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USING STEREO VISION FOR REAL-TIME HEAD-POSE AND
GAZE ESTIMATION

C. CUDALBU, B. ANASTASIU, H. GRECU, V. BUZULOIU"

Sistemele inteligente cu interactiune umand §i sistemele de securitate bazate
pe camere video necesita in multe conditii estimarea porzitiei capului si a directiei
privirii. Cum miscarea capului si a ochilor unei persoane este stans legata de
atentia si intentiile persoanei, informatiile date de pozitia capului si directia privirii
pot fi folosite pentru a construi o interfatd cu subiectul, naturald §i intuitivd. In acest
articol propunem un algoritm robust pentru estimarea pozitiei capului si a directiei
privirii in timp real, folosind doud camere video. Astfel coordonatele 3D ale
trasaturilor dominante ale unei fete, pot fi masurate folosind principiul triangulatiei,
obtindnd o acuratete semnificativ mai bund decdt a sistemelor care folosesc o
singurd camerd video pentru estimarea pozitiei §i orientarii capului.

Smart human-computer interfaces and video-based security systems often
require the estimation of head pose and gaze direction. Since the motion of a
person's head and eyes are related to her or his intentions and attention, head-pose
and gaze information can be used to build natural and intuitive interfaces. In this
paper, we propose a robust algorithm for real-time head-pose and gaze estimation
that uses two cameras. Such, the 3D coordinates of the features on a face can be
measured by triangulation, and thus a significantly better accuracy can be obtained
over vision-based systems that use a single camera for the estimation of the head
position and orientation.

Keywords: computer vision, real-time head tracking, real-time gaze tracking,
human computer interfaces, stereo vision

Introduction

A new application domain in computer vision has emerged over the past
few years dealing with the analysis of images involving humans. This domain
(sometimes called “Looking at People”) [1] involves, among other issues, head-
pose and gaze estimation. Being able to track the head position and orientation
together with his or her gaze direction in a three dimensional space has become a
crucial task for several computer-vision applications. Problems like face
recognition, facial expression analysis, lip reading, video conferencing etc., are
more likely to be solved if a stabilized image of the face is generated by a 3D
tracker. Determining the 3D position and orientation of the head is also
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fundamental in the development of future vision-driven user interfaces and, more
generally for head gesture recognition. With the continuously increasing
computational power of a mid-range workstation, a head pose and gaze estimation
system can be developed without fear of computational explosion limitations.

Several systems exist to determine a person’s head position and orientation
but some use magnetic sensors [2] or mechanical links and those that use stereo
vision require extensive manual initialization [3]. The approach that we use has
the advantage over the previously mentioned systems of being fully automatic for
the determination of head pose and requiring minimal calibration for gaze
estimation. The system is also non-contact, compact and accurate.

1. Problem Statement

The aim of our system is to determine the head pose (Apitch, Ayaw, Aroll,
AX, Ay, Az) of a human head together with the gaze direction using stereo vision.
The hypothesis is that the head rotates around the y-axis with maximum 90
degrees, around x-axis with maximum 45 degrees and around z-axis with
maximum 45 degrees, and that the head-space volume ranges roughly from 450
and 900 mm in depth.

The head is viewed as a rigid body so the false motions indications due to
speech or facial expressions are only partially compensated for at this moment. In
the current implementation we use a random sample consensus (RANSAC) [4]
algorithm to eliminate those features that are non-rigid. This approach works
properly if most of the features are tracked, such as to have a large base for feature
selection.

2. The Algorithm

The outline of the software configuration of our algorithm is shown in Fig.
1. For initialization, the system needs to locate the position of the facial features in
the master camera. These features are later matched in the slave camera to recover
the initial 3D position. Once they are detected, salient non-semantic facial features
are selected. Using these features the 3D position and orientation of the head are
computed. With the circular Hough transform the 2D center of the irises is
detected. The 3D relative position of the eyeball center respect to the head model
is detected in a calibration procedure. The gaze vector is computed using the
center of the iris and eye ball center.

The algorithm has several modules:

1. Face and facial features detection

2. Salient facial features detection

3. Tracking both sets of features

4. 3D reconstruction
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5. Translation and orientation registration

6.

Iris center detection

7. Gaze vector estimation
The semantic-features detection is required to work only for near frontal
poses. The head pose measured by using the semantic features is the reference
pose that is updated using non-semantic salient features in the tracking phase. We
believe that this approach has the advantage over similar approaches [5] that it
uses the semantic features only in head poses where they are easy to detect.
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Fig. 1: Algorithm overview

3. Face and Facial Features Detection

The regions of interest for the semantic features are determined by firstly
determining the face position. Using the face position, we build the regions of

interest for the eyes, nose and mouth using average face proportions.

