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OPTIMUM CONTROLLED FRACTIONAL ORDER DAMPED
OSCILLATORY SYSTEM

Adel Agila1, Dumitru Baleanu2, Bülent İrfanoğlu3

Precisely desired output and accurate performance are substan-
tial requirements in systems and models design. Generally, in the dynamic
systems design, these requirements can be fulfilled by applying controllers
and optimizers to the systems’ models. A forced variable order fractional
damped vibrating system is modelled. The dissipation term in the model is
represented by Caputo Fabrizio fractional derivative. The system is subject
to a unit step external force. Numerical and time discretization techniques
are applied to obtain the open loop system responses. The discrete-time
PID controller is applied to the system model to generate closed loop system
responses. The Particle Swarm Optimization along with the discrete-time
PID controller are utilized to achieve predetermined desired responses. In
this paper, our won Matlab script is utilized to numerically generate the
response of the open-loop, closed-loop and optimum closed-loop control sys-
tems. The effectiveness of the applied techniques, controller, and optimizer
are investigated by comparing the classical integer model responses with the
fractional model responses. The results demonstrate the feasibility of the
applied numerical method, and the effectiveness of the introduced controller
and optimizer. The results show relatively low errors between the desired
responses’ metrics and the actual responses’ metrics of the integer and the
fractional models.

Keywords: Fractional damped vibrating system, Caputo Fabrizio frac-
tional derivative, Discrete-time PID controller, Particle Swarm Optimiza-
tion.

1. Introduction

The optimization techniques are widely implemented different sciences’
researches. The optimization methods are applied to the dynamic systems
to achieve desired outputs. Such as The Grey Wolf Optimizer (GWO) ([1]).

1 Asst. Prof., Mechanical Engineering Department, Faculty of Engineering, Omar Al-
Mukhtar University, Libya, e-mail: adelagila@gmail.com

2Professor, Department of Computer Science and Mathematics, Lebanese American Uni-
versity, Beirut, Lebanon,dumitru.baleanu@lau.edu.lb

2Professor, Institute of Space Sciences, Magurele-Bucharest, Romania
3 Asst. Prof., Department of Electrical and Electronics Engineering, Baskent University,

06790 Ankara, Turkey,bulentirfanoglu@baskent.edu.tr

1



70 Adel Agila, Dumitru Baleanu, Bülent İrfanoğlu

An Ant Colony Optimization, Artificial Bee Colony algorithms ([2]), and Ge-
netic Algorithm (GA) ([3]). The Particle Swarm Optimization (PSO) which
is implemented in this work had been applied in various sectors of science ([4],
[5], [6], [7]). These techniques are used to find the optimum solutions of dif-
ferent problems based on certain criteria and constraints. Recent researches
in different science disciplines demonstrate the fractional calculus as an ex-
traordinary modeling tool. The fractional calculus can precisely model and
describe the fractional systems in pure and applied sciences ([8], [9], [10], [11],
[12]). A fractional-order chaotic random number generator (RNG) is used as
the target RNG to demonstrate a cryptanalysis technique ([15]). A different
stability behaviors have been obtained for the coupled fractional Boussinesq-
Burgers system model, when the model was upgraded to include time-fractional
derivatives ([16]).

The Proportional Integral Derivative (PID) controller is widely applied to
control and regulate system responses. The continuous form of PID controller
need to be discretized to a form that can be used in computer implementations
([13]). Moreover, the PID controller is applied as a fractional controller (
PIλDµ) ([14]).

In active suspension control, a fractional damping single DOF system
is studied. A relationship is derived between the system critical damping
coefficient and the fractional derivative order.([17]).

The PID controller along with PSO are implemented to obtain optimum
results for different models. The PID-PSO controller is applied to automatic
voltage regulator to prompt the output voltage convergence ([18]). A DC
motor optimally controlled by PID controller. The optimized PID gains are
obtained for the DC motor model using the firefly algorithm (FA)([19]).

