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EXISTENCE AND ITERATION OF MONOTONE POSITIVE
POLUTIONS FOR MULTI-POINT BVPS OF DIFFERENTIAL

EQUATIONS

Yuji Liu1

By applying monotone iterative methods, we obtain not only the existence of
monotone positive solutions for a kind of multi-point boundary value problems,
but also establish iterative schemes for approximating the solutions. A boundary
value problem that our results can readily apply, whereas the known results in the
current literature do not cover, is presented at the end of the paper.
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1. Introduction

Recently an increasing interest has been observed in investigating the existence
of positive solutions of boundary-value problems. This interest comes from situations
involving nonlinear elliptic problems in annular regions. Erbe and Tang [19] noted
that, if the boundary-value problem

−∆u = F (|x|, u) in R < |x| < R̂

with 



u = 0 for |x| = R, u = 0 for |x| = R̂; or
u = 0 for |x| = R, ∂u

∂|x| = 0 for |x| = R̂; or
∂u
∂|x| = 0 for |x| = R, u = 0 for |x| = R̂

is radially symmetric, then it can be transformed into the so called two-point Sturm-
Liouville problem 




x′′(t) = −f(t, x(t)), 0 ≤ t ≤ 1,
αx(0)− βx′(0) = 0,
γx(1) + δx′(1) = 0.

where α, β, γ, δ are positive constants. Paper [19] may be the first one concerned
with the existence of positive solutions of a boundary value problem. In the latest
ten years, multi-point boundary-value problems ( BVPs for short ) for second order
differential equations with p−Laplacian have gained much attention, see papers [1-
18].
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Ma in [11,12] studied the following BVP




[p(t)x′(t)]′ − q(t)x(t) + f(t, x(t)) = 0, t ∈ (0, 1),
αx(0)− βp(0)x′(0) =

∑m
i=1 aix(ξi),

γx(1) + δp(1)x′(1) =
∑m

i=1 bix(ξi),
(1)

where 0 < ξ1 < · · · < ξm < 1, α, β, γ, δ ≥ 0, ai, bi ≥ 0 with ρ = γβ + αγ + αδ > 0.
By using Green′s functions ( which complicate the studies of BVP(1) ) and Guo-
Krasnoselskii fixed point theorem [7-10], the existence and multiplicity of positive
solutions for BVP(1) were given.

In paper [20], the existence of positive solutions for the m-point boundary-
value problem 




y′′(t) = −f(t, y(t), y′(t)), 0 ≤ t ≤ 1,
αy(0)− βy′(0) = 0,
y(1) =

∑m−2
i=1 αiy(ξi)

and 



y′′(t) = −f(t, y(t), y′(t)), 0 ≤ t ≤ 1,
αy(0) + βy′(0) = 0,
y(1) =

∑m−2
i=1 αiy(ξi)

was considered, where α > 0, β > 0, the function f is continuous, and

f(t, y, y′) ≥ 0, for all t ∈ [0, 1], y ≥ 0 y′ ∈ R.

The presence of the third variable y′ in the function f(t, y, y′) causes some consid-
erable difficulties, especially, in the case where an approach relies on a fixed point
theorem on cones and the growth rate of f(t, y, y′) is sublinear or superlinear. The
approach used in [20] is based on an analysis of the corresponding vector field on
the (y, y′) face-plane and on Kneser′s property for the solution′s funnel.