The face is localized in the image by applying the boosted cascade face
detector introduced by Viola and Jones [6]. This algorithm utilizes a boosting
method known as AdaBoost [7] to select and combine a set of features, which can
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discriminate between face and non-face image regions. The detector is run over a
test image and the image window with the highest face score is deemed to be the
location of the face in the image.

Facial-features detectors are built for 8 features: the four inner and outer
eye corners, the two nostrils and the two mouth corners. For each feature we
create a training set consisting of roughly 300 positive samples and 1000 negative
samples. The training set is used to train a boosted cascade detector for each
individual feature.

Given the regions computed by the face detector, feature detection
proceeds by searching within the regions and the best match is taken as the
location of each feature.

The semantic-features detection succeeds if it finds at least 2 of the 4 eye
corners from either eye and at least one mouth corner. The face normal is
computed as the average of the normal of each of the planes formed by the eye
corners and the mouth. A 3D shape constraint is used to check the configuration
of the detected features. Not having the face within our typical predefined range is
considered a failure and the process is restarted.

4. Salient Feature Detection

To increase the robustness of our system, we also compute non-semantic
salient features. This is necessary because the semantic features may become
occluded due to head motion. There is one important requirement for the salient
facial-feature points. There should be sufficient information in the neighborhood
of the points such that corresponding points can be easily matched in the slave
image. In our system the Harris corner detector [8] is used to find salient non-
semantic features. Our decision is sustain by the fact that corners are stable across
image sequences and are useful in image matching for stereo and object tracking
for motion.

For each pixel we compute the matrix C:

2

1 1.1

c:[zx szy} (1)
2Idy 2

where 7 and 7 represent the image derivatives and the sums are taken over a

neighborhood of the pixel in consideration. The matrix C is symmetric, and has
two nonnegative eigenvalues. C can be expressed as (by a matrix transformation -
rotation of the coordinate axes):

o_[a 0 2
0 A
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If 4, >4, >0, then, there is a corner pattern in the neighborhood, with

two principal directions. The eigenvectors of C encode the directions, and the
eigenvalues of C encode the variational strength.

For each matrix we compute:

det(C) -k - trace(C )2 3
where £ is a small number (0.04, as suggested by Harris). Typically we take the
first 30 to 50 pixels which have the value given by the equation above larger than
a threshold. These pixels represent the salient non-semantic features. The number
of features (30 to 50) that we have chosen limits the computational complexity,
allowing a frame rate of approximately 30Hz on a Pentium 4 PC at 3Ghz.

The results of the semantic-, and non-semantic features detection are
shown in Fig. 2. The slightly larger white boxes indicate the semantic features.
The salient non-semantic features are added to our 3D head model with the
method described.

Fig. 2: Detection of the face region (large rectangle), the semantic features (larger small
rectangles) and the salient features (smallest rectangles).

5. Feature Tracking

The tracking of all features (semantic and non-semantic) is done using the
Lucas-Kanade [9] optical flow algorithm. The search-window dimension is 11x11
for semantic features and 7x7 for salient features. The search window is greater
for semantic features in order to achieve an increased robustness. If some of the
semantic features are lost during tracking the system dynamically increases the
number of detected and tracked salient features in order to maintain the accuracy
and robustness of the tracking process. In the case when all the features are lost
(sudden motion, severe illumination conditions) the system is reset to the
initialization state.
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6. 3D Reconstruction

Despite the wealth of information contained in a single image, the depth of
a scene point along the correspondence projection ray is not directly accessible in
a single image.

With at least two images, however, depth can be measured through
triangulation. For this we must find matching features in the master and slave
images. The features in the master image are tracked as described above. These
features need to be identified in the slave image. The typical approach is to search
on the epipolar line the features in the slave image by using a correlation
algorithm. To this principle approach several constraints were added in order to
reduce the computational complexity:

1. Search on the epipolar by using a depth constraint

2. Predict the regions of interest for the features once at least 5 of them

where matched correctly.

By only fixating a threshold on the correlation value the validation may
yield false positive matches. That is why an improved validation method is used.
We correlate the found feature in the slave image in the master image and if the
match is the same as the original match the point is considered to be a good match
and is taken into account when performing the registration [10, 11]. Otherwise the
point is discarded from the 3D model. The hardware setup of our system is shown
in Fig. 3. Two FCB-1X470/1X470P Sony cameras are used. The cameras are
calibrated using the algorithm described in [12].

i 1

Fig. 3: Stereo vision system setup
7. Translation and Orientation Determination

Since we obtain only 2D displacements of the features from one frame to
another we have to compute the 3D rigid transformation that may have caused the
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displacement. This problem is known as the absolute orientation problem. For
this purpose we chose a popular algorithm developed by Arun, Huang and
Blostein [13, 14] that is based on computing the singular value decomposition
(SVD) of a derived matrix.