An improved fractional sub-equation method is applied to fractional bi-
ological population equation. ([44]). The Einstein tensor and Einstein field
equations are obtained by involving the local fractional derivatives ([33]). The
simulations of systems as fractional models, in certain applications, show a
proximated simulations compared to integer representations ([30]). Due to the
mechanical behavior of some elements of dynamic systems, it is accurated to
be modeled as fractional systems. These elements may include viscoelastic
materials such as some types of dampers ([35], [36]). Specific diffusion pro-
cesses and systems whose elemnts are exposed to a time accumulated damage
are more precisely modeled as variable order fractional systems ([46]).

In some applications of the fractional representation a variable damping
force is used to suppress dynamic systems. For instance, we may recall the
Magneto-Rheological (MR) damper ([37]) and the brush disk sliding friction
([38]). In those systems, due to time varying parameters, the damping ratio
increases.
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The motivations behind this work are the generation of optimum frac-
tional dynamic system responses, and investigation of the effects of the frac-
tional derivative order on the optimization process. The novelties of the study
are the modeling of a forced variable order damped fractional vibrating system
by using the non-singular Caputo Fabrizio (C-F) fractional derivative, and the
obtaining of optimum responses of the system. Which is accomplished by ap-
plying the PSO along with discrete-time PID controller to optimally control
the fractional system responses.

In this work, the PSO method is applied to forced variable order damped
fractional vibrating system. A discrete-time PID controller is implemented to
the system before applying the optimizer. The application of the PID con-
troller to the system generates a controlled system responses. These controlled
responses are yielded from arbitrary controller gains. So that these responses
don’t match the desired responses. In order to reach the desired system re-
sponses, the PSO is applied to the controlled system. The optimizer generated
optimum controller gains, by which the desired response can be achieved.

In this study, the optimum controller gains are obtained based on the
desired response characteristics. The objective function of the optimizer is
obtained, at each iteration, by comparing the desired response characteristics
with the actual response characteristics. In section 2 the procedure and algo-
rithm of PSO method are introduced. Section 3 illustrates the PID controller
both in continuous and discrete forms. A forced variable order damped frac-
tional vibrating system is modelled in section 4. The damping force in the
system model is represented by non-singular C-F fractional derivative. The
open and closed loop system responses are generated in section 5. The re-
sponses are obtained by using a time discretization numerical technique. The
resulted open and closed loop system responses verify the accuracy of the
applied numerical technique. In section 6, the PSO is implemented to the
closed loop system to achieve desired system responses. The optimum system
responses are generated for different desired system responses and fractional
derivative orders.

The errors between desired system responses’ characteristics and corre-
sponding optimum actual responses’ characteristics are calculated for all cases.
The results indicated very slight errors that verify the effectiveness of the ap-
plied techniques.

2. Particle swarm optimization

The particle swarm optimization method was discovered through study-
ing of behaviours of the bird flocking, and the fish schooling. The simulation of
these behaviours generates a strongly effective optimization technique ([20]).
This technique is known as the particle swarm optimization (PSO). The swarm
which represents the particles population is randomly initialized. Each parti-
cle in the swarm represents a potential solution and has its position Xi and
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velocity Vi in a hyperspace. The positions and the velocities of the population
are, respectively, defined as

Xi = (xi,1, xi,2, ..., xi,d) , (1a)

Vi = (vi,1, vi,2, ..., vi,d) , i = 1, 2, 3, ..., P, (1b)

where d represents the dimension of the particle, and P is the population
size. The fitnesses of the solutions are compared to determine the best solution.
The value of the current best solution is stored. The stored solutions represent
global solutions. Each particle adjusts its position and velocity based on the
best solution (Pbest) and the best global (gbest) solution as following:

vt+1
i,m = ω ∗ vti,m + c1 ∗ rand() ∗

(
Pbesti,m − xti,m

)
+ c2 ∗ rand() ∗

(
gbesti,m − xti,m

)
,

(2a)

xt+1
i,m = xti,m + vt+1

i,m , m = 1, 2, 3, ..., d. (2b)

The velocity right here is used as a memory of a certain particle previous
direction, which means s movement in the immediate past. This memory
term can be considered as a momentum, which leads the particle towards the
current direction. This component is also referred to as the inertia component
([21]). The inertia component represents the prior velocity, which provides
the particles with suitable momentum to move over the search space([22]).
Therefore the velocity can be considered as just a factor used to push the
particle to change its position (location).