Recently, many authors studied the existence of multiple positive solutions of
the following BVP consisting of the second order differential equation

[φ(x′(t))]′ + q(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1) (2)

and one of the following boundary conditions

x(0) =
m∑

i=1

aix(ξi), x(1) =
m∑

i=1

bix(ξi)

x(0) =
m∑

i=1

aix(ξi), x′(1) =
m∑

i=1

bix
′(ξi),

x′(0) =
m∑

i=1

aix
′(ξi), x(1) =

m∑

i=1

bix(ξi),

and

x′(0) =
m∑

i=1

aix
′(ξi), x′(1) =

m∑

i=1

bix
′(ξi),

where 0 < ξ1 < · · · < ξm < 1, ai ≥ 0, bi ≥ 0 for all i = 1, · · · ,m, f is defined on
[0, 1]× [0, +∞)×R, φ is called p−Laplacian, see papers [4-6] and [13-18,21].
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To the author′s knowledge, there has been no paper concerning with the com-
putational methods of the following boundary value problems




[p(t)φ(x′(t))]′ + q(t)f(t, x(t), x′(t)) = 0, t ∈ (0, 1),
αx(0)− βx′(0) =

∑m
i=1 aix(ξi),

x′(1) =
∑m

i=1 bix
′(ξi)

(3)

where 0 < ξ1 < · · · < ξm < 1, α, β ≥ 0, ai ≥ 0, bi ≥ 0 for all i = 1, · · · ,m, f
is defined on [0, 1] × [0, +∞) × [0, +∞), p ∈ C1[0, 1] and q ∈ C0[0, 1], φ is called
p−Laplacian, φ(x) = |x|r−2x with r > 1, its inverse function is denoted by φ−1(x)
with φ−1(x) = |x|s−2x with 1/r + 1/s = 1.

The purpose of this paper is to investigate the iteration and existence of pos-
itive solutions for BVP(3). By applying monotone iterative techniques, we will
construct some successive iterative schemes for approximating the solutions in this
paper.

The sequel of this paper is organized as follows: the main result is presented
in Section 2, and some examples are given in Section 3.

2. Main Results

In this section, we first present some background definitions in Banach spaces.
Definition 2.1. Let X be a real Banach space. The nonempty convex closed

subset P of X is called a cone in X if ax ∈ P and x + y ∈ P for all x, y ∈ P and
a ≥ 0 and x ∈ X and −x ∈ X imply x = 0.

Definition 2.2. Let X be a real Banach space and P a cone in X. A map
ψ : P → [0, +∞) is a nonnegative continuous concave functional map provided ψ is
nonnegative, continuous and satisfies ψ(tx + (1− t)y) ≥ tψ(x) + (1− t)ψ(y), for all
x, y ∈ P and t ∈ [0, 1].

Definition 2.3. Let X be a real Banach space. An operator T ; X → X is
completely continuous if it is continuous and maps bounded sets into pre-compact
sets.

Choose X = C1[0, 1]. We call x ¿ y for x, y ∈ X if x(t) ≤ y(t) and x′(t) ≤
y′(t) for all t ∈ [0, 1]. We define the norm

||x|| = max{max
t∈[0,1]

|x(t)|, max
t∈[0,1]

|x′(t)|} for x ∈ X.

It is easy to see that X is a semi-ordered real Banach space. Define the cone in X
by

P = {x ∈ X : x(t) ≥ 0 and is concave and increasing on [0, 1]} .

For a positive number H, denote the subset PH by

PH = {x ∈ P : ||x|| < H} and PH = {x ∈ P : ||x|| ≤ H} .

Suppose that
(A1) α, β ≥ 0, ai ≥ 0, bi ≥ 0 for all i = 1, · · · , m with

∑m
i=1 ai < α, and∑m

i=1 biφ
−1

(
1

p(ξi)
p(1)

)
< 1;

(A2) p ∈ C1([0, 1], (0, +∞));
(A3) f : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞), q : [0, 1] → [0, +∞) are con-

tinuous with q(t)f(t, 0, 0) 6≡ 0 on each sub-interval of [0,1], f(t, x1, y1) ≤ f(t, x2, y2)
for all t ∈ [0, 1], x1 ≤ x2 and y1 ≤ y2.
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Lemma 2.1. Suppose that (A1), (A2) and (A3) hold and x satisfies x ∈
C1[0, 1] with [p(t)φ(x′(t))]′ ≤ 0 on [0, 1]. Then x is concave.

