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FINANCIAL DATA ANALYSIS USING NONLINEAR TIME 
SERIES METHODS. FLUCTUATIONS INTERPRETATION 

OF FOREIGN CURRENCY EXCHANGE RATES  

Stefan Cristian CIUCU1, Viorel-Puiu PAUN2,* 

A financial data analysis using the time series method has been performed. 
At the same time a correct interpretation of daily exchange rates fluctuations, for 
both Swiss franc and Euro foreign currencies is presented. By means of powerful 
box-counting algorithm, the global fractal dimensions associated to the nonlinear 
evolutionary processes were calculated. 
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1. Introduction 

For a long time, perhaps decades, the science of complex systems has been 
attempting to provide methods of understanding the dynamics of systems where 
conventional methods fail. These methods apply, with excellent results, across the 
various fields, e.g. chaotic dynamics that can be observed in physical and 
chemical systems, biological systems, economic systems, but also in many others 
[1, 2]. There are many systems in which the behaviour of the whole emerges from 
interactions between the parts, e.g. cells in bodies, cars on roads or traders in 
financial markets [3]. Being in similar situations, we try to use appropriate 
techniques and methods [4], in solving the proposed issue by means of this study.  

As a natural continuation, we can affirm that in the real world most 
systems considered self consistent are, de facto, complex systems. By definition, 
the spatially and/or temporally extended nonlinear systems are entitled complex 
systems. As a distinctive look, they are characterized as having collective 
properties associated with the system as a whole, just that are different from the 
characteristic behaviors of the constituent parts [5]. 

In a consecrate language, a dynamical system consists of an abstract phase 
space or state space, whose coordinates describe the dynamical state at any 
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instant. In addition, it is equipped with a dynamical rule, which specifies the 
immediate future trend of all state variables, given only the present values of those 
same state variables. Strictly mathematically speaking, a dynamical system is 
described by a classical “initial value problem”. 

There are two general types of such systems. Firstly, dynamical systems 
can be "deterministic" if there is a unique consequent to every state. Secondly, 
dynamical systems can be "stochastic" or "random" if there is more than one 
consequent chosen from some probability distribution (see for example the 
"perfect" coin toss that has two consequents with equal probability for each initial 
state). 

Another notion extensively used is phase space. In the natural continuation 
of the above statements, phase space is the collection of possible states of a 
dynamical system. A phase space can be finite (e.g. for the ideal coin toss, we 
have two states heads and tails), countably infinite (e.g. state variables are 
integers), or uncountably infinite (e.g. state variables are real numbers). Implicit 
in the notion is that a particular state in phase space specifies the system 
completely. It is all we need to know about the system to have complete 
knowledge of the immediate future. An attractor is simply a state into which a 
system settles (thus dissipation is needed). Thus in the long term, a dissipative 
dynamical system may settle into an attractor. 

Interestingly enough, there is still some controversy on this statement, in 
the mathematics community. A lot of authors adopt a new definition. Thereby the 
attractor is a set in the phase space that has a neighborhood in which every point 
stays nearby and approaches the attractor as time goes to infinity. 

In formal language, a map f is chaotic on a compact invariant set S if f is 
transitive on S (there is a point x whose orbit is dense in S) and f exhibits sensitive 
dependence on S. The same definition can be said in a more accessible manner. 
The Chaos is an effectively unpredictable long time behavior arising in a 
deterministic dynamical system because of sensitivity to initial conditions. It must 
be emphasized that a deterministic dynamical system is perfectly predictable 
given perfect knowledge of the initial condition, and is in practice always 
predictable in the short term. In other words, the key to long-term unpredictability 
is a property known as sensitivity to initial conditions or sensitive dependence on 
the initial conditions. In general, for a dynamical system to be chaotic it must have 
a 'large' set of initial conditions, which are highly unstable. No matter how 
precisely one measures the initial condition in these systems, one’s prediction of 
its subsequent motion goes radically wrong after a short time. 
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2. Theoretical background and mathematical support 

Fractal dimension 
Let N(X, ε) denote the minimum number of balls of radius ε required to 

cover X. Then the fractal dimension [6] is defined as 
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The bound on the fractal dimension we prove here would essentially if the 
limit superior in (1) could be replaced by a straightforward limit. Not an 
exaggerated requirement, the “lim sup” is necessary, as there are simple sets for 
which the limit as ε→0 is inexistent. 

 
Takens theorem (“embedding theorem”) 
Theorem (Takens 1981). Let M be a compact manifold of dimension d.  

