by the Softmax function. 

Finally, these vectors are weighted and summed with corresponding attention 

weights to obtain the final feature representation. We introduce positional coding 

to obtain the positional information in the image features. To reduce the 

computational cost and enable more efficient and lightweight deployment. As 

shown in the following figure, the low-frequency signal is first captured by MHSA 

with the following equation: 

0

1 2MHSA( ) Concat( ( ), ( ),..., ( ))hx SA x SA x SA x W=                    (3) 

Where denotes the division of input features into multiple heads in the 

channel dimension and is the number of divided heads. In this paper, 8 is taken as 

the number of heads for the attention mechanism. Is the attention mechanism 

computational formula, and the formula is as follows: 

( ) Attention( , , )Q K VSA x Q W K W V W=                             (4) 

Where Attention denotes the standard attention, Q , K , V denotes query 

vector, key vector, and value vector, respectively, QW , KW , VW  is the linear layer 

used for context encoding. 

 
Fig. 4 Structure of MHSA 

3 Experimental results and analyses 

3.1 Data set profiles 

We conducted experiments on a total of four datasets, namely, FV-USM 

[10], SDUMLA-HMT [11], THU-FVFDT2 [12], and the self-constructed dataset 

FV-SIPL, with the exception of the THU-FVFDT2 dataset where the training and 

test sets are equally distributed in a 2:1 ratio. The data information is shown in the 

following table.Figure 5 illustrates the sample finger vein maps in the four datasets. 
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Fig. 5 Sample finger vein plots from the four datasets 

 

Table 1 

Image categories and totals in the four datasets 

Dataset 
Total number 

of categories 

Total image 

count 
Total training sets Total test sets 

FV-USM 492 5904 3936 1968 

SDUMLA-HMT 636 3816 2544 1272 

THU-FVFDT2 610 1220 610 610 

FV-SIPL 108 1296 864 432 

3.1.1 FV-USM dataset 

Universiti Teknologi Malaysia supplied this dataset, which includes finger 

vein images taken by 123 volunteers, each volunteer's four fingers were used to 

capture 12 images. Therefore, the whole dataset covers a total of 492 finger 

categories and 5904 images. The size of each of these images is 640480pixels. 

3.1.2 SDUMLA-HMT dataset 

This dataset is provided by Shandong University, which contains the finger 

vein images of 106 volunteers, and 6 images are collected for each index, middle 

and ring finger of each volunteer's hands. The whole dataset covers 636 finger 

categories and 3816 images, where each image size is 320240pixels. 

3.1.3 THU-FVFDT2 dataset 

The dataset was provided by Tsinghua University and contained finger vein 

images of 610 volunteers. Finger vein images were collected twice for each 

volunteer, with a total of 1220 images, each with a size of 200 100pixels. 

3.1.4 FV-SIPL dataset 
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This dataset was made by the Signal and Information Processing Laboratory 

of Liaoning University of Engineering and Technology by using infrared finger 

vein acquisition sensors to collect finger vein images from 27 volunteers. Among 

them, 12 images were collected for each of the four fingers of each volunteer, and 

the whole dataset covered 108 finger categories and 1296 images. The size of each 

image is 176415pixels. 

3.2 Experimental environment and parameter settings 

The experiments were conducted under the Linux operating system using 

the PyTorch 1.7 framework. The graphics card used for training and testing was 

GeForce RTX 3090 GPU. The learning rate is set to 0.001, the batch size is set to 

16, and Stochastic Gradient Descent (SGD) is chosen as the optimizer, with a  

momentum of 0.9. The the input size of the finger veins was pre-processed with 

operations and finally adjusted to 224  224 pixels uniformly, and the final 

experimental results are obtained through 300 iterations of training. 