Proof. Suppose x(t0) = maxt∈[0,1] x(t). If t0 < 1, for t ∈ (t0, 1), since
x′(t0) ≤ 0, we have p(t0)φ(x′(t0)) ≤ 0. Then p(t)φ(x′(t)) ≤ 0 for all t ∈ (t0, 1]. Let

τ(t) =

∫ t
t0

φ−1
(

1
p(s)

)
ds

∫ 1
t0

φ−1
(

1
p(s)

)
ds

.

Then τ ∈ C([t0, 1], [0, 1]) and is strictly increasing on [t0, 1] since it is easy to see
that

dτ

dt
=

φ−1
(

1
p(t)

)

∫ 1
t0

φ−1
(

1
p(s)

)
ds

> 0,

τ(t0) = 0 and τ(1) = 1. Thus

dx

dt
=

dx

dτ

dτ

dt
=

dx

dτ

φ−1
(

1
p(t)

)

∫ 1
t0

φ−1
(

1
p(s)

)
ds

implies that
dx

dτ
=

∫ 1

t0

φ−1

(
1

p(s)

)
dsφ−1

(
p(t)φ(x′(t)

)
.

Since
[p(t)φ(x′(t))]′ = −q(t)f(t, x(t), x′(t)) ≤ 0,

we get that φ−1
(

p(t)φ(x′(t)
)

is decreasing as t increases.
Since t is increasing as τ increases, we get that dx

dτ is decreasing as τ increases.
Then x is concave on [0, 1]. If t0 = 1, similarly to above discussion, we get that x is
concave. The proof is completed.

Throughout the paper, δ, a1, b1 and d1 are defined by

δ = φ


 1

∑m
i=1 biφ−1

(
1

p(ξi)
p(1)

)

− 1,

a1 =

∑m
i=1 ai

∫ ξi

0 φ−1
(

1+δ
δp(s)

∫ 1
0 q(u)du

)
ds

α−∑m
i=1 ai

,

b1 =
βφ−1

(
1+δ
δp(0)

∫ 1
0 q(u)du

)

α−∑m
i=1 ai

,

d1 = φ−1

(
1 + δ

δ mint∈[0,1] p(t)

∫ 1

0
q(u)du

)
.

Lemma 2.2. Suppose that (A1) − (A3) hold. If x ∈ X is a solution of
BVP(3), then

x(t) = Bx +
∫ t

0
φ−1

(
p(1)φ(Ax)

p(s)
+

∫ 1
s q(u)f(u, x(u), x′(u))du

p(s)

)
ds (4)
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where

Ax ∈
[
0, φ−1

(∫ 1
0 q(u)f(u, x(u), x′(u))du

δp(1)

)]
(5)

satisfies

Ax =
m∑

i=1

biφ
−1

(
p(1)
p(ξi)

φ(Ax) +

∫ 1
ξi

q(u)f(u, x(u), x′(u))du

p(ξi)

)
(6)

and Bx satisfies

Bx = 1
α−∑m

i=1 ai[∑m
i=1 ai

∫ ξi

0 φ−1

(
p(1)
p(s)φ(Ax) +

∫ 1
s q(u)f(u,x(u),x′(u))du

p(s)

)
ds

+βφ−1

(
p(1)
p(0)φ(Ax) +

∫ 1
0 q(u)f(u,x(u),x′(u))du

p(0)

)]
.

(7)

Proof. Since x is solution of (3), we get

p(t)φ(x′(t)) = p(1)φ(x′(1)) +
∫ 1

t
q(u)f(u, x(u), x′(u))du, t ∈ [0, 1].

Then

x(t) = x(0) +
∫ t

0
φ−1

(
p(1)
p(s)

φ(y′(1)) +

∫ 1
s q(u)f(u, x(u), x′(u))du

p(s)

)
ds.

