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HOW RELEVANT ARE THE ESTIMATIONS OF THE
FRACTAL DIMENSION OF THE TEXTURE AND CONTOUR
TO DISCRIMINATE BETWEEN MALIGNANT AND
BENIGNANT SINUS TUMORS - A STATISTICAL STUDY

Ion ANGHELl, Raluca Roxana PURNICHESCU PURTANZ, Andreea UDREA®

The goal of the paper is to develop methods and algorithms based on the
chaotic dynamical systems theory (fractal dimension analysis) and specific
nonparametric statistics methods (bootstrap and bias-corrected and accelerated
percentile intervals) and to apply them to study CT images of sinus tumors. The
statistical analysis shows that the use of the fractal dimension of the mass texture
discriminate best between malignant and benignant sinus tumor, therefore leads to
an improvement of the diagnosis.

Scopul acestui articol este de a dezvolta algoritmi avdand ca punct de plecare
metode din teoria sistemelor dinamice haotice (analiza dimensiunii fractale) si
metode statistice nonparametrice (bootstrap Ssi determinarea intervalelor de
incredere) si de a-i aplica la studiul imaginilor CT reprezentdnd tumori maligne sau
benigne ale zonei para-sinusale. Studiul statistic a aratat ca dimensiunea fractald a
texturii discrimineazda mai bine intre tumorile maligne si benigne, ducdnd astfel la
Imbundtdtirea posibilitdtilor de diagnostic.

Key words: Fractal dimension, box-counting, nonparametric bootstrap, bias-
corrected and accelerated percentile intervals, paranasal sinus
tumors.

1. Introduction

Fractal analysis and nonlinear time series analysis are branches of chaos
theory. They provide useful methods for the characterization of single and multi
variable signals (images and time series).

Usually, fractal analysis refers to a collection of methods for the
description and quantization of geometric features of irregular forms and patterns.
It was largely applied for the study of biological systems and subsystems at
microscopic and macroscopic scale, image enhancement and compression,
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fracture analysis, texture classification because of their fractal-like structure of the
manipulated objects ([3], [7], [8]).

Its most known measure is the fractal dimension used to provide
information on the irregularity of an object contour or self similarities in a texture.

Fractal analysis was largely applied for distinction between normal and
modified tissue and between benignant and malignant tissue ([3], [7], [8]).

The case study considered in this paper targets the classification of masses
into benignant and malignant. Benignant and malignant tumors of the paranasal
sinuses may be asymptomatic for a long time and represents 3% of head and neck
carcinomas ([6], [1]). When symptoms arise they often mimic the clinical picture
of chronic rhinosinusitis, which is by far more frequent. For these reasons tumor
diagnosis is often delayed ([9], [6]). As there is a myriad of different tumor
entities, it may be beneficial for the clinician to distinguish between epithelial
tumors (papilloma, pleomorphic adenoma), mesenchymal tumors (fibromatosis,
osteoma), neural-related tumors (schwannoma) and tumor like lesions (giant cell
granuloma, mucocele) ([1]). Imaging is indicated whenever there is clinical
suspicion for a neoplastic process. Computed tomography [CT] and magnetic
resonance imaging [MRI] are complimentary in the pretreatment evaluation of
patients with sinonasal tumors.

In this paper we present a study based on the fractal dimension of the
analyzed masses formed in the paranasal sinuses region.

We consider a series (a number of 34) of CT images taken with contrast
substance containing the tissue that has fractal — like structure. The 34 CT images
consist in 17 malignant tumors and 17 benignant (two samples of same size).
Distinction between malignant and benignant masses is made by calculating:

1. the fractal dimension of the mass’s texture

2. the fractal dimension of the mass’s contour.

A nonparametric bootstrap analysis with a jackknife correction for errors
([5], [4]) is run to assess the accuracy of our primary statistical results. We applied
this technique to obtain more reliable statistical estimators (mean, standard
deviation and confidence intervals for the mean) in order to make statistical
inference, that is, to decide the power of discrimination between malignant and
benignant masses, in both measurements (the fractal dimension of the mass's
texture and the fractal dimension of the mass's contour).

We conclude that a more accurate discrimination is obtained when using
the F; of texture.

2. Methods

In the last 2 decades fractal analysis become a powerful tool for analyzing
the form, pattern and growth in biological systems. This kind of details are
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captured, best, by using the fractal dimension (¥;) which provides us a measure of
non/smoothness of a contour or a texture. The fractal dimension is calculated by
applying the ,,box-counting” estimation algorithm because, in comparison to other
methods, it offers two major advantages: it is easy to and can be applied for
images no matter how complex.

The statistical inference is based on a nonparametric bootstrap technique.
The general bootstrap method introduced by Efron (1979) is a resampling
procedure for estimating the distributions of statistics based on independent
observations. The bootstrap method is shown to be successful in many situations,
which is being accepted as an alternative to the asymptotic methods. In fact, it is
better than some other asymptotic methods, such as the traditional normal
approximation and the Edgeworth expansion ([2]). The nonparametric bootstrap
is suitable when the population distribution function is completely unknown and
when the sample size is small (less than 30).

