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NOVEL PARALLEL CTC TURBO DECODER 

ARCHITECTURE FOR LTE SYSTEMS 

Cristian ANGHEL1, Cristian STANCIU2, Constantin PALEOLOGU3 

This paper describes a novel architecture for parallel turbo decoding used in 

Long Term Evolution (LTE) systems. The decoding scheme contains only one 

Quadratic Permutation Polynomial (QPP) interleaver, independently on the 

parallelization factor. Also, we propose an efficient implementation for the QPP 

interleaver. The arithmetic properties of the corresponding interleaver equations are 

exploited to perform the address computation in a recursive manner. The proposed 

decoding structure is evaluated in different radio environments and with several 

connection settings (modulation, data block length.)  

Keywords: LTE, turbo coding, Max Log MAP, parallel architecture, decoding 

performance 

1. Introduction 

The channel coding is a physical layer procedure used by the wireless 

communications systems to increase the transmission robustness on the radio link. 

There are several methods to execute the error correcting coding: Reed-Solomon 

codes, BCH codes, cyclic codes, polynomial codes, and linear block codes. Turbo 

coding is one channel coding method, firstly introduced by Berrou, Glavieux, and 

Thitimajshima [1, 2, 3]. It uses two recursive systematic convolutional (RSC) 

constituent encoders connected in a parallel concatenation scheme.  

Turbo codes faced two major problems along their existence. The first one 

was related to their reported performance close to Shannon limit. It was difficult 

for the technical community to accept such new theory. Once the controversy was 

clarified by the authors, turbo codes started being included in several 

communications standards. The Third-Generation Partnership Project (3GPP) [4] 

is one organization that adopted earlier turbo codes, while Universal Mobile 

Telecommunications System (UMTS) [5] and Long Term Evolution (LTE) [6, 7] 

are the most famous standards including them. The Institute of Electrical and 

Electronics Engineers (IEEE) group also made turbo codes part of most of the 

communication standards, one example being 802.16e [8] based on which 
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Worldwide Interoperability for Microwave Access (WiMAX) systems were 

developed. But due to their implementation complexity, especially on decoding 

part, the second issue appeared together with the discussion if the costs are 

covered by the benefits. The answer was brought and given by the technology 

evolution. New more powerful Digital Signal Processors (DSPs) and Field 

Programmable Gate Arrays (FPGAs) allowed efficient implementation for turbo 

decoders, while simplified decoding algorithms were proposed with decoding 

performance close to the classical reference. Starting from classic maximum a 

posteriori probability (MAP) algorithm [9], the new Logarithmic MAP (Log 

MAP) [9], Maximum Log MAP (Max Log MAP), Constant Log MAP (Const Log 

MAP) [10], and Linear Log MAP (Lin Log MAP) [11] algorithms were 

introduced. 

For evolved wireless communications standards, such as LTE Advanced 

(LTE-A), a new challenge appeared for turbo codes. In order to support high data 

rates, lower decoding latency was requested. This demand applies especially for 

the biggest data blocks defined in [6]. The solution is the parallelization of the 

turbo decoding process.  

There are many parallel decoding architectures proposed in the literature 

during the last years. The obtained results are evaluated on 2 axes. The first one is 

the decoding performances degradation introduced by the parallel method 

compared with the serial decoding scheme and the second one is the amount of 

resources needed for such parallel architecture implementation.  A first set of 

parallel architectures is described in [12]. Starting from the classical method of 

implementing the MAP algorithm, i.e., going to trellis once to compute the 

Forward State Metrics (FSM) and then twice to compute the Backward State 

Metrics (BSM), and also the Log Likelihood Ratios (LLR), several solutions to 

reduce the decoding latency of 2K clock periods per semi-iteration, where K is the 

data block length, are introduced. The first one reduces the decoding time to half 

(only K) by starting simultaneously the BSM and FSM computation. After 

computing half of these values, 2 LLR blocks start working in parallel, the 

interleaver block also being doubled. Another proposed scheme eliminates the 

need for the second interleaver but increases the decoding time with K/2 as 

compared to the previous one, a total decoding latency of 3K/2 clock periods 

being obtained. 

A second set of parallel architectures takes advantage of the Quadratic 

Permutation Polynomial (QPP) interleaver algebraic-geometric properties, as 

described in [13, 14]. Here, efficient hardware implementations of the QPP 

interleaver are proposed. But the parallelization factor N represents also the 

number of used interleavers in these proposed architectures. 

A third approach consists in using a folded memory to store 

simultaneously all the values needed for parallel processing [15]. But for this kind 
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of implementation the main challenge is to correctly distribute the data to each 

decoding unit once a memory location containing all N values was read. More 

precisely, the N decoding units working in parallel are writing their data in a 

concatenated order to the same location, but when the interleaved reading is 

taking place, these values are not going in the same order to the same decoding 

unit, but instead they should be redistributed. To solve this, an architecture based 

on 2 Batcher sorting networks is proposed. However, in this approach, N 

interleavers are also needed to generate all the interleaved addresses that input the 

master network. 

