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COMPARISON OF FUZZY LOGIC, REGRESSION AND ANN
LASER KERF WIDTH MODELS

Milo§ MADIC', Zarko COJBASIC?, Miroslav
RADOVANOVIC®

This paper focuses on development and comparison of empirical models for
the prediction of kerf width obtained in CO; laser cutting of AISI 304 stainless steel
using regression analysis, artificial neural network (ANN) and fuzzy logic. Laser
cutting experiment, conducted according to Taguchi’s experimental design using L,;
orthogonal array, and provided a set of data for model’s development. All three
models considered the laser power, cutting speed, assist gas pressure and focus
position as input parameters. Statistical values of the coefficient of determination
and absolute percentage error were employed to compare the three developed
models by considering initial experimental as well as additional experimental
(validation) data. Analysis and results indicate that all three modeling approaches
can be equally effectively used for the prediction of kerf width in CO; laser cutting.
However, fuzzy logic model showed the best overall prediction results, while
developed ANN model best generalization capability.

Keywords: Regression, artificial neural networks, fuzzy logic, laser cutting, kerf
width, modeling.

1. Introduction

Laser cutting is one of the most used nonconventional machining
processes based on the use of lasers, i.e. highly concentrated light energy
generated by stimulated radiation for material processing by heating, melting or
evaporation. By focusing the laser beam on the material surface high power
density per unit area is achieved (over 10° W/cm?), leading to melting and
evaporation of materials in a fraction of second. In order to eject melted material
from the cutting zone as soon as possible, assist gas stream is used.

The laser cutting process is characterized by a number of process
parameters and their interactions, which in turn determine the efficiency of the
whole process in terms of productivity, quality, and costs [1]. In order to avoid
time consuming trial and error procedure in parameter setting for a particular
application of laser cutting it is of prime interest to accurately quantify
relationships between process parameters and cutting performances through
development of mathematical models.
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Numerous advantages and possibilities of laser cutting motivated a
number of modeling studies with the ultimate aim to better understand and
optimize the process. The modeling of laser cutting process has been investigated
by a number of methodologies. Most of the current literature used classical
regression modeling [2-7]. The application of artificial neural networks (ANNs)
also marks the growing use for laser cutting process modeling. Chaki and Ghosal
[8] developed an optimized simulated annealing-ANN model to predict and
optimize cutting quality of LASOX cutting process of mild steel plates. Results
indicate that the SA-ANN model can predict the optimized output with reasonably
good accuracy (around 3%). Yang et al. [9] proposed a progressive Taguchi-ANN
model, which combines the Taguchi method with the ANN to construct a
prediction model for a CO, laser cutting experiment. The analysis and results
confirmed that the construction of Taguchi-ANN model improves upon the
traditional ANN, which has the inherent disadvantage of requiring a large number
of training samples. Recently, Madi¢ and Radovanovi¢ [1] presented an approach
of using a real coded genetic algorithm for the development of ANN mathematical
models for the kerf width and surface roughness obtained in CO; laser cutting of
mild steel. It was observed that ANN model predictions and experimental results
are in good agreement. Some researchers used fuzzy logic to predict the laser
cutting performance characteristics. Syn et al. [10] developed an expert system
using fuzzy logic model to predict surface roughness and dross inclusion in CO;
laser cutting of Incoloy alloy 800. The relationships between experimental results,
fuzzy logic model and statistical results for both training and testing performance
exhibited a good correlation. Pandey and Dubey [11] proposed a hybrid approach
of Taguchi robust parameter design and fuzzy logic for multi-objective
optimization of laser cutting of duralumin sheet. Kerf width and kerf deviations at
top and bottom sides were considered as performance characteristics. Recently,
the same authors [12] applied a hybrid approach consisting of ANN and fuzzy
logic to develop the fuzzy expert system to predict the kerf widths and kerf
deviation in laser cutting of Ti alloy. The predicted results were compared with
the experimental data and found appropriate.

