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UAV TARGET TRACKING BASED ON PARALLEL 

TRACKING AND KEY FRAME DETECTION 

Zhenhui WU1, Kunpeng GE2,* 

With the rapid application and development of unmanned aerial vehicles 

(UAVs), UAV target tracking has become one of the hot research directions in the 

field of target tracking. It is widely applied in areas such as pedestrian tracking, 

vehicle tracking, and obstacle avoidance. The UAV target tracker, leveraging its 

advantages of compact size, agile flight capabilities, and extensive coverage, 

effectively mitigates the limitations of traditional target tracking methods in complex 

environments. This paper proposes a novel multi-feature perception UAV target 

tracker with parallel tracking and keyframe detection to address issues such as poor 

robustness and low efficiency encountered by existing UAV trackers in practical 

application scenarios. The paper proposes a novel tracking framework comprising 

three main modules. The first module is a multi-feature-aware fusion tracker designed 

for generating predictive tracking outputs. The second module is an integral sidelobe 

ratio-based evaluator for parallel verification of stimulators. The third module is 

responsible for assessing the quality of response maps, where the ISLR (Integral 

Sidelobe Ratio) evaluator is employed to evaluate the response maps generated by the 

three single-feature trackers. The third module is a twin neural network designed for 

verifying detection predictions and correcting tracking results. Experiments 

demonstrate that, across multiple challenging unmanned aerial vehicle (UAV) image 

sequences, the proposed tracker featuring online two-stage evaluation with multi-cue 

awareness, referred to as MCVT (Multiple Cues-aware Visual Tracker with Online 

Two-Stage Evaluation), outperforms 20 other state-of-the-art trackers in terms of 

tracking accuracy, success rate, and processing time. Additionally, this multi-cue-

aware tracker outperforms single-cue trackers, and the parallel tracking role played 

by the Siamese neural network contributes significantly to improving tracking 

performance.  

Keywords: unmanned aerial vehicle, target tracking, parallel tracking, keyframe 

detection 

1. Introduction 

The problem of target tracking can be traced back to the appearance of the 

first tracking radar station SCR-28 in 1937. It wasn’t until the 1970s, when the 

Kalman filtering theory was successfully applied in the field of target tracking, that 
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the problem of target tracking gradually caught the attention of researchers and 

aroused widespread interest. Target tracking algorithms are widely applied in 

various fields such as military, agriculture, public safety, and urban development. 

Unmanned aerial vehicles (UAVs), referred to as “drones” in this paper, have broad 

applications in many areas, including pedestrian tracking [1], vehicle tracking [2], 

traffic monitoring [3], terrain surveying [4], obstacle avoidance [5], aerial pick-up 

and delivery operations [6], and aerial refueling [7]. As a type of vehicle that does 

not require human piloting, moves swiftly, exhibits high flexibility, and adapts well 

to various complex terrains, drones have become an excellent platform for 

implementing target tracking algorithms. In the aforementioned drone applications, 

visual target tracking plays a pivotal role. Fig. 1 illustrates some applications of 

drones, including traffic monitoring, logistics distribution, power line inspection, 

and terrain survey [8]. 

After extensive research, numerous visual trackers have been proposed in 

the field of unmanned aerial vehicle (UAV) tracking. However, UAV target 

tracking remains a challenging task primarily due to a multitude of constraining 

factors, including target deformation, occlusion, rotation, motion blur, rapid 

motion, and pose variations. Additionally, the vibration of the aircraft itself and the 

limited computational capabilities of the equipment also pose numerous challenges 

for UAV tracking, making it difficult to balance speed, robustness, and accuracy. 

The challenging scenarios are illustrated, where (a) depicts pose variation, (b) 

represents occlusion, (c) signifies deformation, and (d) indicates illumination 

changes: 

Since the development of self-tracking algorithms, it has evolved from 

classical algorithms such as Meanshift [9], Particle filters [10], Kalman filtering, to 

later algorithms based on Correlation filtering. In recent years, artificial intelligence 

has garnered increasing attention, with a proliferation of deep learning-related 

algorithms based on various neural networks. Alongside the development of 

tracking algorithms, related datasets have also become rich and improved, such as 

OTB2015, VOT2016, UAV123, among others. These datasets provide ample basis 

for testing and comparing tracking algorithms. 

