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FINANCIAL DATA ANALYSIS USING NONLINEAR TIME
SERIES METHODS. FLUCTUATIONS INTERPRETATION
OF FOREIGN CURRENCY EXCHANGE RATES

Stefan Cristian CIUCU', Viorel-Puiu PAUN>"

A financial data analysis using the time series method has been performed.
At the same time a correct interpretation of daily exchange rates fluctuations, for
both Swiss franc and Euro foreign currencies is presented. By means of powerful
box-counting algorithm, the global fractal dimensions associated to the nonlinear
evolutionary processes were calculated.

Keywords: time series, fractal analysis, correlation, attractors, embedding
dimension

1. Introduction

For a long time, perhaps decades, the science of complex systems has been
attempting to provide methods of understanding the dynamics of systems where
conventional methods fail. These methods apply, with excellent results, across the
various fields, e.g. chaotic dynamics that can be observed in physical and
chemical systems, biological systems, economic systems, but also in many others
[1, 2]. There are many systems in which the behaviour of the whole emerges from
interactions between the parts, e.g. cells in bodies, cars on roads or traders in
financial markets [3]. Being in similar situations, we try to use appropriate
techniques and methods [4], in solving the proposed issue by means of this study.

As a natural continuation, we can affirm that in the real world most
systems considered self consistent are, de facto, complex systems. By definition,
the spatially and/or temporally extended nonlinear systems are entitled complex
systems. As a distinctive look, they are characterized as having collective
properties associated with the system as a whole, just that are different from the
characteristic behaviors of the constituent parts [5].

In a consecrate language, a dynamical system consists of an abstract phase
space or state space, whose coordinates describe the dynamical state at any
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instant. In addition, it is equipped with a dynamical rule, which specifies the
immediate future trend of all state variables, given only the present values of those
same state variables. Strictly mathematically speaking, a dynamical system is
described by a classical “initial value problem”.

There are two general types of such systems. Firstly, dynamical systems
can be "deterministic" if there is a unique consequent to every state. Secondly,
dynamical systems can be "stochastic" or "random" if there is more than one
consequent chosen from some probability distribution (see for example the
"perfect” coin toss that has two consequents with equal probability for each initial
state).

Another notion extensively used is phase space. In the natural continuation
of the above statements, phase space is the collection of possible states of a
dynamical system. A phase space can be finite (e.g. for the ideal coin toss, we
have two states heads and tails), countably infinite (e.g. state variables are
integers), or uncountably infinite (e.g. state variables are real numbers). Implicit
in the notion is that a particular state in phase space specifies the system
completely. It is all we need to know about the system to have complete
knowledge of the immediate future. An attractor is simply a state into which a
system settles (thus dissipation is needed). Thus in the long term, a dissipative
dynamical system may settle into an attractor.

Interestingly enough, there is still some controversy on this statement, in
the mathematics community. A lot of authors adopt a new definition. Thereby the
attractor is a set in the phase space that has a neighborhood in which every point
stays nearby and approaches the attractor as time goes to infinity.

In formal language, a map f is chaotic on a compact invariant set S if fis
transitive on S (there is a point x whose orbit is dense in S) and f exhibits sensitive
dependence on S. The same definition can be said in a more accessible manner.
The Chaos is an effectively unpredictable long time behavior arising in a
deterministic dynamical system because of sensitivity to initial conditions. It must
be emphasized that a deterministic dynamical system is perfectly predictable
given perfect knowledge of the initial condition, and is in practice always
predictable in the short term. In other words, the key to long-term unpredictability
is a property known as sensitivity to initial conditions or sensitive dependence on
the initial conditions. In general, for a dynamical system to be chaotic it must have
a 'large' set of initial conditions, which are highly unstable. No matter how
precisely one measures the initial condition in these systems, one’s prediction of
its subsequent motion goes radically wrong after a short time.
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2. Theoretical background and mathematical support

Fractal dimension
Let N(X, ¢) denote the minimum number of balls of radius ¢ required to
cover X. Then the fractal dimension [6] is defined as
. log N(X,¢)
dfl X )= S = 7/
If(X) limsup= 7> 1)
The bound on the fractal dimension we prove here would essentially if the
limit superior in (1) could be replaced by a straightforward limit. Not an
exaggerated requirement, the “lim sup” is necessary, as there are simple sets for
which the limit as e—0 is inexistent.