Box-Counting Fractal Dimension Estimation Method

The ”box-counting” fractal dimension, derived from the Hausdorff
coverage dimension is given by the following approximation:

N log(N(s))
log(l/ s)
where: - N(s) is the number of squares that contain information when grid covers
the image (parts of the extracted contour/texture)
- s squares’ side length.

It is expected, that for a smaller s value, the above approximation should be better:

Fd = Tim log—)_ @)
s—0 " log(l/s)

If this limit exists, it is called the “box-counting” dimension of the measured

object. In practice, this limit converges slowly, that is why the following

expression is used:

Fd (1

log(N(s))=Fd -log (lj 3)
s

This is the equation of a straight line of slope F, the "log-log” curve described by
the points of (log(N(s), log(1/s)) for different values of the square’s side s.
Through linear regression (least squares method) the slope of the line that
approximates the points’ distribution is determined; this is the “box-counting”
fractal dimension.
The ,,box-counting” algorithm assumes to determine the fractal dimension in
accordance with the dependence of the object contour or texture upon the used
scale factor.
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It consists in :

1. to transform the grey shades CT image into a binary image by applying a
certain threshold and all the pixels with grey levels over that threshold are
made black and the rest white.

2. to cover successivly the image by applying grids of squares with equal sides

s of dimensions powers of two: 2, 4, &, ... and counting every time the
squares that contain at least one black pixel - some part of the analyzed
object (N(s)).

3. the points of coordinates (log(N(s)), log(1/s)), where s is the common side of
the coverage squares, and N(s) the number of squares that contain
information, are positioned approximately in a line and its slope will be the
fractal dimension in “box-counting” context/perspective.

We’ll apply the “box-counting” algorithm, described above, for different scale
values s, using software — MorfoFractal, a graphical application developed by the
authors.
We have used images that contain those parts of the masses that are not obstructed
by nearby bones, such that we can obtain information on the free evolution of the
mass.
The “box-counting” fractal dimension is estimated for:

1. the masses (tumors) textures and

2. the masses (tumors) contours.

In the second case, the contour of the mass is extracted by using following
procedure:

- search for all the pixels that are black and are not part of the object, their
neighbors are all white (or, in some cases, have a limited number of black
neighbors — one or two) and make them white.

- search for all the pixels that are black and have the upper, lower, right and
left neighbors black and make them white. (Fig.1).

By employing this procedure we will obtain the interconnected pixels in the image
that delimitate the object from the background.

Fig. 1. a) Black pixel with all the neighbors of white color — becomes white ; b) Black pixel with
upper, lower and lateral neighbors of black color — becomes white
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Statistical Methods

A traditional approach to statistical inference is to make assumptions about the
structure of the population (e.g., an assumption of normality), and, along with the
stipulation of random sampling, to use these assumptions to derive the sampling
distribution, on which classical inference is based. This familiar approach has two
potentially important deficiencies: if the assumptions about the population are
wrong, then the corresponding sampling distribution of the statistic may be
seriously inaccurate. On the other hand, if asymptotic results are relied upon,
these may not hold to the required level of accuracy in a relatively small sample.
In contrast, the nonparametric bootstrap allows us to estimate the sampling
distribution of a statistic empirically without making assumptions about the form
of the population, and without deriving the sampling distribution explicitly.

The general nonparametric bootstrap procedure is based on five steps as follows
(refer to Efron and Tibshirani [5] for detailed discussions):

Consider the case where a random sample of size n is drawn from an unspecified
probability distribution, F, with the observations x,x,,...,x, viewed as

n

realizations of independent random variables with common distribution function

F . We denote the interest estimate parameter as 6. The basic steps in the
nonparametric bootstrap procedure are:
Step 1: Construct an empirical discrete probability distribution, F,, that gives

probability of 1/n to each observed value x,,x,,...,x,. This is the nonparametric

maximum likelihood estimate of the population distribution, F .
Step 2: Draw the resample, that is, a random sample of size n, with replacement,

from the empirical distribution F, . Calculate the statistic of interest, 8, for this
resample, denoted 6.

Step 3: Repeat Step 2 "B " times, by Monte Carlo resampling and compute for
each resample the statistic é*(B is at least equal to 1000 when an estimate of
confidence interval around @ is required).

The empirical distribution of the resulting values él*,é; ,...,é; is an approximation

to the distribution function of @. The bootstrap statistic 0 is approximated by the
average of é]*,é; ,...,é; values.

Step 4: Calculate the confidence intervals for the statistic of interest, 0 using the
bootstrap bias-corrected and accelerated (BCa) percentile intervals.