This article aims to enhance the representational capacity of images by 

extracting multiple features. By employing multiple features within this tracking 

framework, the robustness of the tracker will be improved, enabling better 

adaptation to more challenging drone tracking scenarios. 

2. The design of the MCVT holistic tracking framework 

The overall framework of the MCVT tracker is illustrated in Fig. 1 From 

this figure, it can be observed that upon receiving a frame of image, the patch 

centered at the predicted position from the previous frame will first be extracted. 
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Subsequently, the MCVT tracker will extract various representative features of this 

patch to generate different response maps. In this project, the tracker selects to 

extract fHOG, CN, and grayscale features to establish three independent response 

maps. After obtaining these response maps, the integral sideband ratios of each map 

will be calculated as inputs to the integral sideband ratio evaluator. Additionally, 

these response maps will be normalized and fused into a fused response map. By 

locating the maximum value positions of fused response maps, the predicted 

positions can be obtained. If the integral sidelobe ratio indicates that the tracking 

result is reliable, then the predicted position will be output as the final result; 

otherwise, a region of interest centered around the predicted position will be 

extracted, triggering further parallel verification. The input region of interest will 

be validated through a Siamese neural network to determine whether it needs 

correction. If the input region of interest doesn’t require correction or if the 

correction results are unreliable, then the tracker will still use the predicted position 

as the output. Otherwise, the tracking result will be corrected. 

In Fig. 1, the green box represents the image patch used for feature 

extraction, with the position of the target in the (k-1)th frame as its center. The blue 

dashed box represents the predicted position. The blue solid line box represents the 

position validated by the parallel Siamese neural networks. The red dashed box 

represents the potential region generated in the correction stage. The red solid line 

box represents the corrected output position. 

Each of the three individual base trackers is trained and updated using 

patches extracted from the previous frame image. The integral sidelobe ratio (ISLR) 

evaluator only requires three independent response maps. Additionally, there is a 

normalized preprocessing step prior to fusion. As shown in Fig. 1, the three 

response maps required by the ISLR evaluator also meet the requirements of the 

evaluator. The output of the tracker can be categorized into three scenarios: (1) Blue 

dotted line: The response map has passed through the ISLR evaluator, where the 

predicted position becomes the output; (2) Blue solid line: The response map didn’t 

pass through the ISLR evaluator, but the image patch extracted through the 

predicted position passed the validation of the Siamese neural network. The output 

remains the predicted position; (3) Red solid line: The response map didn’t pass 

through the integral side lobe ratio evaluator, and the image patch extracted 

simultaneously also didn’t pass the validation of the Siamese neural network. This 

will activate the correction part in the parallel network, resulting in the output being 

the corrected result. 
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Fig. 1. MCVT tracker summary composition 

 

The pseudocode for the MCVT tracker is depicted as shown in Table 1: 

 

Table 1 

Pseudocode for MCVT Tracker 

MCVT Tracker Pseudocode 

Input: Target Position in Frame k-1 

 3 Independent Trackers 

Output: The estimated position at frame k. 
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1 for k=2 to end do  

2    

Extracting the search region centered around the target position from frame k-1 at 

frame k 

3    

Using different features, namely fHOG, grayscale, and CN, to characterize the 

extracted image patches 

4    for Each tracker do 

5       Use formula ( 3.44 ) to calculate the response map 

6       Use formula ( 3.51 ) to calculates the response map sidelobe ratio 

7       Use formula ( 3.48 ) to normalize each response map 

8    end  

9    Use formula ( 3.49 ) to fuse the independent response maps. 

10    

In the k-th frame, predicting the target position (iobj, jobj) by locating the position 

of the maximum value in the fused response map 

11    

According to Fig.1, assessing the quality of the response map using the Integral 

Side lobe Ratio (ISLR) 

12    if 

The Integral Side lobe Ratio (ISLR) evaluator assesses the response map 

through ISLR evaluation then 

13       Using the predicted position (iobj, jobj) as the output 

14    else  

15       Call the Siamese neural network to verify the tracking results 

16       if Validate scores higher than the threshold τ1 then 

17          Use predicted position as output 

18       else  

19          Use formula (3.52) to amend the tracking results 

20       end  

21    end  

22    Use formula (3.43) to update individual tracking modules 

23 end   

 