For pairs (Ԅ, h), where Ԅ : M → M is a smooth (at least C2) diffeomorphism and  
h : M → R a smooth function, it is a generic property that the (2d +1)-fold 
observation map Hk[Ԅ, h]:M → R2d+1 

defined by 
x → (h(x), h(Ԅ(x)),...,h(Ԅ2d+1(x))) (2)

is an immersion (i.e. Hk is one-to-one between M and its image with both Hk and 
Hk

-1 differentiable). 
The theorem can be applied to time series by taking Ԅ to be the time T 

map of the underlying (continuous time) dynamical system, i.e. Ԅj(x0) = x(jT), 
where x(·) is the trajectory starting at x0. The reconstruction that is then provided 
is ‘accurate’ in two ways, i) and ii).  
i).The first is topological: the map Hk is one-to-one between M and its image in 
R2d+1, so that the time delay coordinates 

[h(x(0)),h(x(T)),...,h(x(2dT))] (3)
can be guaranteed to distinguish between points on M . 
ii).The second is dynamical: the time T map on M is equivalent to a shift on the 
time series in ‘delay coordinate space’, 

[h(x(0)), h(x(T)), ..., h(x(2dT )), h(x((2d +1)T )),  h(x((2d +2)T)) ...,] 
is [h(x(0)), Hk(x(T)),  h(x((2d +2)T)) ...,] 

and [h(x(T)), ..., h(x(2dT )), h(x((2d +1)T ))]=Hk(x(T)) 
(4)

so we can hope to use these induced dynamics to obtain properties of the time T 
map on M. Since Hk is a diffeomorphism (its inverse is differentiable) this 
reconstruction preserves the dimension of any invariant set and the Lyapunov 
exponents of the flow [7, 8]. 
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The state of a dynamical system at any time can be specified by a state-
space vector where the coordinates of the vector are the freedom independent 
degrees of the system [9]. 

The “embedding theorem” establishes that, when there is only a single 
measured quantity from a dynamical system, it is possible to reconstruct a state 
space that is equivalent to the original (but unknown) state space composed of all 
the dynamical variables [10, 11]. 

The embedding theorem states that if the system produces orbits in the 
original state space that lie on a geometric object of dimension dg (which need not 
be integer), then the object can be unambiguously seen without any spurious 
intersections of the orbit in another space of integer dimension dg > 2d, or larger, 
comprised of coordinates that are (almost) arbitrary nonlinear transformations of 
original state-space coordinates [12, 13]. 

Regarding the nature of the orbits, the Lyapunov exponents measure the 
rate at which nearby orbits converge or diverge. Not that this is something wrong, 
but there are as many Lyapunov exponents as there are dimensions in the state 
space of the system. Essentially, the largest is usually the most important. 

3. Results and discussion 

After all, what is practically a time series analysis? Without being a 
rhetorical question we can say that this is the application of dynamical systems 
techniques to a data series, usually obtained by "measuring" the value of a single 
observable as a function of time. The major tool in a dynamicist's toolkit is "delay 
coordinate embedding" which creates a phase space portrait from a single data 
series. It seems remarkable at first, but one can reconstruct a picture topologically 
equivalent to the full attractor in three-dimensional space (x1, x2, x3), by measuring 
only one of its coordinates. In other words, it can be said that we start from x(t), 
and plot the delay coordinates (x1=x(t), x2=x(t+ τ ), x3=x(t+ τ2 )) for a fixed τ . 

The idea of using delay coordinates (derivatives) in time series modeling 
is nothing new in numerical simulation. It goes back at least to the paper of Yule, 
who in 1927 used an autoregressive model to make a predictive model for the 
sunspot cycle [14]. 

