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PROPER BIHARMONIC SUBMANIFOLDS IN A UNIT SPHERE

Tianmin Zhu1, Shichang Shu2

In this article, we study the proper biharmonic submanifolds in a unit

sphere Sn. If the submanifolds satisfy certain geometric and rigidity properties,

we obtain some characterizations of the two canonical examples of proper bihar-

monic submanifolds: hyperspheres Sn−1(1/
√
2) and the generalized Clifford tori

Sm1(1/
√
2)× Sm2(1/

√
2), m1 +m2 = n− 1, m1 ̸= m2.
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1. New theorems of proper biharmonic submanifolds

A biharmonic map is a map φ : Mm → Nn between Riemannian manifolds
that is a critical point of the bienergy functional E2(φ) = 1

2

∫
Mm |τ(φ)|2vg, where

τ(φ) = tr∇dφ denotes the tension field of φ. By calculating the first variation of
φ, G.Y. Jiang [10] showed that the map φ is biharmonic if and only if its biten-
sion field τ2(φ) vanishes identically, that is, τ2(φ) = tr(∇φ∇φ − ∇φ

∇Mm )τ(φ) −
trRNn

(dφ, τ(φ))dφ = 0, where RNn
is the curvature operator of Nn defined by

RNn
(X,Y )Z = [∇Nn

X ,∇Nn

Y ]Z − ∇Nn

[X,Y ]Z. We note that any harmonic map is bi-

harmonic. The non-harmonic biharmonic maps are called proper biharmonic. The
submanifolds with biharmonic inclusion map are called biharmonic submanifolds. It
is well known that an isometric immersion is minimal if and only if it is harmonic.
So the minimal submanifolds are trivially biharmonic. The submanifolds with non-
harmonic (non-minimal) biharmonic inclusion map are called proper biharmonic
submanifolds.

From the results of G.Y. Jiang [11], we know that if φ : Mm → Sn be an
isometric immersion submanifold in a unit sphere Sn with codimension n−m, then
Mm is biharmonic if and only if for any α, i∑

j,k

hαjjkk −
∑
i,j,k,β

hβjjh
β
ikh

α
ik +m

∑
j

hαjj = 0, (1.1)

∑
j,k,β

(2hβjjkh
β
ik + hβjjh

β
kki) = 0, (1.2)
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where 1 ≤ i, j, k ≤ m, m + 1 ≤ α, β ≤ n, hαij are the components of the second
fundamental form ofMm, hαijk and hαijkl are the first and second covariant derivatives

of hαij defined by (2.6) and (2.7).

We should note that B.Y. Chen [7], Caddeo– Montaldo–Oniciuc [5, 6], Balmus–
Montaldo–Oniciuc [2, 3] and Ou [16] also studied biharmonic maps and biharmonic
submanifolds, they obtained (1.1) and (1.2) in several steps and by different sign
conventions. From [11], [2] and [4], the canonical examples of proper biharmonic sub-
manifolds in a unit sphere Sn are the small hypersphere Sn−1(1/

√
2) = {(x, 1/

√
2) ∈

Rn+1|x ∈ Rn, |x|2 = 1/2} ⊂ Sn and the products Sm1(1/
√
2) × Sm2(1/

√
2) =

{(x, y) ∈ Rn+1|x ∈ Rm1+1, y ∈ Rm2+1, |x|2 = |y|2 = 1/2} ⊂ Sn, where m1 +m2 =
n−1 and m1 ̸= m2. Recently, Balmus–Montaldo–Oniciuc [2] proposed the following:

Conjecture. The only m-dimensional (m ≥ 3) proper biharmonic hypersurfaces
in Sm+1 are the open parts of hyperspheres Sm(1/

√
2) and of the generalized Clif-

ford tori Sm1(1/
√
2)× Sm2(1/

√
2), m1 +m2 = m, m1 ̸= m2.