Problem description
Assume there exists two corresponding sets of points {m,;} and {d;}, i =

1...N, such that they are related by

d; = Rm; +T+V; (4)
where R is a standard 3x3 rotation matrix, 7 is a 3D translation vector and V; is
the noise vector. Solving for the optimal transformations R, 7" that map the set {m,}
onto {d; } typically requires minimizing the least squares error criterion:

N
2=y

i=1

di—ﬁmi—fw (5)

A solution involving the SVD of a matrix

By noticing that the point sets should have the same centroid at the correct
solution, the rotation component is found first by analyzing point sets after their
translation to the origin. A 3x3 correlation matrix given by

N
H = ch,idc,iT (6)
i=1

is computed based on these new centered point sets. Its singular value
decomposition H=UAVT, is determined. The optimal rotation matrix is then

R=vUT. The optimal translation is found as the one that aligns the centroid of
the set {d; } with the centroid of the optimally rotated set {m, }

T=d-Rm )
8. Iris center detection

The 2D iris center position is detected using a fast modified Hough
transform [15] approach. The search area for iris/pupil is reduced only to the eye
regions detected with the face and facial features detection module. The detection
has three main components:

= edge detector using a compass operator

= Hough transform module based on circular arcs templates

= Iris center selection module
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We use a horizontal Edge Detector that apply a simple convolution with a
kernel [-1-101 1].

This kernel gives us a plus of information for iris detection: the left edge
of the iris will have a negative value and the right edge a positive value.

The edge detector also eliminates those pixels that have values outside an
interval. This is used as a simple noise filter.

The edge map is used as input for Hough transform module. For a series of
circular arc templates, likelihood maps for the center of the iris are created.

The iris center is chosen using a simple selection algorithm: the likelihood
maps are normalized with the radius used for each arc template and the maximum
value is declared the winner for iris center position.

In Fig. 4 you can see the eye patch with the detected iris center, the edge
map and the Hough I|keI|hood map.

--

Fig. 4: Iris center detection: the eye patch with the detected iris center, the edge map and the
Hough likelihood map

9. Gaze vector estimation

Gaze direction is determined based on the following information: head
pose, 3D irises positions and 3D relative position of the eyeball center respect to
the head model. The algorithm for gaze estimation consisted of following steps:

= compute the relative position of the eyeball center respect to the head

model using a gaze calibration procedure

= update the position of the eyeball center each time the head pose

change

= compute the 3D position of the irises center

= determine the gaze vector as the line defined by the iris center and

eyeball center

In the modeling of the gaze line, the eyeballs are regarded as spheres. The
center of the eyeball is a rigid point respect to the head model. Knowing the
relative position of the eyeball center respect to the rigid head model, the 3D
position of the eye ball center respect to the general reference system can be
computed from the head pose.
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The gaze calibration phase consists of determining the eyeball’s center for
both eyes relative to the head model. The calibration video consists of a series of
frames where the user keeps looking at a fixed point (the master camera) and
rotates his head without obstructing the fixed point. The head movements are
composed by yaw and then by pitch rotations.

For each frame we have as input the head pose (yaw, pitch, roll, X, y, 2)
and the position of the pupils in 2D. The line determined by the origin and the
pupil position in 3D also passes through the eyeball center as shown in Fig. 5. O
represents the fixed point on the camera used for focalization in the calibration
procedure. P is the center of the eye pupil and C represents the eye ball center.
During focalization, for both eyes the focalization point, the pupil center and the
eye ball center are collinear.

-]

Fig. 5: Modeling of gaze direction for calibration procedure

The parametric form of the line equation is:
X—XO:y—yOZZ—ZO (8)
a b c
Because the line passes through the origin, the constants @, b and c are the
same as xy, yp and zy:

a=xg,b=ygandc =z 9)
The equations will be:
X=X _Y=Vo _Z72%0 (10)
Xo Yo Zy

We have the 2D position of the iris and if we choose an arbitrary value for
z, by projecting from 2D to 3D we can obtain a 3D position of a point from our
line, with the coordinates xy, yy and z,. We note C the eyeball’s centre relative to
the head model, C = (cx, ¢y, ¢z).

