

NEW APPROACH FOR WHEAT GRAIN ELEMENTAL ANALYSIS BASED ON ED(P)-XRFS METHOD

Ramona Nicoleta TURCU^{*1}, Alecs Andrei MATEI², Ion PENCEA³;
Mihai Ovidiu COJOCARU⁴

The paper addresses the concentration measurement of the essential and detrimental elements occurring into three Romanian wheat grain sample using energy dispersive polarized X-ray spectrometry (ED(P)-XRFS). The heavy metals (HMs) concentrations into Romanian wheat grain are below the limits specify by the Commission Regulation and the Food and Agriculture Organization. The paper underpins the adequacy of the ED(P)-XRFS method for assessing the wheat grain macro-mineral, micro-mineral and HMs contents. The novelties addressed are the method and technique used to measure the mineral contents into wheat grain and the data for wheat grains harvested from three areas of Baragan.

Keywords: ED(P)-XRFS, wheat, macro-mineral, micro-mineral heavy metals

1. Introduction

The health risk assessment caused by dietary intake through wheat grain consumption has gained more attention during years [1-5]. It became a matter of evidence that food contamination is an important pathway for the entry of heavy metals (HMs) into the human body [1,2]. The wheat (*Triticum aestivum L.*) is one of the most consumed cereals by human beings and it is one of the main source of nutrients [3]. The global production of wheat grain was more than 750 million metric tons in 2016 [4] and more than 8 million metric tons in Romania [5]. Due to the high consumption of wheat in a variety of food all over the world, wheat gluten, proteins, fibers and elemental composition analysis are required to estimate if it is adequate for human consumption. Wheat flour is the basic ingredient for the preparation of bread, cakes, pasta and other bakery products.

The human life quality depends on the presence of minerals in the daily diet. Ca, Mg, P, K are considered macro minerals, whereas Fe, Zn Cu, Mn, Ni, Se,

¹ Ph.D., Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, Romania, e-mail: ramona.nicoleta.turcu@gmail.com

² Ph.D., Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, Romania, e-mail: alecs.andrei.matei@gmail.com

³ Prof., Faculty of Materials Science and Engineering, University POLITEHNICA of Bucharest, Romania, e-mail: ini.pencea@gmail.com

⁴ Prof., Materials Science and Engineering Faculty, University POLITEHNICA of Bucharest, Romania, e-mail: cojocarumihaiovidiu@yahoo.co.uk

V are defined as essential micro minerals. Some elements are considered as non-essential trace elements e.g., B, Ti, Sb, As, Ba, Ce, Ge, Sr, Rb. The HMs at high concentrations exhibit toxic effects on human body [3, 7-9]. Elements such as P, Ca, Mg, K and Cl are required in large quantities (grams) for a healthy nutrition because they are essential for disease prevention. The K and Mg are essential for maintaining normal cardiac rhythm and normal fluid balance in cells [10]. Ca is involved in contraction and relaxation of muscles while P is essential for growth and renewal of tissues [10]. Fe, Cu, Mn and Zn are essential in the enzymes metabolism. Fe is responsible for good health maintenance and Zn acts as an antioxidant, while Mn plays a vital role in diabetes control [11-13]. Co deficiency cause the decreasing of immune system function [11]. Excessive quantities of Fe, Cu, Mn, Zn, Co can have toxic effects [12-14]. Pb, Hg and Cd are reported as toxic even in trace amounts and they are considered as high-risk factors to human health in general, also it has been shown to have carcinogenic effects [2, 14].

Several papers reported the HMs measurements in wheat grains [15-20], but none of them used ED(P)-XRFS technique. XRFS is a rapid method for accurate and precise elemental analysis used in geochemistry, cement and fuel industries [21-23]. Thus, ED(P)-XRFS has become a reliable, sensitive, quantitative multi-elemental analysis and non-destructive technique. Also, ED(P)-XRFS is suitable for grain food analysis due to its analytical performances and minimal sample preparation. The limit of detection and the limit of quantification of the ED(P)-XRFS technique are greater than that of ICP or AAS, therefore special care should be paid to the measurement uncertainty in the case of ED(P)-XRFS. This study aims to demonstrate the adequacy of the ED(P)-XRFS method for the measurement of the wheat grain mineral composition. Also, this study should be considered as a preliminary endeavor as there is no literature on elemental concentration measurements carried out on wheat grain using ED(P)-XRFS. Besides, there is a lack of information about heavy metal occurrence into Romanian wheat grains. This gap will be easily filled if ED(P)-XRFS will be adopted as a standard method because it is the most efficient one among AAS, ICP, ICP-MS methods.