We should notice that the above Conjecture is still open. In this article, we
study the proper biharmonic submanifolds in a unit sphere Sn and prove that the
above Conjecture is true if the submanifolds satisfy certain geometric and rigidity
properties. More precisely, we obtain the following:

Theorem 1.1. Let Mm be a m-dimensional (m ≥ 3) proper biharmonic hypersur-
face in Sm+1 with constant mean curvature. If the sectional curvature of Mm is
nonnegative, then Mm is an open part of Sm(1/

√
2) or of the standard products

Sm1(1/
√
2)× Sm2(1/

√
2), where m1 +m2 = m and m1 ̸= m2.

For a fixed α,m + 1 ≤ α ≤ n, we may choose orthonormal frame field
{e1, . . . , em} such that hαij = λα

i δij . Putting ϕα
ij = hαij − 1

mtrHαδij and consider

the symmetric tensor ϕ =
∑

i,j,α ϕ
α
ijωiωjeα, we can easily see that ϕ is traceless and

that |ϕ|2 = |A|2 −mH2, where hαij , |A|2, H⃗ and H are the components of the second
fundamental form, the square of the norm of the shape operator, the mean curvature
vector field and the mean curvature of Mm. We know that |ϕ|2 ≡ 0 if and only if
Mm is totally umbilical. We define a polynomial PH,n−m(x) by

PH,n−m(x) = (2− 1

n−m
)x2 +

m− 2√
m(m− 1)

mHx−m(1 +H2), (1.3)

where n−m is the codimension of Mm. It may be easily checked that PH,n−m(x) = 0
has a positive real root. Let BH,n−m be the square of the positive real root. We
obtain the following results:

Theorem 1.2. Let Mm be a m-dimensional (m ≥ 3) proper biharmonic hypersur-
face in Sm+1 with constant mean curvature. If

|ϕ|2 ≤ BH,1, (1.4)

then Mm is an open part of hyperspheres Sm(1/
√
2) or of the generalized Clifford

tori S1(1/
√
2)× Sm−1(1/

√
2).
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Theorem 1.3. Let Mm be a m-dimensional (m ≥ 3) proper biharmonic submanifold
in Sn with the codimension n−m (n−m ≥ 2) and parallel mean curvature vector
field. If

|ϕ|2 ≤ min{m(1−H2), BH,n−m}, (1.5)

then Mm is a minimal submanifold of a small hypersphere Sn−1(1/
√
2) ⊂ Sn.

Theorem 1.4. Let Mm be a m-dimensional (m ≥ 3) complete proper biharmonic
hypersurface in Sm+1 with constant scalar curvature m(m−1)R and R̄ = R−1 ≥ 0.
If

mR̄ ≤ sup |A|2 ≤ (m− 1)
mR̄+ 2

m− 2
+

m− 2

mR̄+ 2
, (1.6)

then
(i) sup |A|2 = mR̄ and Mm is an open part of hyperspheres Sm(1/

√
2) or

(ii) sup |A|2 = (m − 1)mR̄+2
m−2 + m−2

mR̄+2
. If the supremum sup |A|2 is attained

at some point of Mm, then Mm is an open part of the generalized Clifford tori
S1(1/

√
2)× Sm−1(1/

√
2).

We should notice that Theorem 1.1–Theorem 1.3 hold for all compact and
complete non-compact proper biharmonic hypersurfaces (submanifolds) in Sn and
Theorem 1.4 holds for all complete non-compact proper biharmonic hypersurfaces
in Sn. For the compact case, integrating both sides of (4.12) and by the assertion
in the last part of the proof of Theorem 1.4, we conclude that if mR̄ ≤ |A|2 ≤
(m − 1)mR̄+2

m−2 + m−2
mR̄+2

, then Mm is an open part of hyperspheres Sm(1/
√
2) or of

the generalized Clifford tori S1(1/
√
2)× Sm−1(1/

√
2).