From the head pose, we have the rotation matrix R and the translation
matrix 7. After applying the rotation and the translation to the point C, we’ll find
the position of the centre relative to the camera:
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C'=RC+T (11)
The equations become:

Cx _x() _c}’ _yo — cz _ZO

= (12)
X9 Yo Zg
If we consider z, = 1, the equations become:
c' C' .
oo (13)
Xo Yo
But
C.=C, Ty +C, Ty +C. Ty +1
c,=cC Tyt+cC, Ky te T, t+t (14)
c'z =C, " Fy +cy Ve, 1y, i,
so the final form of the equations will be:
(30 7 = To) €y + (g 7y _r01)'cy +(xg 1y —Tp) €. =ty — X 1y (15)
(Vo T —1g) e + (Vo 7y _”11)"/} + (Vo1 — 1) .=t =yt

If we consider n frames, we’ll have 2n equations with 3 variables (c,, ¢,
and c¢.). Our linear system of equations will be over-determined. The unknown
variables can be computed by doing a least squares fit, which minimizes the sum
of the squares of the deviations of the data from the model.

We want to find vector x, the solution of the linear set A - x = b, where:

Xo T —Too Yo 721 —Tow Yo 722 = T2 Iy =X, 1,
c Yot —Tho VoTar—Nh1 Yo ¥ T L=Vt
X
x=|c, |;4= b= (16)
cZ

The problem reduces in solving a linear least-squares system by singular
value decomposition method.

Note that for calibration we use only one camera reducing the
computational time requested by processing one pair of images.

After the calibration step the 3D eyeball center is updated each frame with
the head pose.

Using the pupil center detection algorithm described in the chapter above,
we compute the 2D coordinates of the two irises in each master and slave images.
Using triangulation we determine the 3D positions of the two irises center.
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The 3D gaze vector is computed as the vector which crosses through the
eyeball center and iris center. We compute the gaze vector for each eye.

10. Results

Some snapshots obtained during our experiments are presented in Fig. 6.
The small black boxes represent the old non salient features and the white boxes
represent the most recent detected non salient features. The white circles represent
the irises position. The white lines with the origin in the center of the irises
represent the gaze vectors. The white line with the origin on the nose represents
the head orientation vector.

Fig. 6: Results of head orientation and position estimation as well as gaze vector estimation.

Conclusion

In this paper a real-time implementation of a system for head-pose and
gaze estimation was presented. The hardware consists of two cameras and a
standard PC. Although we here presented an early implementation, we are
confident that our system delivers state of the art head-pose and gaze accuracy
whilst requiring very limited human interaction and being non-contact and passive
(but for an optional infrared illumination in the dark). The qualitative accuracy
and robustness of the tracking are in the process of being evaluated
systematically. We also plan to automate the gaze calibration procedure using
knowledge about the environment.



26 C. Cudalbu, B. Anastasiu, H. Grecu, V. Buzuloiu
REFERENCES

1. A. Petland, “Looking at People: Sensing for Ubiquitous and Wearable Computing”, IEEE
Transactions On Pattern Analysis And Machine Intelligence, Vol. 22, No. 1, January
2000

2. http://www.polhemus.com/

3. http://www.smarteye.se/

4. M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography”, Comm. of the ACM,
Vol. 24, pp. 381-395, 1981

5. Yoshio Matsumoto and Alexander Zelinsky, “An Algorithm for Real-time Stereo Vision
Implementation of Head Pose and Gaze Direction Measurement”, IEEE Fourth
International Conference on Face and Gesture Recognition (FG'2000), pp. 499-505,
Grenoble, France, March 28-30, 2000

6. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features”,
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001

7. Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and an
application to boosting”, 2nd European Conference on Computational Learning Theory,
1995

8. C. Harris and M. Stephens, “A combined corner and edge detector”, Fourth Alvey Vision
Conference, pp.147-151, 1988

9. S Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework”, tech. report
CMU-RI-TR-02-16, Robotics Institute, Carnegie Mellon University, July 2002

10. O. Faugerard, “Three-Dimensional Computer Vision”, The MIT Press, 1993

11. O. Faugeras, B. Hotz and L. Moll, “Real-time correlation based stereo algorithm,
implementations and applications”, INRIA Reseach Report 2013, August 1993

12. Z. Zhang, “A Flexible New Technique for Camera Calibration”, Technical Report MSR-TR-
98-71, December 1998

13. K. S. Arun, T. S. Huang and S. D. Blostein, “Least-Squares Fitting of Two 3D Point Sets”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, pp. 698-700,
1987

14. A. Lorusso, D.W. Eggert and R.B. Fisher, “A Comparison of Four Algorithms for Estimating
3-D Rigid Transformations”, British Machine Vision Conference, 1995 British
conference on Machine vision, Vol. 1, pp.237-246, Birmingham, United Kingdom, July
1995

15. P.V.C. Hough, “Machine Analysis of Bubble Chamber Pictures”, International Conference on

High Energy Accelerators and Instrumentation, CERN, 1959