3. Design of Multi-Feature Perception Tracker 

 

The Multi-Feature Perception Tracker (MCVT) is a fused tracker designed 

to meet the requirements of real-time tracking, swiftly locating the target position 

in each frame. This fused tracker is composed of three fundamental independent 

trackers merged together. In this project, fDSST is utilized as the foundational 

tracker [11]. The distinctions among the three basic trackers depend on the different 

features extracted. During the process of integrating three independent response 

maps, the approach employed by the MCVT tracker involves utilizing the softmax 

formula for normalization as a preprocessing step. 
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3.1 Multi-feature extraction 

In this multi-feature perception tracker, in order to execute the base tracker 

fDSST, features from different cues will be extracted, including its texture, 

grayscale values, and color. The features corresponding to these three cues are 

respectively fHOG, grayscale, and CN, denoted as ℋ, 𝒢, 𝒞 in this paper. 

(1) For the HOG [12] feature, which stands for Histogram of Oriented 

Gradients, it is formed by computing and aggregating histograms of gradient 

directions over local regions of the image to form features. Because the HOG 

feature is extracted over local cells of the image, it exhibits invariance to local 

geometric and photometric transformations, as these transformations only occur at 

larger scales. 

In this study, the tracker employs a type of HOG feature with lower 

dimensionality, namely fHOG. By adopting fHOG instead of HOG, the 

dimensionality of features decreased from 36 dimensions to 31 dimensions without 

significant loss of representational clues. Additionally,𝒥ℋk is used to denote the 

tracker integrated with fHOG features and the fDSST framework in the kth frame. 

Due to the fact that fHOG features consist of 31 dimensions, the first dimension is 

chosen here to construct the visualization of fHOG features. 

(2) For grayscale features, this involves converting the RGB values of each 

pixel into grayscale values. The grayscale feature possesses advantages in 

robustness to motion blur and computational efficiency. The computation of 

grayscale features for each pixel is as follows:             

𝒢𝑘(𝑖, 𝑗) = 𝛼R ⋅ 𝑅𝑒𝑑𝑘(𝑖, 𝑗) + 𝛼G ⋅ 𝐺𝑟𝑒𝑒𝑛𝑘(𝑖, 𝑗) + 𝛼B ⋅ 𝐵𝑙𝑢𝑒𝑘(𝑖, 𝑗)          (1) 

Here,𝒢k(i, j) represents the grayscale value at position(i, j) in the kth frame. 

Redk(i, j), Greenk(i, j), Bluek(i, j)respectively denote the values of the RGB 

channels at position(i, j). 

It is worth noting that the formula employs the well-known psychophysical 

weights, hence in formula (1) the three weights αR, αG, αB are set to 0.299, 

0.587, 0.114 respectively. Moreover, 𝒥𝒢k is used to represent the tracker integrated 

with the grayscale features at the k-th frame and the fDSST framework. 

(3) For the CN feature, which stands for Color Names, this feature 

demonstrates excellent performance in image retrieval tasks. The advantage of CN 

features lies in their ability to effectively handle image deformations and varying 

shapes. Based on the RGB values of each pixel in the target, the MCVT tracker 

selects its color names from a predefined set of 11 basic colors. The mapping 

method for extracting CN features originates from [13], wherein RGB values are 

mapped onto an 11-dimensional color name space. The CN features are presented 

in the form of histograms, where the histogram reflects the number of pixels 

belonging to each color name. 
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3.2 Normalized softmax function 

Softmax function, also known as the normalized exponential function, is a 

generalization of the logistic function in mathematics, especially in probability 

theory and related fields [14]. The softmax function compresses a vector of arbitrary 

real numbers into another vector of the same dimension, ensuring that each element 

falls within the range (0, 1) and the sum of all elements equals 1. 

The typical expression for this function is as follows: 

ri =
eVi

∑ eVi
C

1

                                                   (2) 

When the softmax function is used for neural network training, here Vi 

represents the output of the preceding layer’s neuron. i denotes the category index, 

The total number of categories is C.ri represents the ratio of the index of the current 

element to the sum of all element indices. 

To integrate the three response maps of fHOG, grayscale, and CN features, the 

first step is to normalize these three response maps [15]. Without this preprocessing 

step, the different ranges of the response maps would affect the result of the fusion. 