The BCs in (3) imply that

αx(0)− βφ−1

(
p(1)
p(0)

φ(x′(1)) +

∫ 1
0 q(u)f(u, x(u), x′(u))du

p(0)

)

= x(0)
m∑

i=1

ai

+
m∑

i=1

ai

∫ ξi

0
φ−1

(
p(1)
p(s)

φ(y′(1)) +

∫ 1
s q(u)f(u, x(u), x′(u))du

p(s)

)
ds

and

x′(1) =
m∑

i=1

biφ
−1

(
p(1)
p(ξi)

φ(x′(1)) +

∫ 1
ξi

q(u)f(u, x(u), x′(u))du

p(ξi)

)
. (8)

It follows that

x(0) =
1

α−∑m
i=1 ai

×
[

m∑

i=1

ai

∫ ξi

0
φ−1

(
p(1)
p(s)

φ(y′(1)) +

∫ 1
s q(u)f(u, x(u), x′(u))du

p(s)

)
ds

+βφ−1

(
p(1)
p(0)

φ(x′(1)) +

∫ 1
0 q(u)f(u, x(u), x′(u))du

p(0)

)]
.
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Let

G(c) = c−
m∑

i=1

biφ
−1

(
p(1)
p(ξi)

φ(c) +

∫ 1
ξi

q(u)f(u, x(u), x′(u))du

p(ξi)

)
.

If ∫ 1

ξi

q(u)f(u, x(u), x′(u))du = 0 for each i = 1, · · · ,m,

we get

G(c) =

(
1−

m∑

i=1

biφ
−1

(
1

p(ξi)
p(1)

))
c.

Then G(c) = 0 implies that c = 0. If bi = 0 for all i = 1, · · · ,m, then G(c) = 0
implies that c = 0. If there exists i ∈ {1, · · · ,m} such that

∫ 1

ξi

q(u)f(u, x(u), x′(u))du 6= 0

and there exists j ∈ {1, · · · ,m} such that bj 6= 0, it is easy to see that G(0) 6= 0 and

G(c)
c

= 1−
m∑

i=1

biφ
−1

(
p(1)
p(ξi)

+
1

φ(c)
1

p(ξi)

∫ 1

ξi

q(u)f(u, x(u), x′(u))du

)

and G(c)/c is continuous, increasing on (0, +∞) and on (−∞, 0), respectively. One
sees from (A1) that

lim
c→−∞

G(c)
c

= 1−
m∑

i=1

biφ
−1

(
1

p(ξi)
p(1)

)
> 0, lim

c→0−

G(c)
c

= +∞.

Hence G(c) < 0 for all c ∈ (−∞, 0). On the other hand, it follows from

lim
t→0+

G(c)
c

= −∞

and

G

(
φ−1

(∫ 1
0 q(u)f(u,x(u),x′(u))du

δp(1)

))

φ−1

(∫ 1
0 q(u)f(u,x(u),x′(u))du

δp(1)

)

= 1−
m∑

i=1

biφ
−1

(
1

p(ξi)
p(1)

+
δp(1)∫ 1

0 q(u)f(u, x(u), x′(u))du

1
p(ξi)

∫ 1

ξi

q(u)f(u, x(u), x′(u))du

)

≥ 1−
m∑

i=1

biφ
−1

(
1 + δ

p(ξi)
p(1)

)

= 0
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that there exists unique constant

c0 ∈
[
0, φ−1

(∫ 1
0 q(u)f(u, x(u), x′(u))du

δp(1)

)]
(9)

such that G(c0) = 0. Together with (8), we get that c0 = x′(1) = Ax.
Hence we get that there exist constants Ax satisfying (5) and (6), and Bx

satisfying (7) such that x(t) satisfies (4). The proof is completed.

Lemma 2.3. Suppose that (A1), (A2) and (A3) hold. If x ∈ X is a solution
of BVP(3), then x(t) > 0 for all t ∈ (0, 1).

Proof. Suppose x satisfies (3). It follows from the assumptions that p(t)φ(x′)
is decreasing on [0, 1].