There are several approaches to constructing bootstrap confidence intervals. One
of the most widely used is the bootstrap percentile interval: the endpoints of a
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0.05 « -level confidence interval for @ (the population parameter estimated by 0 )
would be the ordered bootstrap replicates of the statistic values of 4,6, ,...,0, at

the 2.5” and the 97.5” quantiles of the bootstrap distribution. Although they do
not artificially assume normality, percentile confidence intervals often do not
perform well in terms of bias and skewness in the bootstrap distribution ([4]). The
bootstrap bias-corrected and accelerated (BCa) percentile intervals method
adjusts for both bias and skewness in the bootstrap distribution ([4]). This
approach is accurate, has reasonable computation requirements, and does not
produce excessively wide intervals.
To find the BC, interval for the interest parameter &, we calculate:

B

#(0<0)

z=@'| L~

B+1

B n
where ®7'(-)is the standard normal quantile function and 1?1(9/ SH) is the

adjusted proportion of bootstrap replicates at or below the original sample

estimate @ of . If the bootstrap sampling distribution is symmetric, and if 0 is
unbiased, this proportion will be close to 0.5 and the correction factor z will be

close to 0.

Let 9(71,) represent the value of 0 produced when the i"™ observation is deleted
from the original sample (the 1-deleted jackknife); there are n of this quantities.
Let ém represent the average of the 6?(71.) values. We calculate another correction

factor:

(s

J=l
With the correction factors z and a, compute:
z—z z+z
a=0|z+———"2 _land aq,=0| z+———122 _
1—a(z—zl_a/2) 1—a(z+zl_a/2)
where ®(-) is the standard normal cumulative distribution function. The values g,
and a, are used to locate the endpoints of the corrected percentile confidence

interval:

9[811,] < 9 < 0[3112]
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When the correction factors z and a are both 0,
a,=0(-z_,,)=P(z,,)=a/2, and  a,=®(z_,,)=1-a/2, which

corresponds to the (uncorrected) percentile interval.

The above algorithm and the random generator of the bootstrap samples was
implemented as a MatLab routine. The bootstrap analysis was conducted for
B =2000, for both samples of n=17 and in each sample, for both types of
measurements (the fractal dimension of the mass's texture and the fractal
dimension of the mass's contour). In each of the four resulted data sets, the
statistics of interest were the mean and standard deviation. The confidence
interval was calculated for the mean with the BC, method.

3. Results

Two sets of CT images representing sinus tumors are analyzed: 17
malignant (Fig.2) and 17 benignant (Fig.3). The fractal dimension values of the
contours and textures of all this images were estimated using the procedures
described in Chapter 2. Some results are displayed in Table 1.

Fig 2. CT slice containing an analyzed malignant maxillary tumor (left) and another two regions
from other CT slices also presenting malignant tumors (upper and lower right).
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Fig 3. CT slice containing an analyzed polipoide formations (benignant sinus tumor) - left and
another two regions from other CT slices also presenting benignant tumors - upper and lower right.

Table 1.

Fd of the textures and contours of some of the analyzed tumors (masses)

Group 1 — maxillary tumors (malign)

Group 2 — polipoide formations (benign)

Fractal dimension of

the mass texture

Fractal dimension of
the mass contour

Fractal dimension of

the mass texture

Fractal dimension of
the mass contour

1.83 1.65 1.60 1.40
1.78 1.60 1.70 1.53
1.75 1.58 1.66 1.48
1.80 1.70 1.72 1.55
1.73 1.59 1.65 14

1.70 1.60 1.75 1.64

The statistical results obtained for malign and benign tumors by calculating the
masses texture F; and the masses contours Fd, with the nonparametric bootstrap
method described in Chapter 2 are presented in Table 2.

Table 2.

Statistical estimations for malign and benign tumors (mean, SD, CI)

Fractal dimension of the mass texture

Fractal dimension of the mass contour

Estimated 95% Confidence Interval | Estimated mean | 95% Confidence Interval
mean (SD) (estimated mean) (SD) (estimated mean)
Group 1 1.776 1.617
(malign) (0.43) (1.736 , 1.815) (0.41) (1.571, 1.668)
Group 2 1.665 1.497
(benign) 0.51) (1.623,1.715) (0.36) (1.402, 1.597)
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The values obtained for the estimated mean of mass texture and contour
discriminate both between the malign and benign groups (Kolmogorov-Smirnov
test, p=0.016, respective p=0.025). Because of the overlapping 95% confidence
interval in the case of fractal dimension of the mass contour (values between
1.571 and 1.597 can be misclassified), we conclude that the fractal dimension of
the mass texture is a more accurate discrimination measurement between
benignant and malignant masses formed in the paranasal sinuses region.

4. Conclusions

Because of the asymptomatic or confounding symptoms of the paranasal
sinuses tumors, any improvement in early diagnosis is beneficial for the
rhinologist practician. The goals of patient evaluation for suspected sinonasal
cancers include a precise diagnosis, determining the extend of disease and
developing a treatment plan. The two powerful algorithms involved in the study —
the box-counting and the nonparametric bootstrap with BCa revealed that
computing the fractal dimension of the mass texture is an accurate and valuable
method for a precise diagnosis.

The F; for masses texture leads to a better statistical discrimination because it
takes into consideration all the details of the analyzed image sections.

By improving the CT noninvasive diagnosis methods, the presence of a
sinonasal tumor can be more accurate predicted, leading to a more efficient
medical evaluation and treatment.
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