Furthermore, at the same position(i, j), if one response map exhibits a relatively 

high value, whereas another response map shows a significantly lower value, even 

approaching zero. In that case, the high value will be severely attenuated. During 

utilization, the softmax formula is employed for normalization as follows: 

ℛ(i, j) =
eh(i,j)

∑ ∑ eh(i,j)
ji

                                         (3) 

Here, h(i, j) represents the pixel value of the response map at position(i, j)before 

normalization, ℛ(i, j) is the pixel value at that position after normalization, and the 

sum of all pixel values after normalization equals 1.Through this approach, three 

separate response maps can be normalized, subsequently to be multiplied together 

to form a fused response map. After fusion, the resulting response map will serve 

as the basis for identifying the maximum response value. The fusion formula for 

the three individual response maps is as follows: 

𝓠𝐤 = 𝓡𝓗𝐤 ⊙ 𝓡𝓖𝐤 ⊙ 𝓡𝓒𝐤                               (4) 

Here, 𝒬k represents the fused response map.ℛ
ℋk , ℛ

𝒢k , ℛ
𝒞krespectively represents 

three response maps computed by Equation (4). The symbol ⊙ denotes element-

wise multiplication. 

Fig. 2 illustrates the difference between independent response maps and 

fused response maps with and without normalization operations. This demonstrates 

that normalization through softmax can improve the quality of response maps, 

thereby enhancing the accuracy of tracking results. 
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Fig. 2. Difference between response plots with and without normalization 
 

From a holistic perspective, employing softmax normalization can enhance 

the precision of tracking [16]. Additionally, softmax normalization can suppress the 

negative impact brought about by negative signal values. Moreover, as mentioned 

earlier, normalization can eliminate differences in ranges between different 

response maps. 

 

4. Design of Integral Side Lobes Ratio Evaluators 

 

In the field of signal processing, there are numerous metrics employed to 

evaluate signal quality, such as Impulse Response Width (IRW), also referred to as 

resolution, which denotes the width of the main lobe at the 3dB drop from its peak 

[17]. Furthermore, Peak Sidelobe Ratio (PSLR) refers to the ratio of the maximum 

sidelobe to the peak height of the main lobe. 

In this design, the Integrated Sidelobe Ratio (ISLR) is chosen as the 

evaluation metric for the response graph and serves as the triggering criterion for 

parallel tracking. The calculation formula for the Integrated Sidelobe Ratio is as 

follows: 
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islr = 10log10 {
Pmain

Ptotal−Pmain
}                                 (5) 

Here, Ptotal refers to the total energy of the response graph, and Pmain denotes the 

energy of the main lobe.In the field of signal processing, the energy of the response 

graph is directly proportional to the square of its amplitude, expressed as P ∝
h(i, j)2, P denotes energy and h denotes the amplitude of the signal. 

In typical scenarios, the further a signal is from its peak value, the smaller 

its magnitude, indicating weaker energy [18]. Therefore, in the computation 

process, it is unnecessary to calculate the total energy by computing the entire 

response graph. Instead, the value of the integral sidelobe ratio can be calculated 

through a simplified method. Since the response graph is a two-dimensional signal, 

its integral sidelobe ratio can be calculated as follows: 

    islr = 10log10 
∫  
ρr

−ρr
∫ ℛ

2
(i, j)dxdy

ρr

−ρr

∫  
10ρr

−10ρr
∫ ℛ

2
(i, j)dxdy

10ρr

−10ρr
− ∫  

ρr

−ρr
∫ ℛ

2
(i, j)dxdy

ρr

−ρr

  

 = −10log10 [
∫  

10ρr
−10ρr

∫ ℛ
2

(i,j)dxdy
10ρr

−10ρr

∫  
ρr

−ρr
∫ ℛ

2
(i,j)dxdy

ρr

−ρr

− 1]                      (6) 

Here,ℛ
2

(i, j)represents the energy of the response graph at position (i, j), ρr is 

referred to as the radius of the main lobe, which is half the width of the main lobe 

at the 3dB drop-off point.To simplify, the radius of a circular region with the peak 

position as the center and a radius of 10ρr is considered as the total energy, making 

the calculation of sidelobe energy more straightforward. 
 