3.3 Evaluation Metrics 

To evaluate the performance and advantages of the model, metrics such as 

Accuracy, EER, Average Processing Time of a Single Image (Time), Number of 

Parameters, and Floating Point Operations (FLOPs) are selected for evaluation. The 

accuracy rate is a frequently employed metric in recognition of finger veins. It can 

reflect the model's ability to correctly recognize different categories of samples in 

the entire data set. The formula for accuracy rate is shown in equation (5): 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
                                       (5) 

TP represents the quantity of accurate positive sample predictions, while TN  

signifies the quantity of accurate negative sample predictions, The number of false 

positive sample predictions is denoted by FP , and the number of false negative 

sample predictions is denoted by FN . The EER value is typically employed in 

image recognition tasks to gauge the model's effectiveness, the determination is 

based on the False Acceptance Rate(FAR) and the False Rejection Rate(FRR). The 

formulas for FAR and FRR are shown below: 

FP
FAR

FP TN
=

+
                                             (6) 

FN
FRR

TP FN
=

+
                                              (7) 

The predetermined threshold determines the quantity of samples for both false 

acceptance and false rejection when the threshold of the match is greater than the 

preset threshold, it is determined as wrong acceptance and vice versa as wrong 

rejection. When FAR and FRR are equivalent, the result is EER, which indicates 
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the effectiveness of the recognition technique, the recognition method's 

performance improves as the EER value decreases. 

The magnitude and intricacy of the model have a considerable influence on 

the training and prediction results. The size of the model can be determined by the 

number of parameters, and the complexity of the model can be measured using 

FLOPs. The smaller the values of average processing time, number of parameters, 

and FLOPs for a single image, the lower the complexity of the model and the faster 

the recognition speed is proved. 

3.4 Comparison Experiments 

To validate the method in this paper, we compared it with a classical 

transformer network model: ViT-B, Swin-T, Conformer-B, Next-ViT and the 

lightweight CNN network model EfficientNetV2. The results of the recognition 

accuracy of the different methods on the datasets are shown in Table 2. The higher 

the accuracy rate, the better the recognition effect of the method is proved, and the 

results in the table show that the proposed method in this paper achieves the best 

recognition effect on all four datasets. The most favorable outcome is denoted by 

bold type, whereas underlining signifies the second most favorable outcome. 
 

Table 2 

Recognition accuracy of different methods on four data sets(unit: %) 

Method FV-USM SDUMLA-HMT THU-FVFDT2 FV-SIPL 

ViT-B 84.00 83.00 75.34 93.02 

Swin-T 98.33 97.33 90.13 99.52 

Conformer-B 97.00 97.00 97.09 97.91 

Next-ViT 98.56 99.0 98.87 99.53 

EfficientNetV2[13] 99.00 98.00 98.78 97.20 

MobileNetV2[14] 98.20 99.00 98.32 99.00 

ResNet101[15] 98.33 98.34 98.21 99.00 

Our 99.69 99.86 99.33 99.73 
 

In addition to the comparison of accuracy, the average processing time, 

number of parameters and FLOPs of individual images of different methods are 

also compared, as shown in Table 3. In terms of average processing time for a single 

image, MobileNetV2 is 2.27ms, which is 1.16ms faster than the method proposed 

in this paper, due to the multi-attention mechanism used in this paper's method. 

Other than that, this paper's method outperforms other methods. 
Table 3 

Analyzing the evaluation index outcomes of various methodologies 

Method Time/ms Parameters/M FLOPs/G 

ViT-B 11.30 103.03 16.88 

Swin-T 7.21 28.27 4.37 

Conformer-B 7.15 96.63 21.01 

Next-ViT 3.52 31.76 5.79 

EfficientNetV2 3.49 21.46 2.90 
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MobileNetV2 2.27 3.50 0.33 

ResNet101 7.61 44.55 7.84 

Our 3.43 1.97 0.35 

 

This research utilizes four datasets to assess different recognition methods, 

including ViT-B, Swin-T, and Conformer-B. Fig. 6 displays the outcomes. On the 

SDUMLA-HMT dataset, the EER value of the method proposed in this paper is 

slightly higher than has excellent performance in finger vein recognition and can be 

used as an effective recognition method. This paper's proposed method is more 

accurate and robust than other methods, it has the potential to be used in a variety 

of practical areas. 
 