2. Basic formulas of submanifolds in Sn

Let x : Mm → Sn be a m-dimensional submanifold in an n-dimensional unit
sphere Sn. Let {e1, . . . , em} be a local orthonormal basis of Mm with respect to
the induced metric, {θ1, . . . , θm} are their dual form. Let em+1, . . . , en be the local
orthonormal normal vector field. We make the following convention on the range of
indices: 1 ≤ i, j, k, l, s ≤ m, m+ 1 ≤ α, β ≤ n. Then the structure equations are

dx =
∑
i

θiei, (2.1)

dei =
∑
j

θijej +
∑
j,α

hαijθjeα − θix, (2.2)

deα = −
∑
i,j

hαijθjei +
∑
β

θαβeβ. (2.3)

The Gauss equations are

Rijkl = (δikδjl − δilδjk) +
∑
α

(hαikh
α
jl − hαilh

α
jk), (2.4)

m(m− 1)(R− 1) = m2H2 − |A|2, (2.5)

where |A|2 =
∑

i,j,α(h
α
ij)

2, H⃗ =
∑

αH
αeα, Hα = 1

m

∑
k h

α
kk, H = |H⃗|, R is the

normalized scalar curvature of Mm.
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The first covariant derivatives hαijk and the second covariant derivatives hαijkl
of hαij are defined by∑

k

hαijkθk = dhαij +
∑
k

hαkjθki +
∑
k

hαikθkj +
∑
β

hβijθβα, (2.6)

∑
l

hαijklθl = dhαijk +
∑
l

hαljkθli +
∑
l

hαilkθlj +
∑
l

hαijlθlk +
∑
β

hβijkθβα. (2.7)

Then, we have the Codazzi equations and the Ricci identities

hαijk = hαikj , (2.8)

hαijkl − hαijlk =
∑
s

hαsjRsikl +
∑
s

hαisRsjkl +
∑
β

hβijRβαkl. (2.9)

The Ricci equations are

Rαβij =
∑
k

(hαikh
β
kj − hβikh

α
kj). (2.10)

Define the first, second covariant derivatives of the mean curvature vector field

H⃗ =
∑

αH
αeα in the normal bundle N(Mm) as follows∑

i

Hα
,i θi = dHα +

∑
β

Hβθβα, (2.11)

∑
j

Hα
,ijθj = dHα

,i +
∑
j

Hα
,jθji +

∑
β

Hβ
,iθβα. (2.12)

Let f be a smooth function on Mm. The first, second covariant derivatives fi, fi,j
and the Beltrami-Laplace of f are defined by

df =
∑
i

fiθi,
∑
j

fi,jθj = dfi +
∑
j

fjθji, ∆f =
∑
i

fi,i. (2.13)

In general, for a matrix A = (aij) we denote by N(A) the square of the norm of
A, that is, N(A) = tr(A · At) =

∑
i,j(aij)

2. Clearly, N(A) = N(TtAT) for any
orthogonal matrix T.

3. Formulas of proper biharmonic submanifolds

From (1.1) and (1.2), we may easily obtain that if φ : Mm → Sn be an
isometric immersion submanifold in a unit sphere Sn with codimension n−m, then
Mm is biharmonic if and only if for any α, i∑

k

Hα
,kk −

∑
i,k,β

Hβhβikh
α
ik +mHα = 0, (3.1)

2
∑
k,β

hβikH
β
,k +m

∑
β

HβHβ
,i = 0. (3.2)

If n−m = 1, Mm is a biharmonic hypersurface if and only if for any i

∆H − (|A|2 −m)H = 0, (3.3)

2
∑
k

hikH,k +mHH,i = 0, (3.4)
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where A is the Weingarten shape operator, H the mean curvature, ∆ the Beltrami-
Laplace operator on Mm defined by (2.13) and H,i is defined by (2.11).