It follows from Lemma 2.1 that x is concave on [0,1]. Then x′ is decreasing on
[0,1]. It follows from Lemma 2.2 that x′(1) ≥ 0. It follows that x is increasing on
[0,1]. Then

x(0)− αx′(0) =
m∑

i=1

aix(ξi) ≥
m∑

i=1

aix(0).

It follows that (
α−

m∑

i=1

ai

)
x(0)− βx′(0) ≥ 0.

We get that x(0) ≥ 0 since (A1) and x′(0) ≥ 0. Hence x(t) > 0 for t ∈ (0, 1]. The
proof is complete.

Define the nonlinear operator T : P → X by

(Tx)(t) = Bx

+
∫ t

0
φ−1

(
p(1)
p(s)

φ(Ax) +

∫ 1
s q(u)f(u, x(u), x′(u))du

p(s)

)
ds

for x ∈ P, where Ax satisfies (6), and Bx satisfies (7).
Lemma 2.4. Suppose that (A1)− (A3) hold. It is easy to show that
(i) Tx satisfies





[p(t)φ((Tx)′(t))]′ + q(t)f (t, x(t), x′(t)) = 0, t ∈ (0, 1),
α(Tx)(0)− β(Tx)′(0) =

∑m
i=1 ai(Tx)(ξi),

(Tx)′(1) =
∑m

i=1 bi(Tx)′(ξi);
(10)

(ii) Ty ∈ P for each y ∈ P ;
(iii) x is a solution of BVP(3) if and only if x is a solution of the operator

equation x = Tx in P ;
(iv) T : P → P is completely continuous;
(v) Tx1 ¿ Tx2 for all x1, x2 ∈ P with x1 ¿ x2.
Proof. The proofs of (i), (ii) and (iii) are simple.
To prove (iv), it suffices to prove that T is continuous on P and T is relative

compact. It is similar to that of the proof of Lemma 2.9 in [18] or Lemmas in [16]
and are omitted.
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To prove (v), it is easy to see that Ax is increasing in x and consequently,
using (A3) and considering Bx as a function of Ax and f we get the monotonicity of
Bx. Suppose x1 ¿ x2, we get that x1(t) ≤ x2(t) and x′1(t) ≤ x′2(t) for all t ∈ [0, 1].
Then one finds that

(Tx1)(t) ≤ (Tx2)(t), (Tx1)′(t) ≤ (Tx2)′(t), t ∈ [0, 1].

It follows that Tx1 ¿ Tx2. The proof is completed.

Theorem 2.1. Suppose that (A1) − (A3) hold. Furthermore, suppose that
there exists a constant A > 0 such that f satisfies

max
t∈[0,1]

f(t, 2A, 2A) ≤ φ(M), t ∈ [0, 1], (11)

where

M = min
{

A

a1 + b1
,

A

d1

}
.

Then BVP(3) has at least one positive solution x ∈ P with

x = lim
n→∞un or x = lim

n→∞ vn,

where

u0(t) = 0, v0(t) = A + At

and

un(t) = (Tun−1)(t), vn(t) = (Tvn−1)(t).

Proof: We first prove that T : P 2A → P 2A. For x ∈ P 2A, one has that

0 ≤ x(t) ≤ 2A, 0 ≤ x′(t) ≤ 2A, t ∈ [0, 1].

Then (11) implies that

0 ≤ f(t, x(t), x′(t)) ≤ f(t, 2A, 2A) ≤ max
t∈[0,1]

f(t, 2A, 2A) ≤ φ(M).