The survey of literature indicates that the aforementioned modeling
methodologies were successfully applied for laser cutting process modeling.
These approaches integrate different experimental, mathematical, and soft
computing methods, thus provide sufficient accuracy of predictions. A recent
comprehensive review of the various methods used for modeling and simulation
of the laser cutting process as well as key researches done in this field so far is
given in [13]. However, a comprehensive study to compare the performances of
regression analysis, ANNs and fuzzy logic for modelling different performance
characteristics in laser cutting is still missing. Still, within the application of these
methods the authors observed certain shortfalls including: (i) overestimating or
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underestimation of the experimental data in the case of regression analysis [6], (ii)
requirement of a large number of training samples [9] and determination of
suitable ANN model architecture as well as determination of (near) optimal
weights and biases [1], (iii) the selection of a right membership functions for each
input and output variable, which determines performance of a fuzzy model [10].

Importance of comparison studies and their lack of consideration in the
literature were the main motivation for development of different models for the
prediction of laser cut quality obtained in CO; laser cutting of stainless steel. To
the best readers’ knowledge there is no comparative modeling research study
using fuzzy logic, regression analysis and ANN regarding the process of CO;
laser cutting of stainless steel using nitrogen as assist gas. In an initial attempt,
regression model was employed for development of the kerf width model in terms
of four laser cutting parameters, namely, the laser power, cutting speed, assist gas
pressure and focus position. In addition, kerf width modeling was done by fuzzy
logic and ANN. Comparative observation on using both experimental and
validation trials indicated that the fuzzy logic model gives slightly smaller
deviations in comparison to experimentally measured values than regression and
ANN models at the same time providing possibility to include in the model some
available expert knowledge about the process of laser cutting.

2. Experimental procedure

The experiment was performed in real industrial environment by using a
ByVention 3015 CO,; laser cutting machine with a maximal power of 2.2 kW.
Conical shape nozzle with diameter of 2 mm was used in experiment and the
distance between workpiece and nozzle was controlled at 1 mm. The laser beam
was focused through a lens of focal length of 127 mm. The cuts were performed
with a Gaussian distribution beam mode (TEMgg). As workpiece material AISI
304 sheet with dimensions of 500 x 500 mm and 3 mm thickness was used.

Laser power, cutting speed, assist gas pressure and focus position were
selected as input (controllable) parameters. The numerical values of selected
parameters at different levels are shown in Table 1. The values range for each
parameter was chosen such that full cut is achieved at any combination of laser
cutting parameter levels. The manufacturer's recommendation and literature data
were also considered.

The appropriate selection of different input parameters and their levels
have significant impact on the kerf width. Kerf width is the measure of the
amount of the workpiece that is wasted during material processing. Obtaining
high material removal rate in laser cutting of thin sheets of steels is not a difficult
task but the most important thing is to get a narrow cut kerf [14].
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Straight cuts of 60 mm long are made for each experimental trial and kerf
widths were measured at three different places along the length of cut on the top
side of the workpiece material. The measurement locations were decided at equal
distances. The kerf widths were measured using the Leitz optical microscope
(Fig. 1). The average values of kerf width corresponding to each experimental
trial are given in Table 1.

L,; matrix for the experiment and experimental results

Laser cutting parameters Experimental
. results for kerf
Trial P A p f width, K,,

(kW) | (m/min) | (bar) | (mm) (mm)
1 1.6 2 9 -2.5 0.517
2 1.6 2 10.5 | -1.5 0.398
3 1.6 2 12 | 0.5 0.353
4 1.6 2.5 9 -1.5 0.393
5 1.6 2.5 10.5 | 0.5 0.387
6 1.6 2.5 12 | 25 0.483
7 1.6 3 9 -0.5 0.307
8 1.6 3 10.5 | 2.5 0.512
9 1.6 3 12 | -1.5 0.366
10 1.8 2 9 -1.5 0.435
11 1.8 2 10.5 | 0.5 0.372
12 1.8 2 12 | 25 0.550
13 1.8 2.5 9 —0.5 0.323
14 1.8 2.5 10.5 | 2.5 0.477
15 1.8 2.5 12 | -1.5 0.423
16 1.8 3 9 -2.5 0.488
17 1.8 3 10.5 | -1.5 0.344
18 1.8 3 12 | 0.5 0.287
19 2 2 9 —0.5 0.376
20 2 2 10.5 | 2.5 0.542
21 2 2 12 | -1.5 0.450
22 2 2.5 9 -2.5 0.493

Table 1
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23 2 2.5 105 | -1.5 0.461
24 2 2.5 12 | 05 0.372
25 2 3 9 -1.5 0.389
26 2 3 10.5 | 0.5 0.320
27 2 3 12 | 2.5 0.443

Table 1 represents standard Ly; (3") Taguchi’s orthogonal array which
was used as experimental plan. Laser cutting parameters, laser power, cutting
speed, assist gas pressure and focus position were assigned to columns 1, 2, 5 and
9, respectively.