Define tensors

ϕα
ij = hαij −Hαδij , (3.5)

σ̃αβ =
∑
i,j

ϕα
ijϕ

β
ij , σαβ =

∑
i,j

hαijh
β
ij . (3.6)

Then the ((n−m)× (n−m))-matrix (σ̃αβ) is symmetric and can be assumed to be
diagonized for a suitable choice of em+1, . . . , en. We set

σ̃αβ = σ̃αδαβ . (3.7)

By a direct calculation, we have∑
k

ϕα
kk = 0, σ̃αβ = σαβ −mHαHβ, |ϕ|2 =

∑
α

σ̃α = |A|2 −mH2, (3.8)

∑
i,j,k,α

hβkjh
α
ijh

α
ik =

∑
i,j,k,α

ϕβ
kjϕ

α
ijϕ

α
ik + 2

∑
i,j,α

Hαϕα
ijϕ

β
ij +Hβ|ϕ|2 +mH2Hβ. (3.9)

From (3.1), we have
∑

k H
αHα

,kk −
∑

i,k,β H
αHβhβikh

α
ik + m(Hα)2 = 0. We take a

suitable choice of em+1, . . . , en, such that σαβ = σαδαβ , then

1

2
∆H2 =

1

2

∑
α

∆(Hα)2 =
∑
α,k

(Hα
,k)

2 +
∑
α,k

HαHα
k,k (3.10)

=|∇⊥H⃗|2 +
∑
α,β

HαHβσαβ −mH2 = |∇⊥H⃗|2 +
∑
α

(Hα)2σα −mH2

≤|∇⊥H⃗|2 +
∑
α

(Hα)2
∑
β

σβ −mH2 = |∇⊥H⃗|2 + (|A|2 −m)H2.

If the codimension n − m = 1, from (3.3), we note that for proper biharmonic
hypersurfaces

1

2
∆H2 = |∇⊥H⃗|2 + (|A|2 −m)H2. (3.11)

Taking covariant derivative for k on (3.2), we have∑
j,β

hβij,kH
β
,j +

∑
j,β

hβijH
β
,jk = −m

2

∑
β

Hβ
,kH

β
,i −

m

2

∑
β

HβHβ
,ik. (3.12)

Setting k = i in (3.12) and taking sum for i, we have∑
i,j,β

hβij,iH
β
,j +

∑
i,j,β

hβijH
β
,ji =− m

2

∑
i,β

(Hβ
,i )

2 − m

2

∑
i,β

HβHβ
,ii

=− m

2
(|∇⊥H⃗|2 +

∑
i,β

HβHβ
,ii) = −m

4
∆H2,

∑
i,j,β

hβijH
β
,ji = −

∑
j,β

m(Hβ
,j)

2 − m

4
∆H2 = −m|∇⊥H⃗|2 − m

4
∆H2. (3.13)
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On the other hand, we have

1

2
∆|A|2 =

∑
i,j,k,α

(hαijk)
2 +

∑
i,j,α

hαij∆hαij = |∇h|2 +
∑
i,j,α

hαij(mHα)i,j

+
∑
α

∑
i,j,k,l

hαij(h
α
klRlijk + hαliRlkjk) +

∑
α,β

∑
i,j,k

hαijh
β
kiRβαjk.

From (3.13), we see that

1

2
∆(|A|2 + 1

2
m2H2) = |∇h|2 −m2|∇⊥H⃗|2 (3.14)

+
∑
α

∑
i,j,k,l

hαij(h
α
klRlijk + hαliRlkjk) +

∑
α,β

∑
i,j,k

hαijh
β
kiRβαjk.