Existence and iteration of monotone positive polutions for multi-point BVPs of differential equations 107

Let Ax and Bx satisfy (6) and (7) respectively. It follows from Lemma 2.2 that Ax

satisfies (5). By the definition of Tx, we get that

0 ≤ (Tx)(t)

= Bx +
∫ t

0
φ−1

(
p(1)
p(s)

φ(Ax) +

∫ 1
s q(u)f(u, x(u), x′(u))du

p(s)

)
ds

=
1

α−∑m
i=1 ai

×
[

m∑

i=1

ai

∫ ξi

0
φ−1

(
p(1)
p(s)

φ(Ax) +

∫ 1
s q(u)f(u, x(u), x′(u))du

p(s)

)
ds

+βφ−1

(
1

p(0)
p(1)φ(Ax) +

∫ 1
0 q(u)f(u, x(u), x′(u))du

p(0)

)]

+
∫ t

0
φ−1

(
1

p(s)
p(1)φ(Ax) +

∫ 1
s q(u)f(u, x(u), x′(u))du

p(s)

)
ds

≤ 1
α−∑m

i=1 ai
×

[
m∑

i=1

ai

∫ ξi

0
φ−1

(
1

δp(s)

∫ 1

0
q(u)φ(M)du +

∫ 1
s q(u)φ(M)du

p(s)

)
ds

+βφ−1

(
1

δp(0)

∫ 1

0
q(u)φ(M)du +

∫ 1
0 q(u)φ(M)du

p(0)

)]

+
∫ t

0
φ−1

(
1

δp(s)

∫ 1

0
q(u)φ(M)du +

∫ 1
s q(u)φ(M)du

p(s)

)
ds

≤ M




∑m
i=1 ai

∫ ξi

0 φ−1
(

1+δ
δp(s)

∫ 1
0 q(u)du

)
ds

α−∑m
i=1 ai

+
βφ−1

(
1+δ
δp(0)

∫ 1
0 q(u)du

)

α−∑m
i=1 ai

+ φ−1

(
1 + δ

δ mint∈[0,1] p(t)

∫ 1

0
q(u)du

)


= M(a1 + b1) + Md1 ≤ 2A,
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and

0 ≤ (Tx)′(t)

= φ−1

(
p(1)
p(t)

φ(Ax) +
1

p(t)

∫ 1

t
q(u)f(u, x(u), x′(u))du

)

≤ φ−1

(
1

δp(t)

∫ 1

0
q(u)φ(aN)du +

1
p(t)

∫ 1

t
q(u)φ(M)du

)

≤ Mφ−1

(
1 + δ

δ mint∈[0,1] p(t)

∫ 1

0
q(u)du

)

= Md1 ≤ A ≤ 2A.

It follows that Tx ∈ P 2A.
By the definitions of u0 and v0, we have

u0(t) ≤ v0(t), u′0(t) ≤ v′0(t), t ∈ [0, 1].

Then u0 ¿ v0. Then Lemma 2.4(v) implies that un ¿ vn for all n = 1, 2, 3, · · · .
Now, we prove that un−1 ¿ un. It suffices to prove that u0 ¿ u1. First, one

has

u1(t) = (Tu0)(t)

=

∑m
i=1 ai

∫ ξi

0 φ−1
(

p(1)
p(s)φ(Au0) + 1

p(s)

∫ 1
s q(u)f(u, a(1− u),−a)du

)
ds

α−∑m
i=1 ai

+
βφ−1

(
1

p(0)p(1)φ(Au0) + 1
p(0)

∫ 1
0 q(u)f(u, 0, 0)du

)

α−∑m
i=1 ai

+
∫ t

0
φ−1

(
1

p(s)
p(1)φ(Au0) +

1
p(s)

∫ 1

s
q(u)f(u, 0, 0)du

)
ds

≥ 0 = u0(t).

Second, we have

u′1(t) = (Tu0)′(t)

= φ−1

(
1

p(t)
p(1)φ(Au0) +

1
p(t)

∫ 1

t
q(u)f(u, 0, 0)du

)

≥ 0 = u′0(t).

It follows that u1(t) ≥ u0(t) and u′1(t) ≥ u′0(t) for all t ∈ [0, 1]. Then u0 ¿ u1.
Hence one has that

u0 ¿ u1 ¿ u2 ¿ · · · ¿ un ¿ · · · . (12)
Now, we prove that vn ¿ vn−1. It suffices to prove that v1 ≤ v0. First, (9)

implies that

0 ≤ Av0 ≤ φ−1

(∫ 1
0 q(u)f(u, v0(u), v′0(u))du

δp(1)

)
.