The optimization process is running upto predetermined number of itera-
tions N . The following pseudo code illustrates the particle swarm optimization
procedure:
(1) Initialize the population randomly
(2) while No. iterations < N
(3) for i=1:population size

Compute the objective functions
if Objective function value is the best
{
The associated particle is the best solution
}
end

(4) Save the best solution
(5) Assign the global solution
(6) for i=1:population size

Based on the best and global solutions
Calculate a new velocity of particle(i)
Update the new position of particle(i)
end
end
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3. Discrete time PID controller

The PID controller is composed of three coefficients or gains, namely,
proportional, integral, and derivative. These gains can be tuned to achieve a
desired controlled system responses. The general formulas of outputs of the
proportional (Kp), integral (Ki), and derivative Kd gains are given, respec-
tively, as following:

fp(t) = Kpe(t), (3a)

fi(t) = Ki

∫ t

0

e(τ)dτ, (3b)

fd(t) = Kd
de(t)

dt
, (3c)

where fp(t), fi(t), and fd(t) are the outputs of the controller and their sum-
mation is the input of the controlled system (Fig. 1), e(t) is the continuous
error between the desired output yd(t) and the actual output y(t).

The forms of the continuous PID controller that are given by (3) can be
reintroduced in a discrete forms ([13]) as following:

fp(k) = Kpe(k), (4a)

fi(k) ≈ fi(k − 1) +Ki
h[e(k) + e(k − 1)]

2
, (4b)

fd(k) ≈ Kd
[e(k)− e(k − 1)]

h
, (4c)

where k is a pointer of the discrete signals sample points, and h is a discrete
time increment.

Figure 1. Block diagram of PID controller.

In order to achieve the desired fractional system response, the discrete
time PID controller along with particle swarm optimizer are implemented to
the introduced fractional dynamic system.
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4. Fractional oscillatory system modelling

The Kelvin–Voigt system ([23]) which is composed of dashpot and spring
elements connected in parallel is modeled as a simple fractional oscillatory
system. In which the dashpot element generates a dissipation force and is
modelled as fractional term in the system model. The dissipation force is pro-
portional to the fractional derivative of the displacement. The Kelvin–Voigt
model is connected to a mass M to generate a single degree of freedom frac-
tional system as shown in (Fig. 2). The system is subjected to external force
u(t), The response of the system is represented by the reciprocating motion
y(t) of the mass M .

Figure 2. A single degree of freedom fractional oscillatory system.

The model of the system that is shown in (Fig. 2) is given as following:

Mÿ(t) + C CF
0 D

α(t)
t y(t) +Ky(t) = f(t), α(t) ∈ <, (5)

where C is the damping coefficient of the dashpot, α(t) is a real variable
derivative order of the fractional dissipation force, K represents the spring
stiffness.

The damping term in the model (5) is defined by the non-singular variable
order C-F fractional derivative ([24, 25]) as following:

CF
0+
D
α(t)
t y (t) =

Q[α(t)]

[1− α(t)]

∫ t

0+

d

dη
y (η) exp

[
−α(t)(t− η)

1− α(t)

]
dη, 0 < α (t) < 1,

(6)
where Q(α(t)) is a normalized function in the interval of α(t) ∈ [0, 1]

such that Q(0) = Q(1) = 1 ([24]).
Substituting (6) into the system model in (5) yields,

Mÿ(t) + C
Q[α(t)]

[1− α(t)]

∫ t

0+

d

dη
y (η) exp

[
−α(t)(t− η)

1− α(t)

]
dη +Ky(t) = f(t). (7)

The response y(t) of the fractional system model in (7)can be obtained
numerically. The obtained response represents the open loop system response.
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The discrete time PID controller that is introduced in section 3 can be applied
to the fractional system model to generate a closed loop system responses.