From [15] and [18], we have

Proposition 3.1. Let Mm be a complete Riemannian manifold whose Ricci curva-
ture is bounded from below. If f is a C2-function bounded from above on Mm, then
for any ε > 0, there is a point x ∈ Mm such that

sup f − ε < f(x), |∇f(x)| < ε, ∆f(x) < ε. (3.15)

4. Proof of theorems

Proof of Theorem 1.1. Since for hypersurfaces,H is constant if and only if∇⊥H⃗ =
0, from (3.14), we have

1

2
∆(|A|2 + 1

2
m2H2) =|∇h|2 −m2|∇⊥H⃗|2 +

∑
i,j,k,l

hij(hklRlijk + hliRlkjk) (4.1)

=|∇h|2 + 1

2

∑
i,j

Rijij(λi − λj)
2,

where we choose a local orthonormal basis {e1, . . . , em} such that hij = λiδij . From
(3.11), we see that for constant mean curvature proper biharmonic hypersurfaces
|A|2 = m. Thus, if the sectional curvature is nonnegative, from (4.1), we infer that
Rijij(λi − λj)

2 = 0, that is, (1 + λiλj)(λi − λj)
2 = 0. This implies that Mm has at

most two distinct principal curvatures. From Theorem 4.3 of [2], we know that Mm

is an open part of Sm(1/
√
2) or of the standard products Sm1(1/

√
2)× Sm2(1/

√
2),

where m1 +m2 = m and m1 ̸= m2. This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. From (4.1), Lemmas in [14] or [1] and by a standard cal-
culation (see [1]), we have

1

2
∆(|A|2 + 1

2
m2H2) =|∇ϕ|2 + |ϕ|2(m(H2 + 1)− m(m− 2)√

m(m− 1)
H|ϕ| − |ϕ|2). (4.2)

Since Mm is proper biharmonic hypersurface with constant mean curvature, we have
|A|2 = m. From (4.2) and the assumption of Theorem 1.2, we see that the right

hand side of (4.2) is nonnegative. Thus |ϕ|2(m(H2 +1)− m(m−2)√
m(m−1)

H|ϕ| − |ϕ|2) = 0.

This implies that the equalities in Lemma of [1] hold. Thus we see that Mm has
at most two distinct principal curvatures and the multiplicities of the two distinct
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principal curvatures are 1 and m− 1. From Theorem 4.3 of [2], we know that Mm

is an open part of Sm(1/
√
2) or of the standard products S1(1/

√
2)× Sm−1(1/

√
2).

This completes the proof of Theorem 1.2. �

Proof of Theorem 1.3. From (2.10), we have

∑
α,β,k

(Rβαjk)
2 =

∑
α,β,i,j,k

(hβjih
α
ik − hβkih

α
ij)Rβαjk =

∑
α,β,i,j,k

hβjih
α
ikRβαjk

−
∑

α,β,i,j,k

hβkih
α
ijRβαjk = −2

∑
α,β

∑
i,j,k

hαijh
β
kiRβαjk.

Thus, we have

∑
α,β

∑
i,j,k

hαijh
β
kiRβαjk = −1

2

∑
α,β,k

(Rβαjk)
2 = −1

2

∑
α,β,j,k

(
∑
l

hβjlh
α
lk −

∑
l

hαjlh
β
lk)

2 (4.3)

=− 1

2

∑
α,β,j,k

(
∑
l

ϕβ
jlϕ

α
lk −

∑
l

ϕα
jlϕ

β
lk)

2 = −1

2

∑
α,β

N(ÃαÃβ − ÃβÃα),

where Ãα := (ϕα
ij) = (hαij −Hαδij).