 

Fig. 3. Framework of the Integral Paravalve Ratio Evaluator 
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In Fig. 3, islrℋk , islr𝒢k , islr𝒞krespectively represent the integral sidelobe 

ratio values computed from the response maps generated by trackers based on 

fHOG, grayscale, and CN features. The framework of this evaluator is structured 

into three steps for robustness considerations, as relying solely on a single integral 

sidelobe ratio value as a criterion, or solely on all integral sidelobe ratio values, 

would not be sufficiently rigorous. In the experiment, the parameter settings of the 

evaluator need to ensure the conditionΓ1 < Γ2 < Γ3. If the ratio of all three 

sidelobes meets the condition “all sidelobe ratios are less than Γ3”, then the 

evaluation result of the sidelobe ratio evaluator will be deemed as a failure; 

otherwise, these three sidelobe ratios will undergo further assessment. If the ratios 

of all three sidelobes do not satisfy the three criteria outlined in Fig. 3, then the 

evaluation result will be deemed as a pass, meaning the quality of the three response 

plots is deemed acceptable. 

As shown in Fig. 4, the dashed blue box represents the output of the MCVT 

tracker in the absence of the integration sidelobe ratio evaluator; he dashed red box 

represents the output of the MCVT tracker when the integration sidelobe ratio 

evaluator is present, but the integration sidelobe ratio of the response plots passes 

evaluation. In other words, the MCVT tracker’s output indicates that the 

integration sidelobe ratio evaluator believes that the tracking result does not require 

further validation or correction. The solid red box represents the output of the 

MCVT tracker when the integration sidelobe ratio evaluator is present, and the 

integration sidelobe ratio of the response plots fails the evaluation. In other words, 

the MCVT tracker’s output indicates that the integration sidelobe ratio evaluator 

believes that the tracking result requires validation and correction using parallel 

Siamese neural networks. When the integration sidelobe ratio evaluator is adopted, 

inaccurate tracking results will be promptly detected, allowing them to be corrected 

in a timely manner by parallel Siamese neural networks. 
 

 

Fig. 4. Difference in tracking results with and without the integral paravalve ratio evaluator 
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5. Design of Siamese Neural Networks 

 

When the response map does not pass through the side lobe ratio evaluator, 

the MCVT tracker will run the parallel segment of the Siamese neural network, 

which will be used for further validation and correction [19]. In this parallel 

segment, the MCVT tracker employs Siamese neural networks to validate the 

predicted positions generated by the fused response map [20]. If the validation 

result is unsatisfactory, it will be further used for refining the tracking results. The 

Siamese neural network is adopted here due to its characteristic of comprising two 

branches of convolutional neural networks, which share weights between them. 

Consequently, it can simultaneously process two inputs and is frequently employed 

for comparing image similarities. The Siamese neural network serves the purpose 

of measuring the similarity between two inputs by mapping them individually to a 

new space and representing them in that space. Subsequently, it calculates the loss 

function to further evaluate the similarity between the two inputs. In the semantic 

analysis of vocabulary, question and answer matching in Q&A, face verification, 

and handwriting recognition, Siamese neural networks are applied. In parallel 

tracking with the MCVT tracker, the first step involves inputting images from the 

bounding box centered around the predicted position into the Siamese neural 

network. These images are then compared for similarity with the images from the 

first frame’s ground truth. If the comparison result passes (i.e., the validation score 

exceeds the threshold τ1 ), then the predicted position will be retained as the 

output. Otherwise, the Siamese neural network will be invoked again for correcting 

the tracking result. Here, {Ri}i=1
N  is used to denote the candidate regions generated 

through sliding windows, N represents the number of candidate regions. The 

corrected result R is determined by the following equation: 

𝐑 = 𝐚𝐫𝐠𝐦𝐚𝐱
𝐑𝐢

 𝐬(𝐓𝐨𝐛𝐣, 𝐑𝐢), 𝐢 = 𝟏, 𝟐, ⋯ , 𝐍                       (7) 

Here, s(Tobj, Ri) returns the similarity between the tracking target Tobj and the 

candidate region Ri.  

