

USING STEREO VISION FOR REAL-TIME HEAD-POSE AND GAZE ESTIMATION

C. CUDALBU, B. ANASTASIU, H. GRECU, V. BUZULOIU*

Sistemele inteligente cu interacțiune umană și sistemele de securitate bazate pe camere video necesită în multe condiții estimarea poziției capului și a direcției privirii. Cum mișcarea capului și a ochilor unei persoane este stâns legată de atenția și intențiile persoanei, informațiile date de poziția capului și direcția privirii pot fi folosite pentru a construi o interfață cu subiectul, naturală și intuitivă. În acest articol propunem un algoritm robust pentru estimarea poziției capului și a direcției privirii în timp real, folosind două camere video. Astfel coordonatele 3D ale trăsăturilor dominante ale unei fețe, pot fi măsurate folosind principiul triangulației, obținând o acuratețe semnificativ mai bună decât a sistemelor care folosesc o singură cameră video pentru estimarea poziției și orientării capului.

Smart human-computer interfaces and video-based security systems often require the estimation of head pose and gaze direction. Since the motion of a person's head and eyes are related to her or his intentions and attention, head-pose and gaze information can be used to build natural and intuitive interfaces. In this paper, we propose a robust algorithm for real-time head-pose and gaze estimation that uses two cameras. Such, the 3D coordinates of the features on a face can be measured by triangulation, and thus a significantly better accuracy can be obtained over vision-based systems that use a single camera for the estimation of the head position and orientation.

Keywords: computer vision, real-time head tracking, real-time gaze tracking, human computer interfaces, stereo vision

Introduction

A new application domain in computer vision has emerged over the past few years dealing with the analysis of images involving humans. This domain (sometimes called “Looking at People”) [1] involves, among other issues, head-pose and gaze estimation. Being able to track the head position and orientation together with his or her gaze direction in a three dimensional space has become a crucial task for several computer-vision applications. Problems like face recognition, facial expression analysis, lip reading, video conferencing etc., are more likely to be solved if a stabilized image of the face is generated by a 3D tracker. Determining the 3D position and orientation of the head is also

* Eng., Eng., Eng., Prof., LAPI, University POLITEHNICA of Bucharest, Romania

fundamental in the development of future vision-driven user interfaces and, more generally for head gesture recognition. With the continuously increasing computational power of a mid-range workstation, a head pose and gaze estimation system can be developed without fear of computational explosion limitations.

Several systems exist to determine a person's head position and orientation but some use magnetic sensors [2] or mechanical links and those that use stereo vision require extensive manual initialization [3]. The approach that we use has the advantage over the previously mentioned systems of being fully automatic for the determination of head pose and requiring minimal calibration for gaze estimation. The system is also non-contact, compact and accurate.

1. Problem Statement

The aim of our system is to determine the head pose (Δ pitch, Δ yaw, Δ roll, Δ x, Δ y, Δ z) of a human head together with the gaze direction using stereo vision. The hypothesis is that the head rotates around the y-axis with maximum 90 degrees, around x-axis with maximum 45 degrees and around z-axis with maximum 45 degrees, and that the head-space volume ranges roughly from 450 and 900 mm in depth.

The head is viewed as a rigid body so the false motions indications due to speech or facial expressions are only partially compensated for at this moment. In the current implementation we use a random sample consensus (RANSAC) [4] algorithm to eliminate those features that are non-rigid. This approach works properly if most of the features are tracked, such as to have a large base for feature selection.

2. The Algorithm

The outline of the software configuration of our algorithm is shown in Fig. 1. For initialization, the system needs to locate the position of the facial features in the master camera. These features are later matched in the slave camera to recover the initial 3D position. Once they are detected, salient non-semantic facial features are selected. Using these features the 3D position and orientation of the head are computed. With the circular Hough transform the 2D center of the irises is detected. The 3D relative position of the eyeball center respect to the head model is detected in a calibration procedure. The gaze vector is computed using the center of the iris and eye ball center.