From (2.4), (2.10), (3.6), (3.8), (3.9) and (4.3), we have

∑
α

∑
i,j,k,l

hαij(h
α
klRlijk + hαliRlkjk) (4.4)

=m|ϕ|2 −
∑
α,β

∑
i,j,k,l

hαijh
β
ijh

α
lkh

β
lk +m

∑
α,β

∑
i,j,k

Hβhβkjh
α
ijh

α
ik +

∑
α,β,i,j,k

hαjih
β
ikRβαjk

=m|ϕ|2 −
∑
α,β

σ2
αβ +m

∑
α,β

∑
i,j,k

Hβϕβ
kjϕ

α
ijϕ

α
ik + 2m

∑
α,β

∑
i,j

HαHβϕα
ijϕ

β
ij

+m
∑
β

(Hβ)2|ϕ|2 +m2H2
∑
β

(Hβ)2 − 1

2

∑
α,β

N(ÃαÃβ − ÃβÃα)

=m|ϕ|2 −
∑
α,β

σ̃2
αβ +mH2|ϕ|2 +m

∑
α,β

∑
i,j,k

Hβϕβ
kjϕ

α
ijϕ

α
ik

− 1

2

∑
α,β

N(ÃαÃβ − ÃβÃα).

For a fixed α,m + 1 ≤ α ≤ n, we can take a local orthonormal frame field
{e1, . . . , em} such that hαij = λα

i δij . Then, ϕ
α
ij = µα

i δij with µα
i = λα

i −Hα,
∑
i
µα
i = 0.

Let
∑
i
(ϕβ

ii)
2 = τβ. Then τβ ≤

∑
i,j
(ϕβ

ij)
2 = σ̃β. Since

∑
i
ϕβ
ii = 0,

∑
i
µα
i = 0 and∑

i
(µα

i )
2 = σ̃α. From Lemma 3.3 of [8] and Lemma 2.5 of [17] we have that
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∑
α,β

∑
i,j,k

Hαϕα
ijϕ

β
kjϕ

β
ik =

∑
β,α

∑
i,j,k

Hβϕβ
ijϕ

α
kjϕ

α
ik =

∑
α,β

Hβ
∑
i

ϕβ
ii(µ

α
i )

2 (4.5)

≥− m− 2√
m(m− 1)

∑
α,β

|Hβ|σ̃α
√
τβ ≥ − m− 2√

m(m− 1)

∑
α

σ̃α
∑
β

|Hβ|
√

σ̃β

≥− m− 2√
m(m− 1)

|ϕ|2
√∑

β

(Hβ)2
∑
β

σ̃β = − m− 2√
m(m− 1)

|H||ϕ|3.

From the well known inequality of Lemma 1 in [9], (3.6), (3.7), we have

−
∑
α,β

σ̃2
αβ−

∑
α,β

N(ÃαÃβ − ÃβÃα) = −
∑
α

σ̃2
α −

∑
α,β

N(ÃαÃβ − ÃβÃα) (4.6)

≥−
∑
α

σ̃2
α − 2

∑
α ̸=β

σ̃ασ̃β = −2(
∑
α

σ̃α)
2 +

∑
α

σ̃2
α

≥− 2|ϕ|4 + 1

n−m
(
∑
α

σ̃α)
2 = −(2− 1

n−m
)|ϕ|4.

Therefore, from (3.14), (4.3)–(4.6), we have

1

2
∆(|A|2 + 1

2
m2H2) ≥ |∇h|2 −m2|∇⊥H⃗|2 (4.7)

+ |ϕ|2{m+mH2 − m− 2√
m(m− 1)

mH|ϕ| − (2− 1

n−m
)|ϕ|2}.

From (1.5), we see that |A|2 ≤ m. Since the mean curvature vector field is parallel,

that is ∇⊥H⃗ = 0, we know that H is nonzero constant, by (3.10), we have |A|2 = m.
From (1.5) again, we have |ϕ|2 ≤ BH,n−m. Thus, the right hand side of (4.7) is

nonnegative. We conclude from (4.7) that |ϕ|2{m+mH2 − m−2√
m(m−1)

mH|ϕ| − (2−
1

n−m)|ϕ|2} = 0. Thus, |ϕ|2 = 0 or m+mH2 − m−2√
m(m−1)

mH|ϕ| − (2− 1
n−m)|ϕ|2 = 0.