In this study, Tobj is extracted from the first frame of the tracked image, 

implying that Tobj remains unchanged throughout the tracking process and hence is 

not updated. Each correction involves finding the Tobj that is most similar to Ri 

within the bounding box of the first frame. As depicted in Fig. 5, the ISLR evaluator 

determines that the predicted position (illustrated by the blue dashed box in Figure 

5(a) is unreliable. The parallel Siamese neural networks evaluate and correct 

positions within the surrounding local scope. The red dashed box in Fig. 5(b) 

represents the potential region generated by the sliding window. The solid red box 

in Fig. 5(c)represents the corrected result. 
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Fig. 5. Twin neural network correction process 

Once the correction result is obtained, this method will further decide 

whether to use this result to adjust the tracking outcome. If the highest similarity 

exceeds the threshold τ2, then the output is the correction result. Otherwise, the 

predicted position calculated by fusing response maps is retained. 

 

6. Experimental results 

 

The present study compares the MCVT tracker with numerous other state-

of-the-art trackers, which are broadly categorized into two types for comparison: 

(1) Methods based on correlation filters, including CSK, KCF, fDSST, DCF, 

SAMF, BACF, SRDCF, MCCT, KCC, PTAV and STAPLE; (2) Other types of 

representation-based trackers, including IV, TLD, ASLA, Struck, MUSTER, FCT, 

MIL, WMIL and MEEM. 

In the experiments of this study, the MCVT tracker selected for comparison 

is the MCCT tracker, which employs the extraction of HOG features. This is 

because when employing convolutional neural networks, extracting convolutional 

features requires a significant amount of computation. Furthermore, since the 

proposed MCVT tracker only utilizes handcrafted features, all other compared 

correlation filter-based trackers also employ only handcrafted features. 

Fig. 6 illustrates success plots of precision curves for various trackers, with 

the testing data comprising 100 challenging UAV image sequences from 

UAV123.In terms of precision curves, where the threshold is set in ξ = 20pixels, 

the scores for each tracker are as follows:0.641(MCVT), 0.605(STAPLE), 

0.596(MEEM), 0.591(MCCT), 0.590(BACF), 0.582(SRDCF), 0.562(PTAV), 

0.551(MUSTER), 0.545(fDSST), 0.543(KCC), 0.533(Struck), 0.495(DCF), 

0.483(SAMF), 0.436(TLD), 0.428(KCF), 0.416(CSK), 0.385(FCT), 0.381(ASLA), 

0.347(WMIL), 0.310(IVT), 0.248(MIL).It is evident that the MCVT tracker 

achieved the highest score among all trackers.In terms of success rate curves, scores 

for each tracker are calculated based on the area under the curve. The scores for 

each tracker are as follows:0.449(MCVT), 0.431(MCCT), 0.426(STAPLE), 

0.420(BACF), 0.418(SRDCF), 0.402(PTAV), 0.390(fDSST), 0.382(MEEM), 

0.380(MUSTER), 0.380(KCC), 0.361(Struck), 0.335(SAMF), 0.318(DCF), 
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0.296(TLD), 0.277(KCF), 0.276(CSK), 0.260(FCT), 0.257(ASLA), 0.254(WMIL), 

0.227(IVT), 0.174(MIL)Similarly to the precision curve, looking at the success rate 

curve, the proposed MCVT tracker still ranks first. Therefore, it is not difficult to 

conclude that, whether in terms of precision or success rate, the MCVT tracker 

outperforms the other 20 state-of-the-art trackers when compared. 

 

 

 

 

Fig. 6. Accuracy curves and success curves for all trackers on 100 challenging UAV image 

sequences 
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Besides the overall comparison in terms of precision and success rate, to 

better evaluate and analyze the strengths and weaknesses of tracking methods, these 

100 image sequences were categorized into 12 attributes based on their tracking 

conditions and encountered difficulties. These 12 attributes are as follows: 