5. Open and closed system responses

A numerical method and discretization technique are utilized to approx-
imate the open loop response of the introduced model (7). The second deriv-
ative in the inertia term (Mÿ(t)) in the model is approximated by using the
finite differences method as follows

ÿ(tk) =
yk+1 − 2yk + yk−1

h2
+O

(
h2
)
. (8)

The damping term in the model, which is represented by C-F fractional
derivative is approximated numerically as following:

C

[
Q[α(t)]

[1− α(t)]

] ∫ t

0+

d

dη
y (η) exp

[
−α(t)(t− ζ)

1− α(t)

]
dη =

C

[
Q[α(t)]

[1− α(t)]

] k−1∑
j=0

∫ tj+1

tj

d

dη
y (η) exp

[
−α(tk)(tk − η)

1− α(tk)

]
dη.

(9)

The first order derivative dy(η)
dη

is approximated via the forword finite

difference method at the point k as following:

dyk (η)

dη
=
yk+1 − yk

h
+O (h) , (10)

Substituting (10) into (9) yields

C

[
Q[α(t)]

[1− α(t)]

] ∫ t

0+

d

dη
y (η) exp

[
−α(t)(t− η)

1− α(t)

]
dη =

C

[
Q[α(t)]

[1− α(t)]

] k−1∑
j=0

yk+1 − yk
h

∫ tj+1

tj

exp

[
−α(tk)(tk − η)

1− α(tk)

]
dη.

(11)

Substitute (8) and (11) into (7) to generate the approximated form of
the system model as

M
yk+1 − 2yk + yk−1

h2
+ C

[
Q[α(t)]

[1− α(t)]

] k−1∑
j=0

yk+1 − yk
h∫ tj+1

tj

exp

[
−α(tk)(tk − η)

1− α(tk)

]
dη +Ky(t) = f(t).

(12)
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The open loop system response can be obtained by solving the integral
in (12) and applying the initial conditions, and the external force, for more
details refer to ([10]).

The external force is given as a unit step as shown in (Fig. 3). The
system actual response that is obtained based on the initial conditions, and
the external force reaches the desired position at a certain time interval. This
time interval depends on the system parameters and the controller gains. Each
actual response has its own characteristics which are rise time, maximum over-
shoot, peak time, and settling time, see (Fig. 3).

Figure 3. Unit step and actual response of oscillatory system.

For same system parameters and same initial conditions, the open loop
fractional system response at α(t) = 0.99 is compared the classical integer
system response in (Fig. 4).

The introduced discrete-time PID controller is applied to the open loop
systems. Closed loop responses of both integer and fractional systems are
generated. (Fig. 5) shows the integer controlled system response and fractional
controlled system response at α(t) = 0.99.

It’s deduced from (Fig. 4) and (Fig. 5) that the integer and fractional
responses are identical in uncontrolled and controlled cases, respectively. The
fractional model responses in these cases are obtained at close to one α(t)
values. These identical responses verify the accuracy of the applied procedure
and the introduced techniques. The closed loop system responses at α(t) = 0.5,
and α(t) = 0.8 are shown in (Fig. 6-a) and (Fig. 6-b), respectively. Both
fractional models are subject to the same PID controller gains. (Fig. 6)
demonstrates that the fractional system response at α(t) = 0.8 reaches the
steady state faster than the fractional system response at α(t) = 0.5.
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Figure 4. Open loop integer system and fractional (at α(t) =
0.99) system responses.
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Figure 5. Closed loop integer system and fractional (at α(t) =
0.99) system responses.

The controlled fractional system responses that are shown in (Fig. 6)
are generated from applying arbitrary PID controller gains. In order to reach
desired fractional system responses, the PID controller gains need to be opti-
mized. The introduced PSO technique is applied to the considered fractional
oscillatory system to achieve desired responses.
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Figure 6. Controlled vs. uncontrolled fractional system re-
sponses, a- α(t) = 0.5, b- α(t) = 0.8.