In the first case, Mm is totally umbilical and |A|2 = mH2. Since |A|2 = m, we have
m = mH2 and H = 1. From Theorem 2.10 of [2], we know that Mm is a minimal
submanifold of a small hypersphere Sn−1(1/

√
2) ⊂ Sn. In the second case, Mm is

not totally umbilical and the equalities in (4.7), (4.6), (4.5) and Lemma 1 of [9] hold.
Thus, we have ∇h = 0, (n−m)

∑
α σ̃

2
α = (

∑
α σ̃α)

2, that is

σ̃m+1 = · · · = σ̃n, (4.8)

N(ÃαÃβ − ÃβÃα) = 2N(Ãα)N(Ãβ), α ̸= β, (4.9)

and ∑
β

|Hβ|
√

σ̃β = |H||ϕ|. (4.10)

From (4.8), (4.10) and the assumption n − m ≥ 2, we have
√
σ̃m+1

∑
β |Hβ| =√∑

β(H
β)2

√∑
β σ̃β =

√
(n−m)σ̃m+1

√∑
β(H

β)2. Since Mm is not totally um-

bilical, we have σ̃m+1 ̸= 0. Thus, we have (
∑

β |Hβ|)2 = (n − m)
∑

β(H
β)2, that
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is,

|Hm+1| = · · · = |Hn|. (4.11)

From Lemma 1 of [9], we know that at most two of Ãα = (ϕα
ij), α = m+1, · · · , n are

different from zero. If all of Ãα = (ϕα
ij) are zero, which is a contradiction with Mm

is not totally umbilical. If only one of them, say Ãα, is different from zero, which is
contradiction with (4.8). Therefore, we may assume that Ãm+1 = λÃ, Ãm+2 = µB̃,

λ, µ ̸= 0, Ãα = 0, α ≥ m+ 3, where Ã and B̃ are defined in Lemma 1 of [9]. From
(4.10), we have (

√
2λ|Hm+1| +

√
2µ|Hm+2|)2 = H2|ϕ|2 =

∑
α(H

α)2(2λ2 + 2µ2).
Thus, from (4.11), we have (Hm+1)2(λ + µ)2 = (n −m)(Hm+1)2(λ2 + µ2), that is,
(Hm+1)2[(n −m − 1)λ2 − 2λµ + (n −m − 1)µ2] = 0. Since λ, µ ̸= 0, we infer that

Hm+1 = 0. Thus, from (4.11), we have Hα = 0,m+1 ≤ α ≤ n, that is, H⃗ = 0, Mm

is a minimal submanifold in Sn. This is a contradiction with that Mm is a proper
biharmonic submanifold in Sn. We complete the proof of Theorem 1.3. �

Proof of Theorem 1.4. Since the scalar curvature m(m − 1)R is constant and

R̄ = R− 1 ≥ 0, from (1.6), (2.5), (3.14), (4.2) and |∇h|2 ≥ m2|∇⊥H⃗|2 ( see Lemma
3.2 of [13]), by a standard calculation, we have

3

4
∆|A|2 ≥|ϕ|2(m(H2 + 1)− m(m− 2)√

m(m− 1)
H|ϕ| − |ϕ|2) (4.12)

≥m− 1

m
(|A|2 −mR̄){m+mR̄− m− 2

m
(|A|2 −mR̄)

− m− 2

m

√
[|A|2 +m(m− 1)R̄](|A|2 −mR̄)} ≥ 0.

From (1.6) and (1.5) of Main Theorem in [12], we know that

Ric ≥m− 1

m
{m(H2 + 1)− m(m− 2)√

m(m− 1)
H|ϕ| − |ϕ|2}

=
m− 1

m
{m+mR̄− m− 2

m
(|A|2 −mR̄)

− m− 2

m

√
[|A|2 +m(m− 1)R̄](|A|2 −mR̄)} ≥ 0.