Illumination Variation (IV), Scale Variation (SV), Full Occlusion (FOC), Partial 

Occlusion (POC), Aspect Ratio Change (ARC), Similar Object (SOB), Viewpoint 

Change (VC), Camera Motion (CM), Fast Motion (FM), Out-of-View (OV), 

Background Clutter (BC), and Low Resolution (LR). By analyzing the performance 

of each tracker on different attributes, namely by comparing their accuracy and 

success rate curves across various attributes, a comprehensive analysis of the 

trackers can be conducted, rendering the experiments more persuasive. The ranking 

of scores under different attributes can also aid in determining the tracking 

scenarios that trackers are suited or unsuited for, thereby facilitating the analysis of 

their strengths and weaknesses. Table 2 and Table 3 provide detailed accuracy and 

success rate curves scores of each tracker across the 12 attributes. In terms of 

accuracy, the MCVT tracker performs the best on attributes such as IV, SV, POC, 

ARC, SOB, VC, CM, FM, and OV.From Table 3, it can be observed that the MCVT 

tracker achieved the highest scores in terms of success rate across attributes such as 

IV, SV, POC, ARC, SOB, VC, CM, OV, and LR. Therefore, it can be concluded 

that the proposed MCVT tracker in this paper demonstrates the most satisfactory 

performance when compared with the comprehensive evaluation of the other 20 

trackers. 
 

Table 2 

Accuracy curve scores (threshold ξ = 20 pixels, top three places are marked in red, blue and 

green, respectively) 

 IV SV FOC POC ARC SOB VC CM FM OV BC LR 

MCVT 52.3 58.3 44.6 56.1 54.6 70.6 57.8 61.4 48.2 54.7 48.1 50.0 

MCCT 42.8 52.9 42.3 52.9 47.4 62.8 45.4 53.8 32.8 50.7 48.1 45.5 

STAPLE 48.3 54.1 41.1 51.6 49.6 63.5 51.1 55.2 36.1 46.9 49.4 54.1 

SRDCF 44.3 52.7 40.8 48.9 48.5 60.7 47.8 54.2 45.4 51.0 37.3 41.7 

BACF 39.4 53.3 34.2 47.1 47.7 61.6 47.7 53.2 41.9 43.8 42.7 44.5 

SAME 36 45.5 37.9 43.6 41.7 56.6 38.3 38.8 33.8 42.6 29.2 29.2 

fDSST 42.4 49.2 37.6 47.5 45.3 60.4 43.4 45.3 35.6 48.3 33.3 43.3 

DCF 32.3 43.2 31.6 38.6 36.3 53.1 39.7 39.20 23.6 34.0 32.4 38.6 

KCF 28 39.0 28.7 36.5 33.2 52.6 34.5 31.9 21.7 33.7 23.6 33.5 

KCC 37.2 47.9 36.0 46.3 44.0 57.4 44.2 47.1 33.8 40.8 37.2 41.5 

CSK 27 38.5 29.4 33.7 31.2 47.8 31.4 32.2 25.5 33.5 22.1 33.1 

PTAV 48 51.2 41.7 49.6 48.2 60.0 43.8 48.0 37.3 48.5 37 1 43.3 

TLD 21.2 40.8 29.1 35.4 36.9 56.1 34.7 36.9 22.6 29.4 26.8 45.5 

MUSTER 39.7 51.0 46.7 47.0 47.5 62.5 45.5 50.1 30.7 43.3 38.6 48.8 

Struck 42.8 47.4 39.4 46.2 42 1 59.4 44.5 46.7 22.5 40.8 52.8 50.5 

MEEM 44.2 53.2 42.9 51.5 50.7 63.1 53 1 53.6 31.1 49.6 51.0 50.2 

ASLA 21.7 37.1 29.5 34.1 31.7 51.5 28.7 23 1 15.7 28.0 23.0 35.6 
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IVT 17.5 29.8 23.8 27.0 24.3 39.7 24.8 18 1 14.0 24.4 16.1 26.5 

FCT 17.5 34.2 28.3 30.2 29.8 38.5 30.4 30.9 19.7 31.2 24.9 35.3 

MIL 9.9 24.3 24.5 24.0 20.2 34.5 21.4 24.9 15.9 29.4 20.2 25.8 

WMIL 16.0 30.8 26.3 28.3 27.3 38.6 28.0 30.4 19.6 29.0 27.4 35.8 

 

Table 3 

Success Rate Curve Scores (based on AUC, top three are marked in red, blue, and green, 

respectively) 