The novelty addressed by the paper are the method and technique used to measure the heavy metal in wheat grain harvested form the main area of wheat crop in Romanian i.e *Baragan*.

2. Materials and methods

The wheat grain samples were collected from *Baragan*, which is the main wheat-growing area of Romania known. The exact mention of the sampling places is not important for this study and, from commercial reasons, the names of the sampling areas denotes as A1, A2 and A3. The wheat harvesting practice consists

in a preliminary deposition of wheat crop as a batch that contains the crop of about 10 ha. The samples take advantage of this practice and drew a 10x10 mesh whose rectangles were numbered from 0 to 99. Ten rectangles were randomly chosen based on ASTM E 826-85 recommendations [24]. 1 kg of grains was collected from each sampled rectangle using a Vintage sampling probe. Wheat samples were dried in an oven at 105 °C until constant mass was achieved. The wheat specimens were grinded in a Retch type ball mill. Grist specimens were prepared in the form of pressed powder pellets using 12.5g of grist that was mixed with 2.8g of Cereox binder. Subsequently, the mixture was homogenized in the Retch mill using specific balls. 7.65g of mixture was poured in a Specac press die. The die was vibrated to ensure the uniform distribution of the grist at bulk level. The mixture was pressed into a 40mm die diameter using a Specac equipment at 15 tf pressure for 60s.

A Spectro XEPOS equipped with a 3D X-ray polarizing geometry, provided by AMETEK Materials Analysis Division, was used to perform the elemental analysis. The XEPOS analytical domain ranges from Z=11 to Z=92. In this regard, some specimens were analyzed using the Turboquant, FP and Lucas-Tooth analytical method to establish which one is the best. Finally, the Turboquant was selected. Standard deviation and LOQ were the criteria for establishing the best calibration method and the associated specimen sample preparation procedure. The ED(P)-XRFS reported results for each measured concentration is the average of three measurements carried out, in reproductive conditions, on three pellets of the same wheat grain sort.

The Student test was used to estimate the significance of the differences among the concentrations of the same element in different wheat grain sorts. A difference has to be considered as significant if the calculated t-value is greater than the tabulated value for the 0.05 significance level.

The expanded measurement uncertainty (U) was estimated taking into account the GUM procedure [23,25]. The U of each measuring was estimated using an extended coefficient $k = 2$ for the 0.95 confidence level.

3. Results and discussions

The ED(P)-XRFS results obtained on A₁, A₂ and A₃ specimens support the existence of the major elements (Ca, Cl, K, Mg, Si, S, P) and minor elements (Cu, Fe, Mn, Mo, Nb, Ni, Pb, Rb, Sn, Sr, Y, Zn and Zr). In this regard for a better interpretation, the obtained ED(P)-XRFS results were divided into four categories depending on the classification of elements as: 1) macro-minerals; 2) micro-minerals; 3) non-essential trace elements; 4) heavy metals. The concentration values of the Ca, Mg, K, P, Na support their classification as macro-minerals which is in accordance with the literature data [19, 25-28]. The Si, S, Cl have to

be included in this category as their concentrations are comparable to the above-mentioned elements. The micro-minerals are Fe, Zn, Cu, Mn, Se, V. The non-essential trace elements are: As, B, Ti, Sb, Ba, Ce, Ge, Sr, Rb.

Taking into account their toxic effect similarity As, Cr, Ni, Cu, and Zn, were included in the HMs category even that they do not belong to the seventh group of the Mendeleev's Table [29]. Thus, the conventional HMs group consists of: As, Cd, Cr, Cu, Hg, Ni, Pb and Zn. Based on the preceding, the obtained results are given for each category in separate tables. Thus, the concentration of the major elements Ca, Cl, K, Mg, Si, S and P occurring into each wheat grains samples are given in Table 1.