3. Mathematical modeling
3.1. Regression modeling

Regression analysis is a conceptual simple empirical modeling technique
for developing functional relationships between a set of input variables and output
variable (response). The starting point is to select input variables that will figure
in the final mathematical model. The best subset of input variables is usually
selected based on some statistical criteria including: coefficient of multiple
determination R?, adjusted R% Mallows’ Cp-statistic, Akaike’s information
criterion (AIC), percentage error, mean squared error, etc.

In regression analysis one needs to determine the right functional and
order form of the polynomial and determine regression coefficients. A low degree
polynomial will not have the needed flexibility and will make large errors on test
sample because of a large bias. A high degree polynomial is too much sensitive to
the sample and will make large errors on test sample because of a large variance.
This is well-known bias-variance trade-off.

The mathematical model for the prediction of kerf width in terms of
selected laser cutting parameters was obtained using the experimental data by
applying the least square method. Out of many different mathematical models, the
following full quadratic model with interactions was initially developed:

K, =-0.517-0.502- P, +0.509 v, +0.121- p—0.124- f +0.228 - P’

~0.039 v —0.004- p> +0.016- /> ~0.0124- P, -v, +0.008-F, - p (1)
+0.037-P, - f~0.015-v, - p—0.004-v, - £ +0.004- p- f

The R? statistical value of 0.937 indicates that the proposed mathematical
model explains 93.7 % of the variability in kerf width values. However, a large
value of R* does not necessarily imply that the regression model is a good one
[15]. On the other side, since the difference between the statistics R* and adjusted
R?, having value of 0.864, is not negligible, there is a high probability that non-
significant terms are included in the mathematical model. For that reason, the
initial regression model of surface roughness was simplified (reduced) by
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eliminating terms which had no significant effect at the 90% confidence level.
After conducting a best subset routine, the following mathematical model was
selected:

K,=-0513+0.505-v, +0.038- p—0.0994- f +0.108 - P
~0.0389-v2 +0.0158- /2 ~0.118- B, -v, +0.0381-F, - f —0.015-v, - p

Comparing the two developed mathematical models, one can see that by
removing less significant terms from the initial model, the adjusted R* value
improves from 0.864 to 0.892. Clearly, removing the less significant terms from
the full regression model produces a final regression model that is likely to
function more effectively as a predictor of new data.

The P value of 0 from analysis of variance (ANOVA) analysis (Table 2)
confirms the validity of the developed mathematical model. Thus, Eq. 2 can be
used to calculate kerf width values for arbitrarily chosen values of laser cutting
parameters within the covered experimental hyperspace.

2

Table 2
ANOVA for the developed kerf width regression model

Source DF SS MS F P
Regression 9 0.132667 0.014741 24.74 0
Residual error 17 0.010129 0.000596
Total 26 0.142796
P: probability density; DF: degree of freedom; SS: sum of squares; MS: mean square; F: value
of Fisher’s distribution

3.2. Fuzzy logic modeling

Two primary tasks of fuzzy modeling are structure identification and
parameter adjustment. The former determines input-output space partition, rule
antecedent and consequent variables, the number of fuzzy rules, and the number
and initial positions of membership functions. The latter identifies a feasible set of
parameters under the given structure [16]. Fuzzy logic is a way to map an input
space to an output space upon which a basis for fuzzy inference and decision
making is provided. A fuzzy system consists of four components (Fig. 2): the
fuzzifier, the fuzzy inference engine, the defuzzifier, and the fuzzy rule base.

