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USING STEREO VISION FOR REAL-TIME HEAD-POSE AND 
GAZE ESTIMATION 

C. CUDALBU, B. ANASTASIU, H. GRECU, V. BUZULOIU∗ 

Sistemele inteligente cu interacţiune umană şi sistemele de securitate bazate 
pe camere video necesită în multe condiţii estimarea poziţiei capului şi a direcţiei 
privirii. Cum mişcarea capului şi a ochilor unei persoane este stâns legată de 
atenţia si intenţiile persoanei, informaţiile date de poziţia capului şi direcţia privirii 
pot fi folosite pentru a construi o interfaţǎ cu subiectul, naturalǎ şi intuitivǎ. În acest 
articol propunem un algoritm robust pentru estimarea poziţiei capului şi a direcţiei 
privirii in timp real, folosind două camere video. Astfel coordonatele 3D ale 
trăsăturilor dominante ale unei feţe, pot fi măsurate folosind principiul triangulaţiei, 
obţinând o acurateţe semnificativ mai bună decât a sistemelor care folosesc o 
singură cameră video pentru estimarea poziţiei şi orientării capului.    

Smart human-computer interfaces and video-based security systems often 
require the estimation of head pose and gaze direction. Since the motion of a 
person's head and eyes are related to her or his intentions and attention, head-pose 
and gaze information can be used to build natural and intuitive interfaces. In this 
paper, we propose a robust algorithm for real-time head-pose and gaze estimation 
that uses two cameras. Such, the 3D coordinates of the features on a face can be 
measured by triangulation, and thus a significantly better accuracy can be obtained 
over vision-based systems that use a single camera for the estimation of the head 
position and orientation.  

Keywords: computer vision, real-time head tracking, real-time gaze tracking, 
human computer interfaces, stereo vision 

Introduction  

A new application domain in computer vision has emerged over the past 
few years dealing with the analysis of images involving humans. This domain 
(sometimes called “Looking at People”) [1] involves, among other issues, head-
pose and gaze estimation. Being able to track the head position and orientation 
together with his or her gaze direction in a three dimensional space has become a 
crucial task for several computer-vision applications. Problems like face 
recognition, facial expression analysis, lip reading, video conferencing etc., are 
more likely to be solved if a stabilized image of the face is generated by a 3D 
tracker. Determining the 3D position and orientation of the head is also 
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fundamental in the development of future vision-driven user interfaces and, more 
generally for head gesture recognition. With the continuously increasing 
computational power of a mid-range workstation, a head pose and gaze estimation 
system can be developed without fear of computational explosion limitations.  

Several systems exist to determine a person’s head position and orientation 
but some use magnetic sensors [2] or mechanical links and those that use stereo 
vision require extensive manual initialization [3]. The approach that we use has 
the advantage over the previously mentioned systems of being fully automatic for 
the determination of head pose and requiring minimal calibration for gaze 
estimation. The system is also non-contact, compact and accurate. 

1. Problem Statement  

The aim of our system is to determine the head pose (Δpitch, Δyaw, Δroll, 
Δx, Δy, Δz) of a human head together with the gaze direction using stereo vision. 
The hypothesis is that the head rotates around the y-axis with maximum 90 
degrees, around x-axis with maximum 45 degrees and around z-axis with 
maximum 45 degrees, and that the head-space volume ranges roughly from 450 
and 900 mm in depth.  

The head is viewed as a rigid body so the false motions indications due to 
speech or facial expressions are only partially compensated for at this moment. In 
the current implementation we use a random sample consensus (RANSAC) [4] 
algorithm to eliminate those features that are non-rigid. This approach works 
properly if most of the features are tracked, such as to have a large base for feature 
selection. 

2. The Algorithm 

The outline of the software configuration of our algorithm is shown in Fig. 
1. For initialization, the system needs to locate the position of the facial features in 
the master camera. These features are later matched in the slave camera to recover 
the initial 3D position. Once they are detected, salient non-semantic facial features 
are selected. Using these features the 3D position and orientation of the head are 
computed. With the circular Hough transform the 2D center of the irises is 
detected. The 3D relative position of the eyeball center respect to the head model 
is detected in a calibration procedure. The gaze vector is computed using the 
center of the iris and eye ball center. 