The algorithm has several modules:

1. Face and facial features detection
2. Salient facial features detection
3. Tracking both sets of features
4. 3D reconstruction

5. Translation and orientation registration
6. Iris center detection
7. Gaze vector estimation

The semantic-features detection is required to work only for near frontal poses. The head pose measured by using the semantic features is the reference pose that is updated using non-semantic salient features in the tracking phase. We believe that this approach has the advantage over similar approaches [5] that it uses the semantic features only in head poses where they are easy to detect.

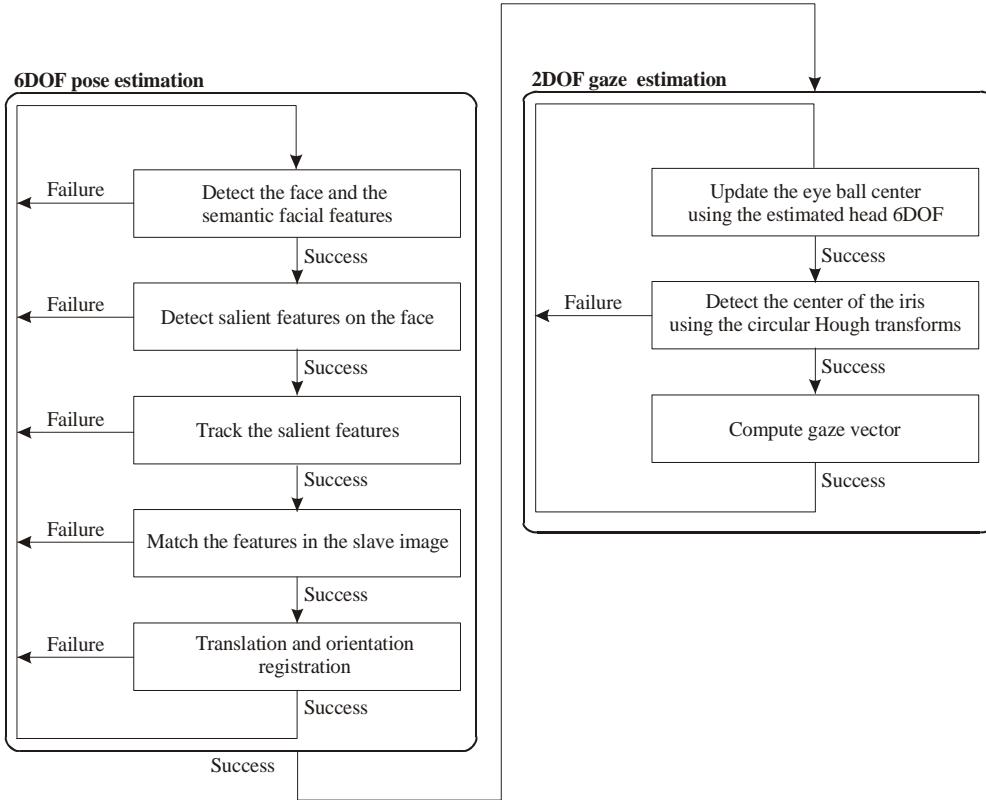


Fig. 1: Algorithm overview

3. Face and Facial Features Detection

The regions of interest for the semantic features are determined by firstly determining the face position. Using the face position, we build the regions of interest for the eyes, nose and mouth using average face proportions.

The face is localized in the image by applying the boosted cascade face detector introduced by Viola and Jones [6]. This algorithm utilizes a boosting method known as AdaBoost [7] to select and combine a set of features, which can

discriminate between face and non-face image regions. The detector is run over a test image and the image window with the highest face score is deemed to be the location of the face in the image.

Facial-features detectors are built for 8 features: the four inner and outer eye corners, the two nostrils and the two mouth corners. For each feature we create a training set consisting of roughly 300 positive samples and 1000 negative samples. The training set is used to train a boosted cascade detector for each individual feature.

Given the regions computed by the face detector, feature detection proceeds by searching within the regions and the best match is taken as the location of each feature.

The semantic-features detection succeeds if it finds at least 2 of the 4 eye corners from either eye and at least one mouth corner. The face normal is computed as the average of the normal of each of the planes formed by the eye corners and the mouth. A 3D shape constraint is used to check the configuration of the detected features. Not having the face within our typical predefined range is considered a failure and the process is restarted.