6. Optimal responses

High efficiencies and performances of dynamic systems can be achieved
when their desired outputs are verified. By applying arbitrary-gains controllers
these desired outputs can not be achieved. The applied controllers gains need
to be tuned to reach the desired system output. An optimization technique
is applied along with the controller to tune the controller parameters. The
introduced PSO method is applied to the considered controlled damped frac-
tional vibrating system. The discrete-time PID controller gains are tuned by
the PSO. The controller gains are introduced as a population of the optimizer.
Each particle of the population is composed of a set of the controller gains. In
order to decrease the computation cost, the population size of swarm is chosen
to be four. The PSO procedure that is introduced in section 2 is applied to
controlled system model that given by (12). A bunch of desired responses are
obtained from the integer model and different orders fractional models. (Fig.
7) shows a comparison between the responses of optimal-controlled, controlled,
and uncontrolled damped fractional vibrating system. The comparison is done
for α(t) = 0.5 at (Fig. 7-a) and α(t) = 0.8 at (Fig. 7-b). Both fractional sys-
tems have same parameters (mass, stiffness, and damping coefficient). The
desired response characteristics in the optimal cases in (Fig. 7) are percent
overshoot=18, settling time=3, and peak time=0.6. The actual optimum re-
sponse of the fractional system at α(t) = 0.5 has settling time =2.9728, percent
over shoot =17.9309, and peak time = 0.5. Whereas at α(t) = 0.8 the actual
optimum response has settling time =2.9288, percent over shoot =18.0252,
and peak time = 0.5.
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Figure 7. Optimal-controlled vs. Controlled vs. uncontrolled
fractional system responses, a- α(t) = 0.5, b- α(t) = 0.8.

Table 1. Desired vs actual responses characteristics (Integer case)

Desired Res. Actual Res. Opt. Controller

Characteristics Characteristics Gains

P-OS S-T P-T P-OS S-T P-T Kp Ki Kd

15 5 0.6 15.0296 4.8156 0.65 11.3283 2.8891 4.2658

The errors of the systems’ actual optimum responses is calculated as
following:

E =
|
∑
DRCs−

∑
ORCs|∑

DRCs
∗ 100, (13)

where DRCs represents the desired response characteristics and ORCs is the
optimum response characteristics. The actual optimum responses that are
shown in (Fig. 7-a) and (Fig. 7-b) yields absolute errors 0.9088% and 0.6759%
compared to the desired responses, respectively.

The characteristics of desired and actual responses of the unit step forced
damped integer oscillatory system are demonstrated in Table 1.

The optimum response of the integer system in Table 1 yields an absolute
error 0.5087% compared to the desired response. The introduced PSO method
is applied to the unit step forced damped fractional oscillatory systems. The
optimum responses’ characteristics of these system are obtained for different
fractional derivative orders and different desired responses as shown in Table
2 through Table 5.
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Table 2. Desired vs actual res. characteristics (Fractional α = 0.99)

Desired Res. Actual Res. Opt. Controller

Characteristics Characteristics Gains

P-OS S-T P-T P-OS S-T P-T Kp Ki Kd

12 3 0.2 11.8759 2.8471 0.2 6.6152 8.1040 10.3410

15 5 0.6 15.4820 4.8768 0.6 10.5246 3.6877 4.5687

10 3 0.3 10.1094 2.9801 0.4 9.3417 19.1008 8.132

8 3 0.3 8.014 3.0264 0.4 8.3406 17.2389 8.4848

17 3 0.5 16.9941 2.8701 0.5 11.4388 9.7034 5.3731

20 4 0.6 20.0317 3.7259 0.5 9.5822 30.6348 6.6175

Table 3. Desired vs actual res. characteristics (Fractional α = 0.8)

Desired Res. Actual Res. Opt. Controller

Characteristics Characteristics Gains

P-OS S-T P-T P-OS S-T P-T Kp Ki Kd

12 3 0.2 12.1503 2.9964 0.2 7.1425 32.5041 10.0680

15 5 0.6 15.1789 4.8761 0.63 11.0885 3.5053 4.2308

10 3 0.3 9.9910 3.0286 0.4 8.6798 8.2458 7.5368

8 3 0.3 7.9593 2.9467 0.3 7.9438 8.3051 8.6869

17 3 0.5 17.057 2.8634 0.5 10.1365 9.2018 5.5625

20 4 0.6 19.9476 3.7897 0.6 11.3617 5.0314 4.5203

Table 4. Desired vs actual res. characteristics (Fractional α = 0.5)