The algorithm has several modules: 
1. Face and facial  features detection 
2. Salient facial features detection 
3. Tracking both sets of features 
4. 3D reconstruction 
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5. Translation and orientation registration 
6. Iris center detection 
7. Gaze vector estimation 
The semantic-features detection is required to work only for near frontal 

poses. The head pose measured by using the semantic features is the reference 
pose that is updated using non-semantic salient features in the tracking phase. We 
believe that this approach has the advantage over similar approaches [5] that it 
uses the semantic features only in head poses where they are easy to detect. 

Detect the face and the 
semantic facial features

Detect salient features on the face

Track the salient features

Match the features in the slave image

Translation and orientation 
registration

Success

Success

Success

Success

Success

Failure

Failure

Failure

Failure

Failure

6DOF pose estimation

Update the eye ball center
using the estimated head 6DOF

Compute gaze vector

Success

Success

Success

Failure

2DOF gaze  estimation

Detect the center of the iris 
using the circular Hough transforms

Success
 

Fig. 1: Algorithm overview 

3. Face and Facial Features Detection 

The regions of interest for the semantic features are determined by firstly 
determining the face position. Using the face position, we build the regions of 
interest for the eyes, nose and mouth using average face proportions.  

The face is localized in the image by applying the boosted cascade face 
detector introduced by Viola and Jones [6]. This algorithm utilizes a boosting 
method known as AdaBoost [7] to select and combine a set of features, which can 
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discriminate between face and non-face image regions. The detector is run over a 
test image and the image window with the highest face score is deemed to be the 
location of the face in the image. 

Facial-features detectors are built for 8 features: the four inner and outer 
eye corners, the two nostrils and the two mouth corners. For each feature we 
create a training set consisting of roughly 300 positive samples and 1000 negative 
samples. The training set is used to train a boosted cascade detector for each 
individual feature.  

Given the regions computed by the face detector, feature detection 
proceeds by searching within the regions and the best match is taken as the 
location of each feature.  

The semantic-features detection succeeds if it finds at least 2 of the 4 eye 
corners from either eye and at least one mouth corner. The face normal is 
computed as the average of the normal of each of the planes formed by the eye 
corners and the mouth. A 3D shape constraint is used to check the configuration 
of the detected features. Not having the face within our typical predefined range is 
considered a failure and the process is restarted. 

4. Salient Feature Detection 

To increase the robustness of our system, we also compute non-semantic 
salient features. This is necessary because the semantic features may become 
occluded due to head motion. There is one important requirement for the salient 
facial-feature points. There should be sufficient information in the neighborhood 
of the points such that corresponding points can be easily matched in the slave 
image. In our system the Harris corner detector [8] is used to find salient non-
semantic features. Our decision is sustain by the fact that corners are stable across 
image sequences and are useful in image matching for stereo and object tracking 
for motion.  

For each pixel we compute the matrix C: 
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where xI and yI represent the image derivatives and the sums are taken over a 
neighborhood of the pixel in consideration. The matrix C is symmetric, and has 
two nonnegative eigenvalues. C can be expressed as (by a matrix transformation - 
rotation of the coordinate axes): 
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If 021 >≥ λλ , then, there is a corner pattern in the neighborhood, with 
two principal directions. The eigenvectors of C encode the directions, and the 
eigenvalues of C encode the variational strength. 

For each matrix we compute:  
( ) ( )2det CtracekC ⋅−                                              (3) 

where k is a small number (0.04, as suggested by Harris). Typically we take the 
first 30 to 50 pixels which have the value given by the equation above larger than 
a threshold. These pixels represent the salient non-semantic features. The number 
of features (30 to 50) that we have chosen limits the computational complexity, 
allowing a frame rate of approximately 30Hz on a Pentium 4 PC at 3Ghz. 

The results of the semantic-, and non-semantic features detection are 
shown in Fig. 2. The slightly larger white boxes indicate the semantic features. 
The salient non-semantic features are added to our 3D head model with the 
method described.  

                   
Fig. 2: Detection of the face region (large rectangle), the semantic features (larger small 

rectangles) and the salient features (smallest rectangles). 