4. Salient Feature Detection

To increase the robustness of our system, we also compute non-semantic salient features. This is necessary because the semantic features may become occluded due to head motion. There is one important requirement for the salient facial-feature points. There should be sufficient information in the neighborhood of the points such that corresponding points can be easily matched in the slave image. In our system the Harris corner detector [8] is used to find salient non-semantic features. Our decision is sustain by the fact that corners are stable across image sequences and are useful in image matching for stereo and object tracking for motion.

For each pixel we compute the matrix C :

$$C = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} \quad (1)$$

where I_x and I_y represent the image derivatives and the sums are taken over a neighborhood of the pixel in consideration. The matrix C is symmetric, and has two nonnegative eigenvalues. C can be expressed as (by a matrix transformation - rotation of the coordinate axes):

$$C = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \quad (2)$$

If $\lambda_1 \geq \lambda_2 > 0$, then, there is a corner pattern in the neighborhood, with two principal directions. The eigenvectors of C encode the directions, and the eigenvalues of C encode the variational strength.

For each matrix we compute:

$$\det(C) - k \cdot \text{trace}(C)^2 \quad (3)$$

where k is a small number (0.04, as suggested by Harris). Typically we take the first 30 to 50 pixels which have the value given by the equation above larger than a threshold. These pixels represent the salient non-semantic features. The number of features (30 to 50) that we have chosen limits the computational complexity, allowing a frame rate of approximately 30Hz on a Pentium 4 PC at 3Ghz.

The results of the semantic-, and non-semantic features detection are shown in Fig. 2. The slightly larger white boxes indicate the semantic features. The salient non-semantic features are added to our 3D head model with the method described.

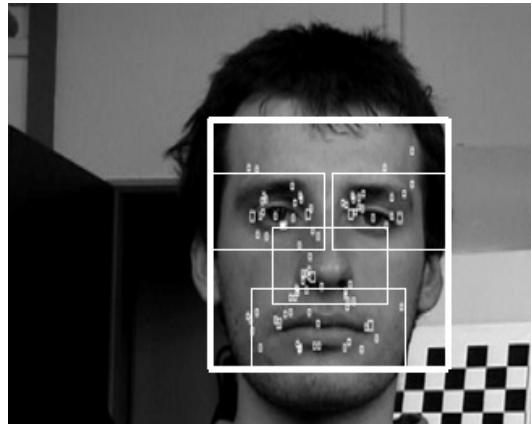


Fig. 2: Detection of the face region (large rectangle), the semantic features (larger small rectangles) and the salient features (smallest rectangles).

5. Feature Tracking

The tracking of all features (semantic and non-semantic) is done using the Lucas-Kanade [9] optical flow algorithm. The search-window dimension is 11x11 for semantic features and 7x7 for salient features. The search window is greater for semantic features in order to achieve an increased robustness. If some of the semantic features are lost during tracking the system dynamically increases the number of detected and tracked salient features in order to maintain the accuracy and robustness of the tracking process. In the case when all the features are lost (sudden motion, severe illumination conditions) the system is reset to the initialization state.

6. 3D Reconstruction

Despite the wealth of information contained in a single image, the depth of a scene point along the correspondence projection ray is not directly accessible in a single image.

With at least two images, however, depth can be measured through triangulation. For this we must find matching features in the master and slave images. The features in the master image are tracked as described above. These features need to be identified in the slave image. The typical approach is to search on the epipolar line the features in the slave image by using a correlation algorithm. To this principle approach several constraints were added in order to reduce the computational complexity:

1. Search on the epipolar by using a depth constraint
2. Predict the regions of interest for the features once at least 5 of them where matched correctly.

By only fixating a threshold on the correlation value the validation may yield false positive matches. That is why an improved validation method is used. We correlate the found feature in the slave image in the master image and if the match is the same as the original match the point is considered to be a good match and is taken into account when performing the registration [10, 11]. Otherwise the point is discarded from the 3D model. The hardware setup of our system is shown in Fig. 3. Two FCB-IX470/IX470P Sony cameras are used. The cameras are calibrated using the algorithm described in [12].