Currency exchange rate fluctuations 

Returning to our approach started in this article, we mention that in 
mondial economy history, were such collective modes of fluctuation, market 
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players would probably know about them. As a self-irony, the economic theory 
says that if many people recognized these patterns, the actions they would take to 
exploit them would quickly nullify the patterns. Market participants would 
probably not need to know chaos theory for this to happen [15]. 
{{"2015Jan", 1.094}, {"2014Dec", 1.2026}, {"2014Nov",   1.2027}, {"2014Oct", 1.2078}, 
{"2014Sep", 1.2076}, {"2014Aug",   1.2118}, {"2014Jul", 1.215}, {"2014Jun", 1.2181}, 
{"2014May",   1.2204}, {"2014Apr", 1.2189}, {"2014Mar", 1.2177}, {"2014Feb",   1.2212}, 
{"2014Jan", 1.2317}, {"2013Dec", 1.2245}, {"2013Nov",   1.2316}, {"2013Oct", 1.2316}, 
{"2013Sep", 1.2338}, {"2013Aug",   1.2338}, {"2013Jul", 1.2366}, {"2013Jun", 1.2322}, 
{"2013May",   1.2418}, {"2013Apr", 1.2199}, {"2013Mar", 1.2266}, {"2013Feb",   1.2298}, 
{"2013Jan", 1.2288}, {"2012Dec", 1.2091}, {"2012Nov",   1.2052}, {"2012Oct", 1.2098}, 
{"2012Sep", 1.2089}, {"2012Aug",   1.2011}, {"2012Jul", 1.2011}, {"2012Jun", 1.2011}, 
{"2012May",   1.2012}, {"2012Apr", 1.2023}, {"2012Mar", 1.2061}, {"2012Feb",   1.2071}, 
{"2012Jan", 1.2108}, {"2011Dec", 1.2276}, {"2011Nov",   1.2307}, {"2011Oct", 1.2295}, 
{"2011Sep", 1.2005}, {"2011Aug",   1.1203}, {"2011Jul", 1.1766}, {"2011Jun", 1.2092}, 
{"2011May",   1.2537}, {"2011Apr", 1.2977}, {"2011Mar", 1.2867}, {"2011Feb",   1.2974}, 
{"2011Jan", 1.2779}, {"2010Dec", 1.2811}, {"2010Nov",   1.3442}, {"2010Oct", 1.3452}, 
{"2010Sep", 1.3089}, {"2010Aug",   1.3413}, {"2010Jul", 1.346}, {"2010Jun", 1.3767}, 
{"2010May",   1.4181}, {"2010Apr", 1.4337}, {"2010Mar", 1.4482}, {"2010Feb",   1.4671}, 
{"2010Jan", 1.4765}, {"2009Dec", 1.5021}, {"2009Nov",   1.5105}, {"2009Oct", 1.5138}, 
{"2009Sep", 1.5148}, {"2009Aug",   1.5236}, {"2009Jul", 1.5202}, {"2009Jun", 1.5148}, 
{"2009May",   1.5118}, {"2009Apr", 1.5147}} 

Table1. Matrix of correct values for the EUR / CHF exchange rate  

The matrix of correct values for the EUR / CHF international exchange rate is 
presented in Table 1. On the basis of these values, we will construct the associated time 
series. 

 
Figure 1.  Time series of EUR/CHF currency rate, 2009-2015 
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In Fig. 1, the time series of EUR/CHF currency rate, for 2009-2015 years 
interval, is graphically represented. The same time series of EUR/CHF currency 
rate, according to the data in Table 1 and globally illustrated in Figure 1, is also 
presented in Fig. 2, for different samplings such as at 2 weeks, at 1 month, at 
quarter year, and at 1 year. 

 
a) b) 

 
c) d) 

Figure 2.  The same time series of EUR/CHF currency rate, for different sampling: a) at 2 
weeks; b) at 1 month; c) at quarter year; d) at 1 year 

 
Figure 3.  Time series of EUR/CHF currency rate for four different sampling 
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In Fig. 3 there are four overlapping time series, each for a different time 
period, (biweekly, monthly, quarterly and yearly), between years 2010 and 2015. 
 

 

 

Figure 4.  Time series of CHF-RON Exchange rate for year 2014 

 

 

Figure 5.  Time series of EUR-RON Exchange rate for year 2014 
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In Figs. 4 and 5, the evolutions for two major currencies, Euro and Swiss 
Franc respectively, relative to the Romanian RON, for the full year 2014, are 
presented. The Time series of CHF-RON and EUR-RON Exchange rate (for 12 
months in 2014 year) will be used to obtain the relevant numerical indicators. 
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Figure 6.  Counted boxes vs. log scale of inverted box dimensions, for CHF 
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Figure 7.  Counted boxes vs. log scale of inverted box dimensions, for EUR 
In Figs. 6 and 7, the counted boxes vs. log scale of inverted box 

dimensions, for CHF and EUR, are plotted according to the algorithm used. 
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Both Swiss Franc (CHF) and Euro (EUR) currency evolutions for a fixed 
time period were analyzed. Financial Data was downloaded from the website 
NBR [http://bnr.ro/Exchange-Rates--3727.aspx] for the calendaristic range January 
1st, 2013 - February 5th, 2015. Long-term developments (whole period) of daily 
value, for each currency nominated here (Fig. 8), have been graphically 
represented.  