5. Feature Tracking 

The tracking of all features (semantic and non-semantic) is done using the 
Lucas-Kanade [9] optical flow algorithm. The search-window dimension is 11x11 
for semantic features and 7x7 for salient features. The search window is greater 
for semantic features in order to achieve an increased robustness.  If some of the 
semantic features are lost during tracking the system dynamically increases the 
number of detected and tracked salient features in order to maintain the accuracy 
and robustness of the tracking process. In the case when all the features are lost 
(sudden motion, severe illumination conditions) the system is reset to the 
initialization state. 
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6. 3D Reconstruction 

Despite the wealth of information contained in a single image, the depth of 
a scene point along the correspondence projection ray is not directly accessible in 
a single image.  

With at least two images, however, depth can be measured through 
triangulation. For this we must find matching features in the master and slave 
images. The features in the master image are tracked as described above. These 
features need to be identified in the slave image. The typical approach is to search 
on the epipolar line the features in the slave image by using a correlation 
algorithm. To this principle approach several constraints were added in order to 
reduce the computational complexity: 

1. Search on the epipolar by using a depth constraint 
2. Predict the regions of interest for the features once at least 5 of them 

where matched correctly. 
By only fixating a threshold on the correlation value the validation may 

yield false positive matches. That is why an improved validation method is used. 
We correlate the found feature in the slave image in the master image and if the 
match is the same as the original match the point is considered to be a good match 
and is taken into account when performing the registration [10, 11]. Otherwise the 
point is discarded from the 3D model. The hardware setup of our system is shown 
in Fig. 3. Two FCB-IX470/IX470P Sony cameras are used. The cameras are 
calibrated using the algorithm described in [12].  

 
Fig. 3:  Stereo vision system setup 

7. Translation and Orientation Determination 

Since we obtain only 2D displacements of the features from one frame to 
another we have to compute the 3D rigid transformation that may have caused the 
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displacement. This problem is known as the absolute orientation problem.  For 
this purpose we chose a popular algorithm developed by Arun, Huang and 
Blostein [13, 14] that is based on computing the singular value decomposition 
(SVD) of a derived matrix. 

 
Problem description  
Assume there exists two corresponding sets of points { }im  and { }id , i = 

1…N, such that they are related by  
iii VTRmd ++=                                              (4) 

where R is a standard 3x3 rotation matrix, T is a 3D translation vector and iV  is 
the noise vector. Solving for the optimal transformations R,T that map the set { }im  
onto { }id  typically requires minimizing the least squares error criterion:  
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A solution involving the SVD of a matrix  
By noticing that the point sets should have the same centroid at the correct 

solution, the rotation component is found first by analyzing point sets after their 
translation to the origin. A 3x3 correlation matrix given by 
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is computed based on  these  new  centered  point  sets.  Its singular value 
decomposition TUAVH = , is determined. The optimal rotation matrix is then 

TVUR = . The optimal translation is found as the one that aligns the centroid of 
the set { }id  with the centroid of the optimally rotated set { }im  

mRdT ˆ−=                                                    (7) 

8. Iris center detection 

The 2D iris center position is detected using a fast modified Hough 
transform [15] approach. The search area for iris/pupil is reduced only to the eye 
regions detected with the face and facial features detection module. The detection 
has three main components: 

 edge detector using a compass operator 
 Hough transform module based on circular arcs templates 
 Iris center selection module 
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We use a horizontal Edge Detector that apply a simple convolution with a 
kernel [-1 -1 0 1 1].  

This kernel gives us a plus of information for iris detection: the left edge 
of the iris will have a negative value and the right edge a positive value.     

The edge detector also eliminates those pixels that have values outside an 
interval. This is used as a simple noise filter. 

The edge map is used as input for Hough transform module. For a series of 
circular arc templates, likelihood maps for the center of the iris are created. 

The iris center is chosen using a simple selection algorithm: the likelihood 
maps are normalized with the radius used for each arc template and the maximum 
value is declared the winner for iris center position. 

In Fig. 4 you can see the eye patch with the detected iris center, the edge 
map and the Hough likelihood map. 