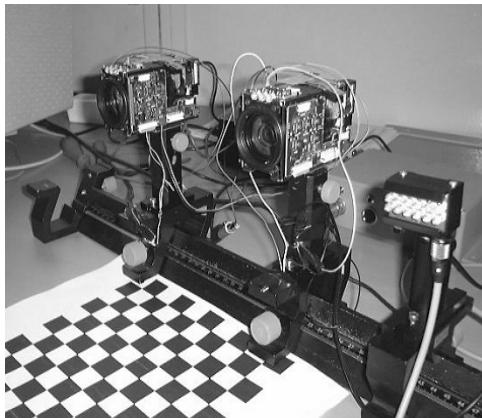


Fig. 3: Stereo vision system setup

7. Translation and Orientation Determination

Since we obtain only 2D displacements of the features from one frame to another we have to compute the 3D rigid transformation that may have caused the

displacement. This problem is known as the absolute orientation problem. For this purpose we chose a popular algorithm developed by Arun, Huang and Blostein [13, 14] that is based on computing the singular value decomposition (SVD) of a derived matrix.

Problem description

Assume there exists two corresponding sets of points $\{m_i\}$ and $\{d_i\}$, $i = 1 \dots N$, such that they are related by

$$d_i = Rm_i + T + V_i \quad (4)$$

where R is a standard 3×3 rotation matrix, T is a 3D translation vector and V_i is the noise vector. Solving for the optimal transformations R, T that map the set $\{m_i\}$ onto $\{d_i\}$ typically requires minimizing the least squares error criterion:

$$\Sigma^2 = \sum_{i=1}^N \|d_i - \hat{R}m_i - \hat{T}\|^2 \quad (5)$$

A solution involving the SVD of a matrix

By noticing that the point sets should have the same centroid at the correct solution, the rotation component is found first by analyzing point sets after their translation to the origin. A 3×3 correlation matrix given by

$$H = \sum_{i=1}^N m_{c,i} d_{c,i}^T \quad (6)$$

is computed based on these new centered point sets. Its singular value decomposition $H = U A V^T$, is determined. The optimal rotation matrix is then $R = V U^T$. The optimal translation is found as the one that aligns the centroid of the set $\{d_i\}$ with the centroid of the optimally rotated set $\{m_i\}$

$$T = \bar{d} - \hat{R}\bar{m} \quad (7)$$

8. Iris center detection

The 2D iris center position is detected using a fast modified Hough transform [15] approach. The search area for iris/pupil is reduced only to the eye regions detected with the face and facial features detection module. The detection has three main components:

- edge detector using a compass operator
- Hough transform module based on circular arcs templates
- Iris center selection module

We use a horizontal Edge Detector that apply a simple convolution with a kernel $[-1 \ -1 \ 0 \ 1 \ 1]$.

This kernel gives us a plus of information for iris detection: the left edge of the iris will have a negative value and the right edge a positive value.

The edge detector also eliminates those pixels that have values outside an interval. This is used as a simple noise filter.

The edge map is used as input for Hough transform module. For a series of circular arc templates, likelihood maps for the center of the iris are created.

The iris center is chosen using a simple selection algorithm: the likelihood maps are normalized with the radius used for each arc template and the maximum value is declared the winner for iris center position.

In Fig. 4 you can see the eye patch with the detected iris center, the edge map and the Hough likelihood map.

Fig. 4: Iris center detection: the eye patch with the detected iris center, the edge map and the Hough likelihood map

9. Gaze vector estimation

Gaze direction is determined based on the following information: head pose, 3D irises positions and 3D relative position of the eyeball center respect to the head model. The algorithm for gaze estimation consisted of following steps:

- compute the relative position of the eyeball center respect to the head model using a gaze calibration procedure
- update the position of the eyeball center each time the head pose change
- compute the 3D position of the irises center
- determine the gaze vector as the line defined by the iris center and eyeball center

In the modeling of the gaze line, the eyeballs are regarded as spheres. The center of the eyeball is a rigid point respect to the head model. Knowing the relative position of the eyeball center respect to the rigid head model, the 3D position of the eye ball center respect to the general reference system can be computed from the head pose.

The gaze calibration phase consists of determining the eyeball's center for both eyes relative to the head model. The calibration video consists of a series of frames where the user keeps looking at a fixed point (the master camera) and rotates his head without obstructing the fixed point. The head movements are composed by yaw and then by pitch rotations.