Therefore, we know that the Ricci curvature is bounded from below.
Now we consider the following smooth function onMm defined by f = −(|A|2+

a)−1/2, where a(> 0) is a real number. Obviously, f is bounded, so we can apply
Proposition 3.1 to f . For any ε > 0, there is a point x ∈ Mm, such that at which f
satisfies (3.15). By a simple and direct calculation, we have

f∆f = 3|df |2 − 1

2
f4∆|A|2. (4.13)

From (3.15) and (4.13), we have

1

2
∆|A|2(x) = f−4(x)[3|df(x)|2 − f(x)∆f(x)] < f−4(x)[3ε2 − εf(x)]. (4.14)

Thus, for any convergent sequence {εm} with εm > 0 and limm→∞ εm = 0, there
exists a point sequence {xm} such that the sequence {f(xm)} converges to f0 (we
can take a subsequence if necessary) and satisfies (3.15), hence, limm→∞ εm[3εm −
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f(xm)] = 0. From the definition of supremum and (3.15), we have limm→∞ f(xm) =
f0 = sup f and hence the definition of f gives rise to limm→∞ |A|2(xm) = sup |A|2.

From (4.12) and (4.14), we have

f−4(xm)
3

2
[3ε2m − εmf(xm)] >

3

4
∆|A|2(xm) (4.15)

≥m− 1

m
(|A|2(xm)−mR̄){m+mR̄− m− 2

m
(|A|2(xm)−mR̄)

− m− 2

m

√
[|A|2(xm) +m(m− 1)R̄](|A|2(xm)−mR̄)} ≥ 0.

Putting m → ∞ in (4.15), we have

m− 1

m
(sup |A|2 −mR̄){m+mR̄− m− 2

m
(sup |A|2 −mR̄)

− m− 2

m

√
[sup |A|2 +m(m− 1)R̄](sup |A|2 −mR̄)} = 0.

Thus, we have (i) sup |ϕ|2 = m−1
m (sup |A|2 −mR̄) = 0 and Mm is totally umbilical,

that is, Mm has one distinct principal curvature, from Theorem 4.3 of [2], we know
that Mm is an open part of Sm(1/

√
2), or (ii) m + mR̄ − m−2

m (sup |A|2 − mR̄) =
m−2
m

√
[sup |A|2 +m(m− 1)R̄](sup |A|2 −mR̄) that is,

sup |A|2 = (m− 1)
mR̄+ 2

m− 2
+

m− 2

mR̄+ 2
. (4.16)

From (4.16) and (4.12), we know that |A|2 is a subharmonic function on Mm. If
the supremum sup |ϕ|2 is attained at some point of Mm, by the maximum principle,
we have |A|2 = constant. Thus, (4.12) becomes equality. This implies that the
equalities in Lemma of [1] hold. Thus we see that Mm has two distinct principal
curvatures with multiplicities 1 and m − 1. From Theorem 4.3 of [2], we know
that Mm is an open part of the standard products S1(1/

√
2) × Sm−1(1/

√
2). This

completes the proof of Theorem 1.4. �

5. Conclusions

This article studies the proper biharmonic submanifolds in a unit sphere Sn. If
the submanifolds satisfy certain geometric and rigidity properties, some characteriza-
tions of the two canonical examples of proper biharmonic submanifolds Sn−1(1/

√
2)

and Sm1(1/
√
2)× Sm2(1/

√
2), m1 +m2 = n− 1, m1 ̸= m2 are obtained, which give

some partly affirmative answer to the Conjecture proposed by [2]. We notice that
Theorem 1.1–Theorem 1.3 hold for all compact and complete non-compact proper
biharmonic hypersurfaces (submanifolds) in Sn and Theorem 1.3 generalizes Theo-
rem 1.2 to the case that the codimension n−m ≥ 2. Therefore, we conclude some
new rigidity Theorems of the proper biharmonic hypersurfaces (submanifolds) in
Sn.
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