*Table 1.
The concentrations of the macro-elements in wheat grains collected from Romania, Baragan and the assigned measurement uncertainties (U)*

Elements	Sampling area					
	A ₁		A ₂		A ₃	
	Mean [$\mu\text{g/g}$]	U [95%]	Mean [$\mu\text{g/g}$]	U [95%]	Mean [$\mu\text{g/g}$]	U [95%]
Ca	830	21	910	20	890	22
Mg	420	16	405	14	438	17
K	6780	60	7350	58	7250	64
P	3460	62	3610	66	3820	64
Si	1040	28	950	28	1110	27
Cl	540	14	570	13	530	14
S	1190	24	1070	22	1280	22

Grain cereals taken from zone A3 showed the highest concentrations of Mg (438 $\mu\text{g/g}$), P (3820 $\mu\text{g/g}$), Si (1110 $\mu\text{g/g}$) and S (1280 $\mu\text{g/g}$) as compared to the other two areas. Wheat grain taken from the second zone provided the highest concentration of K (7350 $\mu\text{g/g}$), Cl (570 $\mu\text{g/g}$) and Ca (910 $\mu\text{g/g}$) and the lowest concentration of Mg, S and Si. The t test indicates significant differences in the wheat grain types with respect to the concentration of Ca, K, Mg, Si and P. The concentrations of the micro mineral elements are given in Table 2.

The HMs concentrations into wheat samples are quite similar as shown in Table 2. Wheat sampled from 3rd area has the highest concentration values for the following elements: Cu (17 $\mu\text{g/g}$), Fe (52 $\mu\text{g/g}$), Mn (22 $\mu\text{g/g}$), and Zn (27 $\mu\text{g/g}$). Wheat sampled from 2nd area shows the highest values for the concentration of Sn (16 $\mu\text{g/g}$) and the smallest values for the concentration of Fe (41 $\mu\text{g/g}$), Mn (18 $\mu\text{g/g}$) and Zn (27 $\mu\text{g/g}$). The Mn, Ni, Fe, Sn, Zn and Zr concentrations do not differ significantly between wheat grains from different areas (Table 2). The concentration values of As, Cd and Hg were below quantification limits. The t test applied to the HMs concentrations has shown that the concentration values of the same element into three samples do not significantly differ.

Table 2
The concentrations of the micro-elements in wheat grains collected from Romania, Baragan and the assigned measurement uncertainties (U)

Elements	A ₁		A ₂		A ₃	
	Mean [$\mu\text{g/g}$]	U [95%]	Mean [$\mu\text{g/g}$]	U [95%]	Mean [$\mu\text{g/g}$]	U [95%]
Cu	15	3	14	3	17	8
Fe	46	2	41	3	52	10
Mn	19	3	18	3	22	3
Sn	15	4	16	3	14	3
Zn	28	3	27	3	31	4
Zr	32	0.5	31	1	29	1

Table 3
The concentrations of the heavy metals in wheat grains collected from Romania, Baragan and the assigned measurement uncertainties (U)

Elements	A ₁		A ₂		A ₃	
	Mean [$\mu\text{g/g}$]	U [95%]	Mean [$\mu\text{g/g}$]	U [95%]	Mean [$\mu\text{g/g}$]	U [95%]
As	0.45	0.10	0.51	0.09	0.43	0.09
Cd	0.10	0.05	0.11	0.05	0.10	0.05
Cu	3.4	0.15	3.5	0.1	3.4	0.15
Hg	<0.05	-	-	-	-	-
Ni	1.2	0.5	1.3	0.7	1.7	0.7
Pb	0.3	0.1	0.34	0.07	0.3	0.1
Zn	28	8	27	8	31	7

HMs average concentrations in wheat samples do not exceed the tolerance limits (Table 4) [1]. In this case, further measurement has to be performed. According to the international legislation on wheat grain and foodstuff (Table 3) [2, 3, 29, 30], the Ni, Pb, Sn concentrations were below the tolerance limits.

Table 4
Permitted levels of heavy metals in wheat ($\mu\text{g/g}$)

Criteria	Hg	As	Cd	Cr	Pb	Cu	Zn	Ni
European Commision (EC 2001)	-	-	0.24	-	0.24	-	-	-
Food and Agriculture Organization and World Health Organization (FAO/WHO 1984)	-	-	0.21	0.02	0.43	3.0	27.4	1.63
Agricultural standard in China (NY861-2004)	0.02	0.7	0.1	1.0	0.4	10	50	-
Chinese Hygiene Standard for wheat (GB2762-2012)	0.02	0.5	0.1	1.0	0.2	-	-	1.0

The average elemental concentration of tested wheat samples is in fair agreement with those reported by different surveys conducted in different countries (Table 5).