Desired Res. Actual Res. Opt. Controller

Characteristics Characteristics Gains

P-OS S-T P-T P-OS S-T P-T Kp Ki Kd

12 3 0.2 11.9772 3.0753 0.4 10.2617 8.3879 8.1653

15 5 0.6 15.0772 4.9354 0.5 9.9598 3.4099 5.7938

10 3 0.3 9.9918 3.0068 0.4 8.0560 8.9825 8.2438

8 3 0.3 8.0006 2.8466 0.4 7.9137 3.6576 8.3782

17 3 0.5 17.1737 3.1663 0.5 10.9202 5.7171 4.7161

20 4 0.6 20.0551 4.3255 0.6 10.7775 3.9560 6.6929

In Table. 2 through Table. 5, different optimum actual responses’ charac-
teristics and different optimum controller gains are generated based on desired
responses’ characteristics and fractional derivative orders. The absolute errors
of all cases are shown in Table. 6.
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Table 5. Desired vs actual res. characteristics (Fractional α = 0.3)

Desired Res. Actual Res. Opt. Controller

Characteristics Characteristics Gains

P-OS S-T P-T P-OS S-T P-T Kp Ki Kd

12 3 0.2 11.8196 2.9801 0.2 5.6882 11.5260 10.3881

15 5 0.6 15.1545 5.1509 0.5 9.8644 3.2688 5.8159

10 3 0.3 10.0379 2.9863 0.3 8.6220 11.6948 9.8514

8 3 0.3 8.0451 3.1638 0.3 7.7770 7.3242 9.5057

17 3 0.5 17.0462 2.9938 0.5 9.5632 9.2852 6.1051

20 4 0.6 19.9449 4.0346 0.2 7.5947 40.9156 10.7268

Table 6. Optimal actual responses’ errors of fractional systems

Desired Res. Desired Res. Desired Res. Desired Res. Desired Res. Desired Res.

Characteristics Characteristics Characteristics Characteristics Characteristics Characteristics

[12 3 0.2] [15 5 0.6] [10 3 0.3] [8 3 0.3] [17 3 0.5] [20 4 0.6]

α Error % Error % Error % Error % Error % Error %

0.99 1.8224 1.7417 1.4248 1.2425 0.6624 1.3919

0.8 0.9651 0.4126 0.8992 0.8319 0.3883 1.0679

0.5 1.6612 0.4243 0.7414 0.4673 1.6585 1.5472

0.3 1.3178 0.9971 0.1820 1.8487 0.1951 1.7093

7. Conclusion

The PSO method is applied to controlled forced damped fractional vi-
brating systems. The generated optimum responses are compared to the cor-
responding desired responses. The comparison is done based on the system
response characteristics. An integer case and bunch of fractional cases are
studied. The open loop responses and the closed loop responses that are
shown in (Fig.4), and (Fig.5), respectively, verify the effectiveness of the in-
troduced techniques; that is because the integer response and the fractional
(at α close to one) response that are shown in the figures are identical. The
optimal-controlled, controlled and uncontrolled responses of the fractional sys-
tems are compared in (Fig.7). The comparison illustrates the effectiveness of
the applied optimizer, and shows the difference between the implementation of
arbitrary controller gains and optimum controller gains. The actual optimum
responses that are shown in (Fig. 7-a) and (Fig. 7-b) yields so slight absolute
errors 0.9088% and 0.6759% compared to the desired responses, respectively.

The optimum responses’ characteristics of fractional systems are ob-
tained for different fractional derivative orders and different desired responses
as shown in Table 2 through Table 5. The Optimal actual responses’ errors
of these systems are demonstrated in Table 6. The yielded errors between the
optimum and desired responses characteristics are less than 2%. Such slight
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errors verify the high performance of the applied optimization method, the
effectiveness of the implemented numerical technique, and the robustness of
the introduced controller.
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