Takens theorem (“‘embedding theorem”)
Theorem (Takens 1981). Let M be a compact manifold of dimension d.
For pairs (¢, h), where ¢ : M — M is a smooth (at least C°) diffeomorphism and
h : M — R a smooth function, it is a generic property that the (2d +1)-fold
observation map Hy/, hj:M — R**"!
defined by
x = (h(x), (D). h(F"" () ()
is an immersion (i.e. Hy is one-to-one between M and its image with both H; and
Hy! differentiable).
The theorem can be applied to time series by taking ¢ to be the time T
map of the underlying (continuous time) dynamical system, i.e. ¢/(xg) = x(T),
where x(*) is the trajectory starting at xy. The reconstruction that is then provided
is ‘accurate’ in two ways, i) and ii).
i).The first is topological: the map Hj is one-to-one between M and its image in
R?*"! 50 that the time delay coordinates
[A(x(0)), h(x(T))..... h(x(2dT))] 3)
can be guaranteed to distinguish between points on M .
ii). The second is dynamical: the time T map on M is equivalent to a shift on the
time series in ‘delay coordinate space’,
[A(x(0)), h(x(T)), ..., h(x(2dT)), h(x((2d +1)T)), h(x((2d +2)T)) ...,]
is [A(x(0)), H{x(T)), h(x((2d +2)T))...,] “4)
and [A(x(T)), ..., h(x(2dT))), h(x((2d +1)T ))]=Hi(x(T))
so we can hope to use these induced dynamics to obtain properties of the time 7T
map on M. Since H is a diffeomorphism (its inverse is differentiable) this
reconstruction preserves the dimension of any invariant set and the Lyapunov
exponents of the flow [7, §].
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The state of a dynamical system at any time can be specified by a state-
space vector where the coordinates of the vector are the freedom independent
degrees of the system [9].

The “embedding theorem” establishes that, when there is only a single
measured quantity from a dynamical system, it is possible to reconstruct a state
space that is equivalent to the original (but unknown) state space composed of all
the dynamical variables [10, 11].

The embedding theorem states that if the system produces orbits in the
original state space that lie on a geometric object of dimension d, (which need not
be integer), then the object can be unambiguously seen without any spurious
intersections of the orbit in another space of integer dimension d, > 2d, or larger,
comprised of coordinates that are (almost) arbitrary nonlinear transformations of
original state-space coordinates [12, 13].

Regarding the nature of the orbits, the Lyapunov exponents measure the
rate at which nearby orbits converge or diverge. Not that this is something wrong,
but there are as many Lyapunov exponents as there are dimensions in the state
space of the system. Essentially, the largest is usually the most important.

3. Results and discussion

After all, what is practically a time series analysis? Without being a
rhetorical question we can say that this is the application of dynamical systems
techniques to a data series, usually obtained by "measuring" the value of a single
observable as a function of time. The major tool in a dynamicist's toolkit is "delay
coordinate embedding" which creates a phase space portrait from a single data
series. It seems remarkable at first, but one can reconstruct a picture topologically
equivalent to the full attractor in three-dimensional space (x;, x>, x3), by measuring
only one of its coordinates. In other words, it can be said that we start from x(t),
and plot the delay coordinates (x;=x(t), x>=x(t+ 7 ), x3=x(t+ 27 )) for a fixed 7 .

The idea of using delay coordinates (derivatives) in time series modeling
is nothing new in numerical simulation. It goes back at least to the paper of Yule,
who in 1927 used an autoregressive model to make a predictive model for the
sunspot cycle [14].

Currency exchange rate fluctuations

Returning to our approach started in this article, we mention that in
mondial economy history, were such collective modes of fluctuation, market
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players would probably know about them. As a self-irony, the economic theory
says that if many people recognized these patterns, the actions they would take to
exploit them would quickly nullify the patterns. Market participants would
probably not need to know chaos theory for this to happen [15].