 

Figure 8.  Time series of EUR and CHF currency rate 

 

In Fig. 8 are simultaneously presented the both time series of EUR and 
CHF currency rate, but re-dimensioned, for a direct correlation analysis. To 
emphasize the parallelism in oscillations of the two currencies, Euro was scaled 
by subtracting the value of the currency difference in average daily rate for each 
currency over the period considered (approximately 0.7 RON). In this figure also 
we can see that the two currencies statistically fluctuate (quasi) in parallel manner. 
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Figure 9.  Time series of EUR and CHF currency rate (short evolution) 

However in the last period (November 2014-February 2015) there has 
recently been a leap of Swiss Franc without any modification or previous visible 
oscillations (see Fig. 9, for short evolution and Fig. 10, for long evolution). 

   

 

 

 

 

 

 

 

 

 

 

Figure 10.  Time series of EUR and CHF currency rate (long evolution) 
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In order to analyze the preliminary variations of the two currencies chosen, 
in view to extract the information that can differentiate two developments, there 
have been used the fractal methods to reduce the complexity. Necessarily, this 
reduction was achieved by evaluating the fractal dimension. 

The evaluation of fractal dimension 

The fractal dimension evaluation has been performed through the use of 
the box-counting method, which allows for a rapid analysis of 2D images on two 
bits (white-black) [16, 17, 18]. A perfected version of this method has been 
employed to investigate the temporal evolution of a currency rate, which has 
oscillations predominantly on the vertical direction [19]. Please note that the same 
database was approached, several years ago for a similar topic, but on USD 
exchange rate fluctuation [20]. 

For this analysis, the currency exchange rates evolution for the year 2014 
(please see the images Fig. 4-“2014-CHF evolution.bmp” and Fig. 5-“2014-EUR 
evolution.bmp”) have been used. From these pictures, the 8-bit images 
(CHF8.bmp and EUR8.bmp) have been extracted for the intended analysis. After 
having imported these images in the developed dedicated software, they are 
subsequently transformed in 2-bit images. Further on, the global fractal 
dimensions are evaluated firstly for CHF (Fig. 6-“Counted boxes vs. log scale of 
inverted box dimensions CHF.bmp”, Fig. 11-“Fractal dimension vs. box counting 
dimensions CHF.bmp”). In a similar manner, the EUR rate is analyzed (Fig. 7-
“Counted boxes vs. log scale of inverted box dimensions EUR.bmp”, Fig. 12-
“Fractal dimension vs. box counting dimensions EUR.bmp”). 
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Figure 11.  Fractal dimension vs. box counting dimensions, for CHF 
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Box counting dimensions (for EUR) 

 

Figure 12.  Fractal dimension vs. box counting dimensions, for EUR 

Quantitatively, the differential fractal dimensions are represented in Figs. 
13 and 14, after the two directions, Ox and Oy respectively, according to a new 
calibration method in fractal analysis [19]. Thus we have: 
-with blue, the fractal dimension attached to the temporal evolution is represented 
(the abscissa on the temporal evolution graphic); 
-with red, the fractal dimension attached to the oscillatory behavior of the 
exchange rate is represented (the ordinate on the temporal evolution graphic). 

The final results for CHF and EUR are interpreted in the following figures:  
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Figure 13.  Fractal dimension vs. log scale, for CHF 
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Figure 14.  Fractal dimension vs. log scale, for EUR 

Finally, some interesting observations can be made. The increasing slope 
(red color) for the Swiss Franc (Fig. 13) shows a continuous increase of fractal 
dimension with the covering cells (box) size decreasing, that hides a deeper 
unpredictable fluctuation of the franc against the euro where the fractal 
dimension, on this direction has a value that is much better determined by landing 
in (Figure 14). Although the fractal dimension, determined by this method, for the 
Euro ܦா௎ோ ؆ 1.7 is slightly higher than for the Swiss Franc ܦ஼ுி ؆ 1.67 െ 1.68, 
obvious differences for further predictions are evident. 

4. Conclusions 

The time series method has been successfully applied for financial data 
analysis. The results often indicate that, at least, nonlinear structure is present. 
More specifically, the both Swiss Franc (CHF) and Euro (EUR) currency 
evolutions, for a fixed time period, were analyzed.  

The fractal dimension evaluation has been performed through the use of 
the box-counting algorithm. The global fractal dimensions are evaluated firstly for 
CHF (‘Counted boxes vs. log scale of inverted box dimensions’ and ‘Fractal 
dimension vs. box counting dimensions’) and in a similar manner, the EUR 
exchange rate is also interpreted. Qualitatively speaking, the fractal dimension for 
the Euro is slightly higher than for the Swiss Franc, in accordance with Figs. 13 
and 14. Quantitatively, the determined numerical values are  ܦா௎ோ ؆ 1.7  
respectively ܦ஼ுி ؆ 1.67 െ 1.68.  
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