Sice maxt∈[0,1] f(t, 2A, 2A) ≤ φ(M), t ∈ [0, 1], we get

f(t, v0(t), v′0(t)) = f(t, A + At,A) ≤ f(t, 2A, 2A) ≤ φ(M), t ∈ [0, 1].
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Then

v1(t) = (Tv0)(t)

=

∑m
i=1 ai

∫ ξi

0 φ−1
(

p(1)
p(s)φ(Av0) + 1

p(s)

∫ 1
s q(u)f(u, bu + a, b)du

)
ds

α−∑m
i=1 ai

+
βφ−1

(
1

p(0)p(1)φ(Av0) + 1
p(0)

∫ 1
0 q(u)f(u, bu + a, b)du

)

α−∑m
i=1 ai

+
∫ t

0
φ−1

(
1

p(s)
p(1)φ(Av0) +

1
p(s)

∫ 1

s
q(u)f(u, bu + a, b)du

)
ds

≤
∑m

i=1 ai

∫ ξi

0 φ−1
(

1+δ
δp(s)

∫ 1
0 q(u)f(u, v0(u), v′0(u))du

)
ds

α−∑m
i=1 ai

+
βφ−1

(
1+δ
δp(0)

∫ 1
0 q(u)f(u, v0(u), v′0(u))du

)

α−∑m
i=1 ai

+
∫ t

0
φ−1

(
1 + δ

δp(s)

∫ 1

0
q(u)f(u, v0(u), v′0(u))du

)
ds

≤ M




∑m
i=1 ai

∫ ξi

0 φ−1
(

1+δ
δp(s)

∫ 1
0 q(u)du

)
ds

α−∑m
i=1 ai

+
βφ−1

(
1+δ
δp(0)

∫ 1
0 q(u)du

)

α−∑m
i=1 ai

+
∫ t

0
φ−1

(
1 + δ

δp(s)

∫ 1

0
q(u)du

)
ds




≤ M




∑m
i=1 ai

∫ ξi

0 φ−1
(

1+δ
δp(s)

∫ 1
0 q(u)du

)
ds

α−∑m
i=1 ai

+
βφ−1

(
1+δ
δp(0)

∫ 1
0 q(u)du

)

α−∑m
i=1 ai

+ tφ−1

(
1 + δ

δ mint∈[0,1] p(t)

∫ 1

0
q(u)du

)


= M(a1 + b1) + Md1t

≤ A + At = v0(t).

Second, we have

v′1(t) = (Tv0)′(t)

= φ−1

(
1

p(t)
p(1)φ(Av0) +

1
p(t)

∫ 1

t
q(u)f(u, v0(u), v′0(u))du

)

≤ φ−1

(
1 + δ

δ mint∈[0,1] p(t)

∫ 1

0
q(u)φ(M)du

)

= Mφ−1

(
1 + δ

δ mint∈[0,1] p(t)

∫ 1

0
q(u)du

)

= Md1 ≤ A = v′0(t).
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It follows that v1(t) ≤ v0(t) and v′1(t) ≤ v′0(t) for all t ∈ [0, 1]. Then v0 ≥ v1. Hence
one has that

v0 ≥ v1 ≥ v2 ≥ · · · ≥ vn ≤ · · · . (13)
It follows from (12) and (13) that

0 = u0 ¿ u1 ¿ · · · ¿ un ¿ · · · ¿ vn ¿ · · · ¿ v1 ¿ v0 = At + A.

Since un is a uniformly increasing sequence, it is easy to show that un is equi-
continuous. Then limn→∞ un = u∗ ∈ P satisfies

u0(t) = a(1− t) ≤ u∗(t) ≤ bt + a, Tu∗ = u∗.

Then x = u∗ is a solution of BVP(3). Similarly to above discussion,

lim
n→∞ vn = v∗ ∈ P

satisfies
u0(t) = a(1− t) ≤ v∗(t) ≤ bt + a, Tv∗ = v∗.