Fuzzification represents the process of converting all input variables into
fuzzy (linguistic) variables using membership functions. Basically, a membership
function is a curve that defines how each point in an input space is mapped to a
membership value (or degree of membership) between 0 and 1 [17]. The inference
engine refers to using the fuzzy rule base, containing the described fuzzy IF-
THEN rules, and the membership functions to obtain the fuzzy (linguistic) output
values for the corresponding inputs [18]. Finally, the defuzzifier converts the
aggregate fuzzy output value into a single number.
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Fig. 2. Structure of fuzzy logic system with four inputs and one output

In this paper, laser cutting parameters, i.e. laser power, cutting speed,
assist gas pressure and focus position were considered as inputs, while kerf width
was considered as output. The minimum and maximum values of inputs and
outputs, corresponding to experimental hyperspace covered, are given in Table 3.
In this table fuzzy linguistic variables for inputs and output are also shown.

Table 3
Range of laser cutting parameters and fuzzy linguistic variables
INPUTS
Laser cutting parameters Range Linguistic labels
Laser power, Pp [kW] 1.6 +2
Cutting speed, v¢ [m/min] 2+3 . .
Assist gas pressure, p [bar] 9+12 Low, Medium, High
Focus position, f [mm] -2.5+-0.5
OUTPUTS
Kerf width [mm)] | 0.28 ~ 0.55 | Very Narrow, Narrow, Good, Wide, Very wide

For each laser cutting parameter, three membership functions were used:
Low, Medium and High. On the other hand for the kerf width, four membership
functions were used: Very Narrow, Narrow, Good, Wide, Very wide.

Gaussian membership functions were employed to describe the fuzzy sets
for inputs and output. Gaussian membership functions were chosen in order to
provide smooth fuzzy model output surface, i.e. smooth change of output variable
for moderate change of inputs. Membership functions and their ranges for inputs
are shown in Fig. 3.
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Fig. 3. Membership functions for: a) laser power, b) cutting speed, c) assist gas pressure,
d) focus position and e) kerf width
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After selection of membership functions, fuzzy rules were described to
obtain fuzzy values. Based on conducted experimental trials, and using available
expert knowledge on the laser cutting process, a set of 27 fuzzy IF-THEN rules
was constructed. Each of these rules plays an important role in generating the
fuzzy logic model and the accuracy of the numerical output [19]. Some of the
rules fed into the fuzzy inference system are:

1. If (PLis Low) and (v¢ is Low) and (p is Low) and (f is Low) Then (Kerf
width is Very wide)

2. If (PLis Low) and (v¢ is Low) and (p is Medium) and (f is Medium) Then
(Kerf width is Good)

3. If (PLis Low) and (v¢ is Low) and (p is High) and (f is High) Then (Kerf
width is Narrow)

27. If (Pp is High) and (v¢ is High) and (p is High) and (f is Low) Then (Kerf
width is Good)

Finally, a defuzzification method is used to transform the fuzzy output into
a non-fuzzy value. The selection of defuzzification method is important as it
greatly influences the speed and accuracy of the model [20]. In this study,
defuzzification is carried out using centroid defuzzification method. It is one of
the most commonly used methods capable of producing accurate results compared
to other methods. In this method, the defuzzified output ' is obtained as [18]:

[ ui(@)zdz
z :—J ! 3)
u,(z)dz
where z" is the the defuzzified output i.e. the output for a given input vector,
U,(z) is the aggregated membership function and z is the output variable (the

centre value of the regions).

The non-fuzzy value z gives the predicted value of kerf width in
numerical form. For example, the value of kerf width at a laser cutting condition,
laser power of 2 kW, cutting speed of 3 m/min, assist gas pressure 12 bar and
focus position of —2.5 mm is obtained as 0.414 mm. The Mamdani max-min
approach was used as the fuzzy inference engine. This approach uses max
operation for the aggregation of the rules and min operation is used for
intersection of two fuzzy sets [21].