{{"2015Jan", 1.094}, {"2014Dec", 1.2026}, {"2014Nov", 1.2027}, {"20140ct", 1.2078},
{"2014Sep”, 1.2076}, {"2014Aug", 1.2118}, {"2014Jul", 1.215}, {"2014Jun", 1.2181},
{"2014May", 1.2204}, {"2014Apr", 1.2189}, {"2014Mar", 1.2177}, {"2014Feb", 1.2212},
{"2014Jan", 12317}, {"2013Dec", 1.2245}, {"2013Nov", 1.2316}, {"20130ct", 1.2316},
{"2013Sep”, 1.2338}, {"2013Aug", 1.2338}, {"2013Jul", 1.2366}, {"2013Jun", 1.2322},
{"2013May", 1.2418}, {"2013Apr", 1.2199}, {"2013Mar", 1.2266}, {"2013Feb", 1.2298},
{"2013Jan", 1.2288}, {"2012Dec", 1.2091}, {"2012Nov", 1.2052}, {"20120ct", 1.2098},
{"2012Sep”, 1.2089}, {"2012Aug", 1.2011}, {"2012Jul", 1.2011}, {"2012Jun", 1.2011},
{"2012May", 1.2012}, {"2012Apr", 1.2023}, {"2012Mar", 1.2061}, {"2012Feb", 1.2071},
{"2012Jan", 1.2108}, {"2011Dec", 1.2276}, {"2011Nov", 1.2307}, {"20110ct", 1.2295},
{"2011Sep”, 1.2005}, {"2011Aug", 1.1203}, {"2011Jul", 1.1766}, {"2011Jun", 1.2092},
{"2011May", 1.2537}, {"2011Apr", 1.2977}, {"2011Mar", 1.2867}, {"2011Feb", 1.2974},
{"2011Jan", 1.2779}, {"2010Dec", 1.2811}, {"2010Nov", 1.3442}, {"20100ct", 1.3452},
{"2010Sep”, 1.3089}, {"2010Aug", 1.3413}, {"2010Jul", 1.346}, {"2010Jun", 1.3767},
{"2010May", 1.4181}, {"2010Apr", 1.4337}, {"2010Mar", 1.4482}, {"2010Feb", 1.4671},
{"2010Jan", 1.4765}, {"2009Dec", 1.5021}, {"2009Nov", 1.5105}, {"20090ct", 1.5138},
{"2009Sep", 1.5148}, {"2009Aug", 1.5236}, {"2009Jul", 1.5202}, {"2009Jun", 1.5148},
{"2009May", 1.5118}, {"2009Apr", 1.5147}}

Tablel. Matrix of correct values for the EUR / CHF exchange rate

The matrix of correct values for the EUR / CHF international exchange rate is
presented in Table 1. On the basis of these values, we will construct the associated time

series.

EUR/CHF currency rate

1.1+ =

1 1 1 1 1 1
2010 2011 2012 2013 2014 2015

Time [months]

Figure 1. Time series of EUR/CHF currency rate, 2009-2015
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In Fig. 1, the time series of EUR/CHF currency rate, for 2009-2015 years
interval, is graphically represented. The same time series of EUR/CHF currency
rate, according to the data in Table 1 and globally illustrated in Figure 1, is also
presented in Fig. 2, for different samplings such as at 2 weeks, at 1 month, at
quarter year, and at 1 year.

2wk

1mo

2011 2012 2013 2014 2015 2010 2011 2012 2013 2014 2015

2010
a) b)
1 quarter year 1yr
15 18
1.4
14
1.3
13
1.2
1.1 1.2
2010 2011 2012 2013 2014 2015 2010 2011 2012 2013 2014
c) d)
Figure 2. The same time series of EUR/CHF currency rate, for different sampling: a) at 2
weeks; b) at 1 month; c) at quarter year; d) at 1 year
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Time series of EUR/CHF currency rate for four different sampling
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In Fig. 3 there are four overlapping time series, each for a different time
period, (biweekly, monthly, quarterly and yearly), between years 2010 and 2015.

2014 - CHF year evolution
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Figure 4. Time series of CHF-RON Exchange rate for year 2014
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Figure 5. Time series of EUR-RON Exchange rate for year 2014
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In Figs. 4 and 5, the evolutions for two major currencies, Euro and Swiss
Franc respectively, relative to the Romanian RON, for the full year 2014, are
presented. The Time series of CHF-RON and EUR-RON Exchange rate (for 12
months in 2014 year) will be used to obtain the relevant numerical indicators.
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Figure 6. Counted boxes vs. log scale of inverted box dimensions, for CHF
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Figure 7. Counted boxes vs. log scale of inverted box dimensions, for EUR

In Figs. 6 and 7, the counted boxes vs. log scale of inverted box
dimensions, for CHF and EUR, are plotted according to the algorithm used.
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Both Swiss Franc (CHF) and Euro (EUR) currency evolutions for a fixed
time period were analyzed. Financial Data was downloaded from the website
NBR [http://bnr.ro/Exchange-Rates--3727.aspx| for the calendaristic range January
Ist, 2013 - February 5th, 2015. Long-term developments (whole period) of daily
value, for each currency nominated here (Fig. 8), have been graphically
represented.

Redimensioned Euro versus Swiss Franc for correlational analysis
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EUR-RON and CHF-EUR Exchange Rates

Figure 8. Time series of EUR and CHF currency rate

In Fig. 8 are simultaneously presented the both time series of EUR and
CHF currency rate, but re-dimensioned, for a direct correlation analysis. To
emphasize the parallelism in oscillations of the two currencies, Euro was scaled
by subtracting the value of the currency difference in average daily rate for each
currency over the period considered (approximately 0.7 RON). In this figure also
we can see that the two currencies statistically fluctuate (quasi) in parallel manner.
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Short evolution of Euro and Swiss Franc
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Figure 9. Time series of EUR and CHF currency rate (short evolution)

However in the last period (November 2014-February 2015) there has
recently been a leap of Swiss Franc without any modification or previous visible
oscillations (see Fig. 9, for short evolution and Fig. 10, for long evolution).