 IV SV FOC POC ARC SOB VC CM FM OV BC LR 

MCVT 35.2 40.3 23.6 36.7 36.1 45.6 37.8 41.7 31.7 35.7 30.9 276 

MCCT 32.1 38.3 23.6 36.1 34.1 43.6 33.5 39.1 25.0 34.3 31.7 26.5 

STAPLE 34.4 37.6 22.3 34.8 34.2 41.8 36.0 39.0 25.1 32.4 33.7 25.1 

SRDCF 32 1 37.5 22 1 33.4 33.7 40.4 33.7 38.8 32.1 34.2 26.1 23.3 

BACF 29.2 37.2 17.6 32.2 32.7 41.4 33.1 38.6 28.9 30.4 28.5 26.0 

SAME 24.8 31.1 19.8 28.4 28.5 36.6 26.9 26.6 23.3 28.0 17.4 18.6 

fDSST 29.9 34.8 19.6 32.0 31.2 39.9 30.7 32.2 24.4 31.4 22.3 25.1 

DCF 21.9 26.5 16.3 24.7 23.0 30.9 25.2 25.7 15.9 22.2 20.8 19.9 

KCF 18.6 24.4 14.0 32.2 21.6 30.2 22.1 21.1 15.6 23.1 13.5 16.6 

KCC 27.6 32.6 19. 2 28.4 29.9 38 2 31.1 32.5 21.9 26.7 25.0 227 

CSK 17.5 24.8 15.4 32.0 21.0 28.7 20.2 21.3 15.0 23.9 13.5 16.3 

PTAV 33.6 36.2 22.5 24.7 33.1 39.6 30.7 34.3 26.0 31.5 25.1 25.2 

TLD 14.9 27.4 13.6 23.2 24.7 33.2 24.2 25.0 14.5 18.7 16.1 25.1 

MUSTER 28.2 34.6 24.4 30.1 31.0 39.7 30.9 33.3 21.0 27.8 23.6 25.4 

Struck 29.3 31.2 20.4 30.5 28 3 36.4 29.5 31.4 16.8 28.6 33.6 26.0 

MEEM 30.2 33.2 21.9 32.7 31.5 39 1 33.4 35.0 21.9 31.5 32.2 25.3 

ASLA 17.0 24.2 21.9 21.1 20.4 34.4 19.9 14.8 9.4 15.4 14.8 20.0 

IVT 15.1 21.5 21.9 17.1 17.2 27.7 18.4 11.9 9.0 14.2 9.8 14.8 

FCT 16.0 22.9 21.9 19.0 20.3 23.0 21.4 21.5 14.0 22.2 13.2 15.6 

MIL 11.5 16.3 21.9 13.7 14.4 18.3 16.9 15.0 10.4 17.3 10.5 9.7 

WMIL 11.5 21.9 21.9 18.0 19.6 22 8 21.2 21.6 15.1 20.2 16.1 15.4 

 

Fig. 7 provides examples of three image sequences out of a total of 100, 

where this paper selects certain frames to visually illustrate the differences in 

tracking performance between the proposed MCVT tracker and the other 20 state-

of-the-art trackers.  

From Fig. 7, it is evident that the proposed MCVT tracker exhibits 

remarkable tracking performance when compared with other trackers. Even in 

scenarios where many other trackers fail to maintain tracking, i.e., lose the target, 

the MCVT tracker sustains its tracking status. 
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Fig. 7. Comparison of tracking results for example image sequences (from left to right image 

sequences are boat4, person1, building5) 

Additionally, the MCVT tracker is suitable for various types of targets, such 

as boats, people, and buildings as shown in the above image, and it also performs 

well in challenging scenarios like lighting changes and fast motion. 

 

7. Conclusion 

 

This article proposes a novel online two-step evaluation based multi cue 

perceptual visual tracker, MCVT tracker, to address the problem of inefficient and 

low robustness tracking algorithms in many tracking applications in the field of 

unmanned aerial vehicles. Among them, although the ISLR evaluator increases the 

parameter quantity of appearance features and the computational complexity of the 

algorithm, it effectively utilizes the parallel computing capability of modern GPUs 

and does not reduce the tracking speed of the algorithm. The parallel tracking 

structure can improve the performance of the algorithm without requiring too much 
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additional training, and the evaluation module based on parallel twin neural 

networks can maximize the performance of the algorithm. The experimental results 

show that the proposed method exhibits high performance on multiple standard 

datasets, proving its effectiveness. In future work, this algorithm can be applied to 

more fields that require object tracking. 
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