 
Fig. 6 Comparison of EER of different methods 

 

The results of comparing the method proposed in this paper with novel 

finger vein models in recent years are shown in Table 4. Out of all the methods, our 

approach achieves the highest recognition accuracy on both public datasets, 

SDUMLA-HMT and THU-FVFDT2. Although the recognition accuracy on the 

FV-USM dataset is lower than that of the FVT method by 0.04%, it is higher than 

that of FVT by 1.96% and 8.67% on the SDUMLA-HMT and THU-FVFDT2 

datasets, respectively. Consequently, this paper's proposed method yields the most 

favorable recognition outcomes based on the overall results. 

By comparing the novel finger vein recognition algorithms in recent times, 

this paper's suggested approach yields superior recognition accuracy, recognition 

time and complexity. We take the data at epoch 0, 50, 100, 150, 200, 250, 300 for 

image plotting, and the recognition accuracy versus test loss curves on the four 

datasets are shown below. 
Table 4 

The precision of various techniques in identifying public datasets(unit: %) 

Method FV-USM SDUMLA-HMT THU-FVFDT2 

Merge CNN[16] 96.15 89.99 — 

DS-CNN[17] — 98.00 89.00 
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Semi-PFVN[18] 94.67 96.61 — 

LFVRN_CE[19] 98.58 97.75 — 

DGLFV[20] — 99.25 — 

CMrFD[21] 98.33 98.92 — 

FVT 99.73 97.90 90.66 

TFHFT-DPFNN[22] — 98.00 — 

CNNs[23] 97.95 — — 

Coding SchemeA[24] 99.59 95.91 — 

FV-GAN — — 98.52 

Triplet-Classifier GAN[25] 99.66 99.53 — 

Our 99.69 99.86 99.33 

 
(a)                                    (b) 

Fig. 7 (a) Accuracy curve;(b) Test loss curve 

 

It is clear from the diagram that THU-FVFDT2 has the best recognition 

effect from 50 to 100 epochs, followed by FV-SIPL, SDUMLA-HMT, and FV-

USM, and finally stabilizes after 150 epochs. Similarly, the loss curve shows that 

THU-FVFDT2 has the smallest loss from 50 to 100 epochs, followed by SDUMLA-

HMT, FV-SIPL, and FV-USM, whose losses increase sequentially and eventually 

converge to zero. 

3.5 Ablation Experiments 

We conducted ablation experiments to better verify the conjecture. Under 

the premise that the rest of the conditions remain unchanged, the Group-Conv Block 

is combined with different models of the MLP structure, and the accuracy is tested 

on four datasets and the results are shown in Fig. 8.Based on the information 

depicted in the figure, it can be seen that the improved MLP structure in this paper 

has obvious advantages in the recognition effect compared with the classic 

Transformer architecture paper, thus verifying that the previous conjecture is 

correct. 
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Fig. 8 Results of ablation experiments on four datasets with different methods 

4 Conclusion 

Aiming at the finger vein recognition process, which does not fully consider 

the global features of the image and is easy to overfit and other problems, this paper 

proposes a multi-scale finger vein recognition method with an improved Vision 

Transformer. The improved E-Transformer and group convolution are utilized to 

form the backbone network. In the network, the E-Transformer is responsible for 

extracting global features, where the improved MLP makes the feature extraction 

capability substantially enhanced. Secondly, the use of low-cost packet convolution 

allows for feature amplification and multi-scale information acquisition. The 

method is experimentally tested on multiple datasets, and good experimental results 

are obtained under several evaluation metrics. At present, the method has good 

performance and considerable potential in finger vein recognition, but there are still 

many aspects that need further improvement and refinement, which will be the 

focus of our future work. 
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