Long evolution of Euro and Swiss Franc
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Figure 10. Time series of EUR and CHF currency rate (long evolution)
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In order to analyze the preliminary variations of the two currencies chosen,
in view to extract the information that can differentiate two developments, there
have been used the fractal methods to reduce the complexity. Necessarily, this
reduction was achieved by evaluating the fractal dimension.

The evaluation of fractal dimension

The fractal dimension evaluation has been performed through the use of
the box-counting method, which allows for a rapid analysis of 2D images on two
bits (white-black) [16, 17, 18]. A perfected version of this method has been
employed to investigate the temporal evolution of a currency rate, which has
oscillations predominantly on the vertical direction [19]. Please note that the same
database was approached, several years ago for a similar topic, but on USD
exchange rate fluctuation [20].

For this analysis, the currency exchange rates evolution for the year 2014
(please see the images Fig. 4-“2014-CHF evolution.bmp” and Fig. 5-“2014-EUR
evolution.bmp™”) have been used. From these pictures, the 8-bit images
(CHF8.bmp and EURS8.bmp) have been extracted for the intended analysis. After
having imported these images in the developed dedicated software, they are
subsequently transformed in 2-bit images. Further on, the global fractal
dimensions are evaluated firstly for CHF (Fig. 6-“Counted boxes vs. log scale of
inverted box dimensions CHF.bmp”, Fig. 11-“Fractal dimension vs. box counting
dimensions CHF.bmp”). In a similar manner, the EUR rate is analyzed (Fig. 7-
“Counted boxes vs. log scale of inverted box dimensions EUR.bmp”, Fig. 12-
“Fractal dimension vs. box counting dimensions EUR.bmp”).
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Figure 11. Fractal dimension vs. box counting dimensions, for CHF



246 Stefan Cristian Ciucu, Viorel-Puiu Paun

5 e
5 Lsp .
g [ " .
Q - -
E laof
B r .
E -
g lLasp
= L]
- L
140 . . .o
==L ® ® ® .17
135} = ++ .
[ . * ., "
ank -
Li0f . wt s,
P s - - * *
r L T T T R M
20 40 60 50 100
Box counting dimensions (for EUR)
Figure 12. Fractal dimension vs. box counting dimensions, for EUR

Quantitatively, the differential fractal dimensions are represented in Figs.
13 and 14, after the two directions, Ox and Oy respectively, according to a new
calibration method in fractal analysis [19]. Thus we have:
-with blue, the fractal dimension attached to the temporal evolution is represented
(the abscissa on the temporal evolution graphic);
-with red, the fractal dimension attached to the oscillatory behavior of the
exchange rate is represented (the ordinate on the temporal evolution graphic).

The final results for CHF and EUR are interpreted in the following figures:

Fractal dimension

log scale (for CHF)

Figure 13. Fractal dimension vs. log scale, for CHF
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Fractal dimension

log scale (for EUR)
Figure 14. Fractal dimension vs. log scale, for EUR

Finally, some interesting observations can be made. The increasing slope
(red color) for the Swiss Franc (Fig. 13) shows a continuous increase of fractal
dimension with the covering cells (box) size decreasing, that hides a deeper
unpredictable fluctuation of the franc against the euro where the fractal
dimension, on this direction has a value that is much better determined by landing
in (Figure 14). Although the fractal dimension, determined by this method, for the
Euro Dgyr = 1.7 is slightly higher than for the Swiss Franc Deyr = 1.67 — 1.68,
obvious differences for further predictions are evident.

4. Conclusions

The time series method has been successfully applied for financial data
analysis. The results often indicate that, at least, nonlinear structure is present.
More specifically, the both Swiss Franc (CHF) and Euro (EUR) currency
evolutions, for a fixed time period, were analyzed.

The fractal dimension evaluation has been performed through the use of
the box-counting algorithm. The global fractal dimensions are evaluated firstly for
CHF (‘Counted boxes vs. log scale of inverted box dimensions’ and ‘Fractal
dimension vs. box counting dimensions’) and in a similar manner, the EUR
exchange rate is also interpreted. Qualitatively speaking, the fractal dimension for
the Euro is slightly higher than for the Swiss Franc, in accordance with Figs. 13
and 14. Quantitatively, the determined numerical values are Dgyg = 1.7
respectively Doy = 1.67 — 1.68.
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