Table 5

Reported data for wheat grain concentration [$\mu\text{g/g}$]

Fe	Mn	Zn	Cu	As	Cd	Pb	Literature source
41-52	18-22	27-31	3.4-3.5	0.43-0.51	0.10-0.11	0.3-0.34	This study
-	-	12.06-80.33	2.43-6.83	0.029-0.086	0.006-0.179	0.017-1.158	[2]
28.8-50.8	-	13.5-34.5	-	-	-	-	[27]
8.5-84.1	-	4.6-41.4	-	-	-	-	[28]
21.4-62.5	28.4-83.7	7.8-56.4	1.25-6.93	-	-	-	[3]

Fe, Cu, Zn and Mn concentrations are close to the values reported in the literature as shown in Table 3, The Cu, Mn and Fe concentrations measured in this study definitely fall in the high concentration range while Zn falls in the middle.

The average concentration values of HMs into analyzed samples are of the same order with the quantification limits of the ED(P)-XRFS calibration curves. Therefore, the comparison of the measured values to the permitted limits (Table 4) is critical due to the great Us assigned to these results. Albeit with, the ED(P)-XRFS results show that the HMs contents are of the same order to the analyzed samples, but more important, the HMs contents curve measured more accurate by improving the LOQ of the XEPOS calibration curves.

6. Conclusions

The occurring pattern for wheat grains from all sites is Mn > Fe > Zn > Sn > Cu > Zr > Y > Ni > Rb > Sr > Mo > Nb > Pb.

The concentrations of the essential trace elements Zn, Cu, Mn and Fe which are necessary for maintain the life process are consistent with the allowable limits.

The achieved knowledge and results attest the ED(P)-XRF as a candidate for the most efficient method for fast screening of the mineral content into wheat grains.

The t tests show that there are significant differences between the sites regarding the concentration of Ca, K, Mg, Si and P. The test carried on concentration of heavy metals attest that there are no significant differences among the tested wheat grains.

The measured concentrations of HMs in wheat grains collected from three different sites.

Further work has to be done to improve the limit of quantification and the exactness of the ED(P)-XRF for the HMs measurement developing of a new

specimen preparation method of the melted bead type. Also, the developing of a new specimen preparation method dedicated to wheat have to be considered. Secondly, a more adequate calibration method dedicated to wheat grains have to be developed.

REFERENCE

1. *Lei L., Liang D., Yu D., Chen Y., Song W., Li J.* "Human health risk assessment of heavy metals in the irrigated area of Jinghui, Shaanxi, China, in terms of wheat flour consumption", *Environmental Monitoring and Assessment*, 2015, 187(10): 647;
2. *Huang M., Zhou S., Sun B., Zhao Q.* "Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan", *China, Science of the Total Environment*, 2008, 405(1-3), pp. 54-61;
3. *Gonzalo M.A. Bermudez, Raquel Jasan, Rita Plá, María Luisa Pignata* "Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption", *Journal of Hazardous Materials*, 2011, 193, pp. 264–271;
4. <https://www.romania-insider.com/romania-registers-10-year-record-yield-wheat-production/> accesed July 14:00, 2017;
5. <http://www.igc.int/downloads/gmrsummary/gmrsumme.pdf> accesed July 14:30, 2017
6. *Biljana Skrbic, Svetlana Cupic* "Toxic and essential elements in soft wheat grain cultivated in Serbia", *European Food Research and Technology*, 2005, 221, pp.361–366;
7. *Stefanescu I. A.*, Bioaccumulation of heavy metals by *Bacillus megaterium* from phosphogypsum waste, *Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry*, 2015, 16 (1), pp. 93-97;
8. *François X. Nshimiyimana, Maria-Ema Faciu, Abdellah El Abidi, Souad El Blidi, Mohamed Fekhaoui, Irina Loredana Ifrim, Abdelmajid Soulaymani, Gabriel Lazar* "Analysis of seasonal variation on degree of contamination with heavy metals in Aarjate village, Morocco. An index approach", *Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry*, 2014, 15 (4), pp.337-344;
9. *EFSA - European Food Safety Authority, Scientific Committee on Food*, "Tolerable Upper Intake Levels for Vitamins and Minerals". 2006;
10. *Khalid Siddiqui, Nahla Bawazeer, and Salini Scaria Joy* "Variation in Macro and Trace Elements in Progression of Type 2 Diabetes", *The Scientific World Journal*, 2014, Article ID 461591, 9 pages, 2014.
11. *Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK.* "A review on role of essential trace elements in health and disease.", *Journal of Dr. NTR University of Health Sciences*, 2015, 4, 75-85;
12. *Nawaz Ul Hassan, Qaisar Mahmood, Amir Waseem, Muhammad Irshad, Faridullah, Arshad Pervez* "Assessment of Heavy Metals in Wheat Plants Irrigated with Contaminated Wastewater", *Polish Journal of Environmental Studies*, 2013, 22(1), 115-123;
13. *Rajesh Kumar Sharma, Madhoolika Agrawal, Fiona M. Marshall* "Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi", *Environmental Pollution*, 2008, 154, 254-263;
14. *Holger Kirchmann, Lennart Mattsson, Jan Eriksson* "Trace element concentration in wheat grain: results from the Swedish long-term soil fertility experiments and national monitoring program", *Environmental Geochemistry and Health*, 2009, 31, 561–571;