For each frame we have as input the head pose (yaw, pitch, roll, x, y, z) and the position of the pupils in 2D. The line determined by the origin and the pupil position in 3D also passes through the eyeball center as shown in Fig. 5. O represents the fixed point on the camera used for focalization in the calibration procedure. P is the center of the eye pupil and C represents the eye ball center. During focalization, for both eyes the focalization point, the pupil center and the eye ball center are collinear.

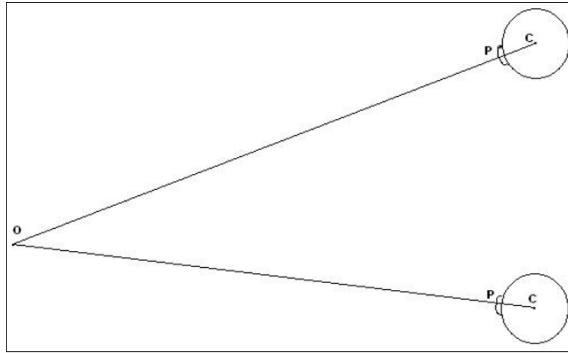


Fig. 5: Modeling of gaze direction for calibration procedure

The parametric form of the line equation is:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \quad (8)$$

Because the line passes through the origin, the constants a , b and c are the same as x_0 , y_0 and z_0 :

$$a = x_0, b = y_0 \text{ and } c = z_0 \quad (9)$$

The equations will be:

$$\frac{x - x_0}{x_0} = \frac{y - y_0}{y_0} = \frac{z - z_0}{z_0} \quad (10)$$

We have the 2D position of the iris and if we choose an arbitrary value for z , by projecting from 2D to 3D we can obtain a 3D position of a point from our line, with the coordinates x_0 , y_0 and z_0 . We note C the eyeball's centre relative to the head model, $C = (c_x, c_y, c_z)$.

From the head pose, we have the rotation matrix R and the translation matrix T . After applying the rotation and the translation to the point C , we'll find the position of the centre relative to the camera:

$$C' = RC + T \quad (11)$$

The equations become:

$$\frac{\dot{c}_x - x_0}{x_0} = \frac{\dot{c}_y - y_0}{y_0} = \frac{\dot{c}_z - z_0}{z_0} \quad (12)$$

If we consider $z_0 = 1$, the equations become:

$$\frac{\dot{c}_x}{x_0} = \frac{\dot{c}_y}{y_0} = \dot{c}_z \quad (13)$$

But

$$\begin{cases} \dot{c}_x = c_x \cdot r_{00} + c_y \cdot r_{01} + c_z \cdot r_{02} + t_0 \\ \dot{c}_y = c_x \cdot r_{10} + c_y \cdot r_{11} + c_z \cdot r_{12} + t_1 \\ \dot{c}_z = c_x \cdot r_{20} + c_y \cdot r_{21} + c_z \cdot r_{22} + t_2 \end{cases} \quad (14)$$

so the final form of the equations will be:

$$\begin{cases} (x_0 \cdot r_{20} - r_{00}) \cdot c_x + (x_0 \cdot r_{21} - r_{01}) \cdot c_y + (x_0 \cdot r_{22} - r_{02}) \cdot c_z = t_0 - x_0 \cdot t_2 \\ (y_0 \cdot r_{20} - r_{10}) \cdot c_x + (y_0 \cdot r_{21} - r_{11}) \cdot c_y + (y_0 \cdot r_{22} - r_{12}) \cdot c_z = t_1 - y_0 \cdot t_2 \end{cases} \quad (15)$$

If we consider n frames, we'll have $2n$ equations with 3 variables (c_x , c_y and c_z). Our linear system of equations will be over-determined. The unknown variables can be computed by doing a least squares fit, which minimizes the sum of the squares of the deviations of the data from the model.