206 Milo§ Madi¢, Zarko Cojbaéic’, Miroslav Radovanovié¢

3.3. Artificial neural network modeling

Artificial neural networks (ANNs) are one of the most powerful modeling
techniques currently being widely used in many fields of engineering. When
compared to regression analysis, ANNs offer better data fitting capability for
complex processes with many non-linearities and interactions, however they
require a substantial number of data for their training i.e. development.
Furthermore, modeling with ANNs is much more complex since numerous
decisions related to the selection of ANN architecture, training parameters,
transfer functions, parameters of the training algorithm, etc. had to be made.
Above all, there is limited theoretical and practical background to assist in
systematical selection of these parameters.

To develop ANN mathematical model for the prediction of kerf width, 19
randomly selected experimental data were used for training, while the remaining 8
data were used for validation purpose. For modeling the relationship between kerf
width and laser cutting parameters, single hidden layer perceptron type ANN was
selected having the hyperbolic tangent sigmoid transfer function in the hidden and
linear transfer function in the output layer. In order to stabilize and enhance ANN
training the input and output data was normalized in [—1, 1] range.

Levenberg—Marquardt algorithm [22] was used for training purpose and
the training process was monitored by calculating the mean squared error.
According to the available number of training data, the 4-4-1 ANN architecture
trained for 21 iterations turned out to be the best solution.

Once the ANN has been trained, the knowledge acquired by the ANN can
be represented in the form of mathematical equation [1]:

ﬁ(X):g[Zij'f(zwﬁ'xﬁb/}rka @)

where P(X) is the computed ANN output (prediction) for the input vector X, b,

and by are biases of the hidden and output neurons, respectively, wy; and wj; are the
hidden to output and input to hidden neuron weights, respectively, and fand g are
the transfer functions used in the hidden and output layers, respectively.

4. Results and discussion

The comparison of the experimental and predicted values using different
models, i.e. fuzzy logic, ANN and regression model are given in Figure 4.

As could be seen from Figure 4, the fuzzy logic model yielded the highest
coefficient of determination, followed by regression and ANN model,
respectively. In sum, all models gave reasonable predictions. Furthermore, the
prediction accuracy of the developed models was assessed by calculating the
mean absolute percentage error.
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Fig. 4. Comparison of selected model predictions with corresponding experimental values

The mean absolute percentage errors for fuzzy logic, regression and ANN
model were found to be 3.83%, 3.74% and 5.79%, respectively. Regarding all
experimental trials maximal and minimal absolute percentage errors for fuzzy
logic, regression and ANN model were found to be 6.97% and 0.21%, 13.01 and
0.36%, and 18.02% and 0.02%, respectively. It is clear that minimal error
dispersion is obtained by fuzzy logic model followed by regression and ANN
models. From these statistical results one can conclude that fuzzy logic modeling
can be successfully used for predicting kerf width obtained in CO; laser cutting of
AISI 304 stainless steel. Also, the accuracy of regression and fuzzy logic model
are better in comparison to ANN model. Absolute percentage errors of all three
mathematical models for conducted experimental trials are given in Figure 5.
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In order to verify the initial conclusions and check the generalization
abilities of the developed models, new experimental trials were conducted. Three
validation experimental trials were conducted using the following combination of
laser cutting parameter values:

Exp. trial 1: P, =2 kW; v¢=2 m/min; p = 10.5 bar; f=-1.5 mm
Exp. trial 2: P, = 1.8 kW; v¢= 2.5 m/min; p = 10.5 bar; f=-1.5 mm
Exp. trial 3: P, = 1.8 kW; v¢= 2 m/min; p = 10.5 bar; f=-2.5 mm

The comparison of kerf width experimental values from these validation
trials with the model’s predictions is given in Fig. 6.

B Experimental value ® Fuzzy logic model @ Regression model @ ANN model
0.6

0.5

0.4 1

0.3 1

0.2 1

Kerf width [mm]

0.1 1

0 -

1 2 3

Validation experimental trial
Fig. 6. Comparison of results obtained in validation experimental trials

The results from Figure 6 suggest that model’s predictions are fairly close
to the experimental results. Considering experimental validation trials, the mean
absolute percentage errors for fuzzy logic, regression and ANN model were found
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to be 6.32%, 7.18% and 5.93%, respectively. From these results it is clear that all
three models exhibit good prediction performance, however it has to be noted that
the accuracy of the ANN model was much better when new data was used. In
other words, the ANN model showed very good generalization capability. In the
case of other two models, fuzzy logic model maintained good generalization
capability, while regression model showed somewhat larger errors on validation
data.