 
Fig. 4: Iris center detection: the eye patch with the detected iris center, the edge map and the 

Hough likelihood map 

9. Gaze vector estimation 

Gaze direction is determined based on the following information: head 
pose, 3D irises positions and 3D relative position of the eyeball center respect to 
the head model. The algorithm for gaze estimation consisted of following steps: 

 compute the relative position of the eyeball center respect to the head 
model using a gaze calibration procedure 

 update the position of the eyeball center each time the head pose 
change 

 compute the 3D position of the irises center 
 determine the gaze vector as the line defined by the iris center and 

eyeball center 
In the modeling of the gaze line, the eyeballs are regarded as spheres. The 

center of the eyeball is a rigid point respect to the head model. Knowing the 
relative position of the eyeball center respect to the rigid head model, the 3D 
position of the eye ball center respect to the general reference system can be 
computed from the head pose.  
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The gaze calibration phase consists of determining the eyeball’s center for 
both eyes relative to the head model. The calibration video consists of a series of 
frames where the user keeps looking at a fixed point (the master camera) and 
rotates his head without obstructing the fixed point. The head movements are 
composed by yaw and then by pitch rotations. 

For each frame we have as input the head pose (yaw, pitch, roll, x, y, z) 
and the position of the pupils in 2D. The line determined by the origin and the 
pupil position in 3D also passes through the eyeball center as shown in Fig. 5. O 
represents the fixed point on the camera used for focalization in the calibration 
procedure. P is the center of the eye pupil and C represents the eye ball center. 
During focalization, for both eyes the focalization point, the pupil center and the 
eye ball center are collinear. 

 
Fig. 5: Modeling of gaze direction for calibration procedure 

 
The parametric form of the line equation is: 
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Because the line passes through the origin, the constants a, b and c are the 
same as x0, y0 and z0:  

0xa = , 0yb = and 0zc =                                         (9)  
The equations will be: 
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We have the 2D position of the iris and if we choose an arbitrary value for 
z, by projecting from 2D to 3D we can obtain a 3D position of a point from our 
line, with the coordinates x0, y0 and z0. We note C the eyeball’s centre relative to 
the head model, C = (cX, cY, cZ). 

From the head pose, we have the rotation matrix R and the translation 
matrix T. After applying the rotation and the translation to the point C, we’ll find 
the position of the centre relative to the camera: 
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TRCC +='                                                   (11) 
The equations become: 
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If we consider z0 = 1, the equations become: 
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so the final form of the equations will be: 
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If we consider n frames, we’ll have 2n equations with 3 variables (cx, cy 
and cz). Our linear system of equations will be over-determined. The unknown 
variables can be computed by doing a least squares fit, which minimizes the sum 
of the squares of the deviations of the data from the model. 

We want to find vector x, the solution of the linear set bA =⋅ x , where: 
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The problem reduces in solving a linear least-squares system by singular 
value decomposition method. 

Note that for calibration we use only one camera reducing the 
computational time requested by processing one pair of images.   

After the calibration step the 3D eyeball center is updated each frame with 
the head pose. 

Using the pupil center detection algorithm described in the chapter above, 
we compute the 2D coordinates of the two irises in each master and slave images. 
Using triangulation we determine the 3D positions of the two irises center. 
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The 3D gaze vector is computed as the vector which crosses through the 
eyeball center and iris center. We compute the gaze vector for each eye.     

10. Results 

Some snapshots obtained during our experiments are presented in Fig. 6. 
The small black boxes represent the old non salient features and the white boxes 
represent the most recent detected non salient features. The white circles represent 
the irises position. The white lines with the origin in the center of the irises 
represent the gaze vectors. The white line with the origin on the nose represents 
the head orientation vector. 

 
Fig. 6: Results of head orientation and position estimation as well as gaze vector estimation. 

Conclusion 

In this paper a real-time implementation of a system for head-pose and 
gaze estimation was presented. The hardware consists of two cameras and a 
standard PC. Although we here presented an early implementation, we are 
confident that our system delivers state of the art head-pose and gaze accuracy 
whilst requiring very limited human interaction and being non-contact and passive 
(but for an optional infrared illumination in the dark).  The qualitative accuracy 
and robustness of the tracking are in the process of being evaluated 
systematically. We also plan to automate the gaze calibration procedure using 
knowledge about the environment.   
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