Then x = v∗ is a solution of BVP(3). It is easy to see that BVP(3) has unique
solution x in {x ∈ P : 0 ≤ x ≤ At + A} if u∗ = v∗. BVP(3) has multiple solutions if
u∗ 6= v∗. The proof is complete.

Remark 2.1 The quantity Ax is given implicitly, as a root of equation (6),
it must be determined in every step of iteration.

Theorem 2.2. Suppose that (A1) − (A3) hold. Furthermore, suppose that
f satisfies

lim sup
x→0

sup
t∈[0,1]

f(t, 2A, 2A)
φ(A)

< φ

(
min

{
1

a1 + b1
,

1
d1

})
. (14)

Then BVP(3) has at least one positive solution x ∈ P .
Proof. It follows from (14) that there exists a constant A > 0 such that

f(t, 2A, 2A) ≤ φ(A)φ
(

min
{

1
a1 + b1

,
1
d1

})
.

The remainder of the proof is similar to that of the proof of Theorem 2.1 and is
omitted.

3. An example

Now, we present a boundary value problem to which our results can readily
apply, whereas the known results in the current literature do not cover.

Example 3.1. Consider the following BVP



[(x′(t))3]′ + f(t, x(t), x′(t)) = 0, t ∈ (0, 1),
x(0)− x′(0) = 1

2x(1/2),
x′(1) = 1

4x′(1/2).
(15)

Corresponding to BVP(3), one sees that φ(x) = x3 with φ−1(x) = x
1
3 , α = 1, β = 1,

ξ1 = 1/2, a1 = 1/2, b1 = 1/4, q(t) ≡ 1, t ∈ [0, 1], p(t) = 1,

f(t, u, v) =
t

1000000
+

1
24

x3 +
1
24

y3

is nonnegative and continuous.
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One finds that

δ = φ


 1

∑m
i=1 biφ−1

(
1

p(ξi)
p(1)

)

− 1 = 63,

a1 =

∑m
i=1 ai

∫ ξi

0 φ−1
(

1+δ
δp(s)

∫ 1
0 q(u)du

)
ds

α−∑m
i=1 ai

=
2

3
√

63
,

b1 =
βφ−1

(
1+δ
δp(0)

∫ 1
0 q(u)du

)

α−∑m
i=1 ai

=
8

3
√

63
,

d1 = φ−1

(
1 + δ

δ mint∈[0,1] p(t)

∫ 1

0
q(u)du

)
=

4
3
√

63
,

and

M = min

{
A

2
3√63

+ 8
3√63

,
A
4

3√63

}
=

3
√

63A

4
. (16)

It is easy to check that there exists a constant A > 0 such that

f(t, 2A, 2A)
φ(A)

=
t

1000000 + 1
3A3 + 1

3A3

A3
≤ 63

64
, t ∈ [0, 1].

One can check that (A1), (A2), (A3) hold. Then Theorem 2.1 implies that BVP(15)
has at least one positive solution x with x = limn→∞ un or x = limn→∞ vn, where
u0(t) = 0, v0(t) = A + At and un(t) = (Tun−1)(t), vn(t) = (Tvn−1)(t), where T
is defined by

(Tx)(t) = 2

[
1
2

∫ 1/2

0

(
A3

x +
∫ 1

s
)f(u, x(u), x′(u))du

)1/3

ds

+
(

A3
x +

∫ 1

0
f(u, x(u), x′(u))du

)1/3
]

+
∫ t

0

(
A3

x +
∫ 1

s
f(u, x(u), x′(u))du

)1/3

ds

and Ax satisfies

Ax =
1
4

(
A3

x +
∫ 1

1/2
f(u, x(u), x′(u))du

)1/3

for x ∈ C1[0, 1] with x(t) ≥ 0, t ∈ [0, 1].
Remark 3.1. BVP(15) can not be solved by theorems obtained in [11-21].
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