Once developed and validated, a certain mathematical model can be used
for process analysis. In this case, by using the fuzzy logic model, for the main
effects of of the laser cutting parameters on the kerf width the following was
observed: an increase in laser power increases the kerf width, an increase in
cutting speed decreases the kerf width, an increase in assist gas pressure has
negligible effect on the kerf width and an increase in focus position (closer to the
top sheet surface) increases the kerf width. It has to be noted that this analysis was
obtained while changing one factor at a time while the other were fixed at their
central level.

Figure 7 represents example of the 3D surface plots obtained during fuzzy
logic modeling of kerf width obtained in CO, laser cutting of AISI 304 stainless
steel. Out of six possible combinations of interaction effects, this plot was selected
as is it observed that simultaneous change of laser power and cutting speed, in the
covered experimental hyperspace, produces the most significant change in the kerf
width. This plot was obtained while keeping the other two laser cutting
parameters constant at medium level, i.e. p = 10.5 bar and f=— 1.5 mm.

Kerfwidth [rmm]

LN T

Laser power, PI [kwv]

Fig. 7. Interaction effect of the cutting speed and laser power on the kerf width
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5. Conclusions

In this paper, an attempt was made to develop and compare mathematical

models for kerf width prediction in CO; laser cutting of AISI 304 stainless steel
using regression analysis, ANN and fuzzy logic. Contribution of this paper is
about development and comparison of three competitive models. The conclusions
drawn can be summarized by the following points:

All three modeling approaches provide fairly accurate models for the kerf
width prediction. Regression model development follows straightforward
procedure and requires less time and effort than the ANN model
development in which one has to take a number of architectural and
training parameters in consideration. On the other hand, the development
of fuzzy logic model is quite complex and requires considerable
knowledge and experience, but it provides the opportunity to encompass
some of our available expert knowledge and previous experience on the
laser cutting process.

Considering the statistical performance criteria used for assessing the
models’ prediction accuracy, fuzzy logic model showed the best overall
results. It turned out that the selected types of membership functions,
Mamdani max-min reasoning approach and centroid defuzzification
method are well suited for modeling laser cutting relationships.

Somewhat worse results of ANN model considering initial experimental
data with average and maximal absolute percentage errors of 5.79% and
18.02%, respectively, can be explained by the fact that this model was
developed using less data. However, on the other hand, ANN model
showed the best generalization capability when presented with new
validation data. It should be noted that the prediction performance may be
enhanced by exploiting the full potential of the ANNs through fine tuning
of its training and architectural parameters as well using more
experimental data.

All three methods can be used efficiently for detailed analysis of the effect
of process parameters and their interactions on the kerf width within the
covered experimental hyper-space. Fuzzy logic model’s results indicate
that there exists an optimum region of the laser power to cutting speed
ratio where the kerf width is minimal. This region corresponds to the
combination of laser powers from 1.7 kW to 1.85 kW and cutting speed
from 2.8 m/min to 3 m/min.

All three modeling techniques are equally suitable and practical for kerf
width modeling. By the authors opinion the first choice should be
regression analysis, because of its simplicity and ease of application, and
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in the case when one cannot obtain acceptable results, ANN and fuzzy
modeling are to attempted.

e The developed models can aid the prediction, optimization, and
improvement of the CO, laser cutting process via appropriate selection
selection of process parameters. Their high prediction accuracy indicates
that they can be practically applied in industry.

o Irrespective of applied approach, complexity of the laser cutting process
requires taking into account different performance characteristics at the
same time and their optimization. In this sense, modeling, single and
multi-objective optimization and process control with the use of
computationally intelligent methods may be advantageous, particularly
when cutting complex contour on costly materials in large batch
processing.

¢ Finally, one need to note that hybrid model, comprising of fuzzy logic and
regression model showed best results, mean absolute percentage errors on
experimental trials and validation trials are found to be 2.86% and 5.82%,
respectively. This hybrid approach, however, may be practical in cases
when single models do not make sufficiently acceptable predictions.
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