We want to find vector x , the solution of the linear set $\mathbf{A} \cdot x = \mathbf{b}$, where:

$$x = \begin{pmatrix} c_x \\ c_y \\ c_z \end{pmatrix}; A = \begin{pmatrix} x_0 \cdot r_{20} - r_{00} & x_0 \cdot r_{21} - r_{01} & x_0 \cdot r_{22} - r_{02} \\ y_0 \cdot r_{20} - r_{10} & y_0 \cdot r_{21} - r_{11} & y_0 \cdot r_{22} - r_{12} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix}; b = \begin{pmatrix} t_0 - x_0 \cdot t_2 \\ t_1 - y_0 \cdot t_2 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} \quad (16)$$

The problem reduces in solving a linear least-squares system by singular value decomposition method.

Note that for calibration we use only one camera reducing the computational time requested by processing one pair of images.

After the calibration step the 3D eyeball center is updated each frame with the head pose.

Using the pupil center detection algorithm described in the chapter above, we compute the 2D coordinates of the two irises in each master and slave images. Using triangulation we determine the 3D positions of the two irises center.

The 3D gaze vector is computed as the vector which crosses through the eyeball center and iris center. We compute the gaze vector for each eye.

10. Results

Some snapshots obtained during our experiments are presented in Fig. 6. The small black boxes represent the old non salient features and the white boxes represent the most recent detected non salient features. The white circles represent the irises position. The white lines with the origin in the center of the irises represent the gaze vectors. The white line with the origin on the nose represents the head orientation vector.

Fig. 6: Results of head orientation and position estimation as well as gaze vector estimation.

Conclusion

In this paper a real-time implementation of a system for head-pose and gaze estimation was presented. The hardware consists of two cameras and a standard PC. Although we here presented an early implementation, we are confident that our system delivers state of the art head-pose and gaze accuracy whilst requiring very limited human interaction and being non-contact and passive (but for an optional infrared illumination in the dark). The qualitative accuracy and robustness of the tracking are in the process of being evaluated systematically. We also plan to automate the gaze calibration procedure using knowledge about the environment.

R E F E R E N C E S

1. *A. Petland*, "Looking at People: Sensing for Ubiquitous and Wearable Computing", IEEE Transactions On Pattern Analysis And Machine Intelligence, **Vol. 22**, No. 1, January 2000
2. <http://www.polhemus.com/>
3. <http://www.smarteye.se/>
4. *M. A. Fischler and R. C. Bolles*, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography", Comm. of the ACM, **Vol. 24**, pp. 381-395, 1981
5. *Yoshio Matsumoto and Alexander Zelinsky*, "An Algorithm for Real-time Stereo Vision Implementation of Head Pose and Gaze Direction Measurement", IEEE Fourth International Conference on Face and Gesture Recognition (FG'2000), pp. 499-505, Grenoble, France, March 28-30, 2000
6. *P. Viola and M. Jones*, "Rapid object detection using a boosted cascade of simple features", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001
7. *Y. Freund and R.E. Schapire*, "A decision-theoretic generalization of on-line learning and an application to boosting", 2nd European Conference on Computational Learning Theory, 1995
8. *C. Harris and M. Stephens*, "A combined corner and edge detector", Fourth Alvey Vision Conference, pp.147-151, 1988
9. *S. Baker and I. Matthews*, "Lucas-Kanade 20 Years On: A Unifying Framework", tech. report CMU-RI-TR-02-16, Robotics Institute, Carnegie Mellon University, July 2002
10. *O. Faugeras*, "Three-Dimensional Computer Vision", The MIT Press, 1993
11. *O. Faugeras, B. Hotz and L. Moll*, "Real-time correlation based stereo algorithm, implementations and applications", INRIA Research Report 2013, August 1993
12. *Z. Zhang*, "A Flexible New Technique for Camera Calibration", Technical Report MSR-TR-98-71, December 1998
13. *K. S. Arun, T. S. Huang and S. D. Blostein*, "Least-Squares Fitting of Two 3D Point Sets", IEEE Transactions on Pattern Analysis and Machine Intelligence, **Vol. 9**, pp. 698-700, 1987
14. *A. Lorusso, D.W. Eggert and R.B. Fisher*, "A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations", British Machine Vision Conference, 1995 British conference on Machine vision, **Vol. 1**, pp.237-246, Birmingham, United Kingdom, July 1995
15. *P.V.C. Hough*, "Machine Analysis of Bubble Chamber Pictures", International Conference on High Energy Accelerators and Instrumentation, CERN, 1959