15. *Violeta Ž. Stefanović, Nada K. Filipović, Bogdan M. Jovanović* “Undesirable metals content in wheat of different wheat varieties”, *Acta Periodica Technologica*, **2008**, *39(1-212)*, 69-76;
16. *Tihana Teklic, Zdenko Loncaric, Vlado Kovacevic, Bal Ram Singh*, “Metallic trace elements in cereal grain – a review: how much metal do we eat?”, *Food and Energy Security*, **2013**, *2(2)*, 81–95;
17. *Rennan G. O. Araujo, Samuel M. Macedo, Maria das Graças A. Korn, Maria Fernanda Pimentel, Roy E. Bruns, Sergio L. C. Ferreira*, “Mineral Composition of Wheat Flour Consumed in Brazilian Cities”, *Journal of the Brazilian Chemical Society*, **2008**, *19(5)*, 935-942;
18. *Irina Shtangeeva, Eiliv Steinnes, Syverin Lierhagen* “Macronutrients and trace elements in rye and wheat: Similarities and differences in uptake and relationships between elements”, *Environmental and Experimental Botany*, **2011**, *70*, 259–265;
19. *Muhammad K. Jamali, Tasneem G. Kazi, Muhammad B. Arain, Hassan I. Afridi, Nusrat Jalbani, Ghulam A. Kandhro, Abdul Q. Shah, Jameel A. Baig* “Heavy metal accumulation in different varieties of wheat (*Triticum aestivum L.*) grown in soil amended with domestic sewage sludge”, *Journal of Hazardous Materials*, **2009**, *164*, 1386–1391;
20. *Nicholas G. Paltridge, Paul J. Milham, J. Ivan Ortiz-Monasterio, Govindan Velu, Zarina Yasmin, Lachlan J. Palmer, Georgia E. Guild, James C. R. Stangoulis*, “Energy-dispersive X-ray fluorescence spectrometry as a tool for zinc, iron and selenium analysis in whole grain wheat”, *Plant Soil*, **2012**, *361*, 261–269;
21. *F. Miculescu, I. Pencea, M. Miculescu, I. Antoniac*, “Estimated limits in XRF analysis for measuring heavy metals in human hard tissues”, *Biomaterials, Tissue Engineering & Medical Devices (Biommedd2010)* Sinaia, Romania, **2010**.
22. *ISO/IEC 17025:2005*, “General requirements for the competence of testing and calibration laboratories”, **2005**;
23. *Marco Mattiuzzi and Andrzej Markowicz*, “A modified approach to homogeneity testing at microscale”, IAEA Laboratories Seibersdorf A-2444 Seibersdoti Austria, *JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis*, Vol.42
24. *ASTM E 826 – 85 (Reapproved 1996)*, “Standard Practice for Testing Homogeneity of Materials for Development of Reference Materials1”; **1985**
25. *ISO/IEC Guide 98-3:2008*, “Uncertainty of measurement -- Part 3: Guide to the expression of uncertainty in measurement (GUM: 1995)”, **2008**;
26. *Alina Kabata-Pendias*, “Trace Elements in Soils and Plants”, Fourth Edition, CRC Press, **2010**.
27. *FAO/WHO*, Contaminants, Codex Alimentarius, vol. XVII, Edition 1, FAO/WHO, Codex Alimentarius Commission, Rome, **1984**.
28. *EC European Commission*, Commission Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs, **2006**.
29. *F.J. Zhao, Y.H. Su, S.J. Dunham, M. Rakszegi, Z. Bedo, S.P. McGrath and P.R. Shewry* “Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin”, *Journal of Cereal Science*, **2009**, *49*, 290-295;
30. *Khoshgoftarmash, A. H., R. Shulin, R. Chaney, B. Daneshbakhsh, M. Afyuni*: “Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review.”, *Agronomy for Sustainable Development*. **2010**, *30*, 83–107.