In this paper, we also introduce a folded memory based approach, but the 

main difference as compared to the already existent solutions described above is 

that our proposed solution uses only one interleaver. Additionally, with an even-

odd merge sorting unit [16, 17], the parallel architecture remains close to the 

serial one, only the Soft Input Soft Output (SISO) decoding unit being instantiated 

N times. The block memories numbers and dimensions are unchanged between 

the two block schemes. In terms of decoding performance, with the cost of a small 

overhead added, the decoding results of the serial and parallel decoding 

architectures are kept similar. Moreover, for the single interleaver, we propose a 

solution that exploits key arithmetic properties of the corresponding equation to 

perform the address computation in a recursive manner. The proposed method 

replaces divisions and multiplications by comparisons and subtractions. 

    The paper is organized as follows. Section 2 describes the serial turbo 

decoding scheme and the proposed parallel turbo decoding architecture, with a 

single interleaver and with the re-ordering unit. Section 3 presents the proposed 

solution for interleaver implementation. Section 4 presents area and speed results 

obtained when targeting a XC5VFX70T [18] chip on Xilinx ML507 [19] board; it 

also provides simulation curves comparing the results obtained when using serial 

decoding, parallel decoding, and parallel decoding with overlap. Section 5 

contains the conclusions of this work. 

2. LTE turbo decoding architecture 

2.1 Serial turbo decoding scheme 

According to the theoretical decoding scheme, it can be noticed that SISO 

2 decoder starts working only after SISO 1 decoder finishes its job and vice-versa, 

the usage of previously obtained extrinsic values being the main principle of the 

turbo decoding. Also, all the processing is based on complete data blocks, since 

the interleaver or deinterleaver procedures should be applied in between. It results 

that the 2 SISOs are decoding data in non-overlapped time windows, so only one 

SISO unit can be used to process in a time-multiplexed manner. This can be 

noticed in Fig. 1, where a serial decoder block scheme based on the previous work 

presented in [20] (for a WiMAX CTC decoder) is described. 
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The memory blocks are used for storing data from one semi-iteration to 

another and from one iteration to another. The dotted-line memory blocks are 

virtual memories added only to ease the understanding of the introduced 

notations. Also, it should be mentioned that the Interleaver and Deinterleaver 

blocks are in fact the same, including a block memory called ILM (Interleaver 

Memory) and an interleaver. The ILM is the new approach we introduced 

compared with the previous serial implementation presented in [21] and the goal 

is to prepare the architecture for parallel decoding also. The memory is written 

with the interleaved addresses each time a new data block is received. The values 

are then used as read addresses (when interleaver process is ongoing) or as write 

addresses (when deinterleaver process is ongoing). This ILM, together with the 3 

memories from the left side of the picture (for the input data) are switched-

buffers, allowing new data to be written while the previous one is still under 

decoding process. 

The scheme depicted in Fig. 1 works as follows: SISO 1 reads the memory 

locations corresponding to V1(Xk) and  i

kZ vectors. The reading process is 

performed forward and backward and it serves the first semi-iteration. At the end 

of this process, SISO 2 reads forward and backward from the memory blocks 

corresponding to V2(X’k) and  'i

kZ  vectors in order to perform the second semi-

iteration.  
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Fig. 1. Proposed serial turbo decoder block scheme 

 

The vector V1(Xk) is obtained by adding the input vector  i

kX  with the 

extrinsic information vector W(Xk). While reading these 2 memories, SISO 1 

starts the decoding process. At the output, the LLRs are available and performing 

the subtraction between them and the delayed extrinsic values already read from 

W(Xk) memory; also the vector V2(Xk) is computed and then stored into its 
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corresponding memory in a normal order. The interleaving process is started (the 

initially written ILM is read now in normal order, so that interleaved read 

addresses for V2(Xk) are obtained) and the re-ordered LLRs V2(X’k) are available, 

the corresponding values for the 3 tail bits X’K+1, X’K+2, X’K+3 being added at the 

end of this sequence. The second semi-iteration is ongoing. The same SISO unit is 

used, but reading this time data inputs from the other memory blocks. As one can 

see in Fig. 1, two switching mechanisms are included in the scheme. When in 

position 1, the memory blocks for V1(Xk) and  i

kZ  are used, while in position 2 

the memory blocks for V2(X’k) and  'i

kZ become active. 

At the output of the SISO unit, after each semi-iteration, K LLRs are 

obtained. The ones corresponding to the second semi-iteration are stored in the 

 '

2

o

kX  memory [the ILM output, which was already available for the V2(Xk) 

interleaver process, is used as writing address for  '

2

o

kX memory, after a delay is 

added]. Reading in a normal order  '

2

o

kX  memory and also V2(Xk) memory 

provides inputs for W(Xk) memory and on the same time allows a new semi-

iterations to start for SISO 1. Hence the W(Xk) memory update is made on the 

same time with a new semi-iteration start.  

In order to be able to handle all the data block dimensions, the used 

memory blocks have 6144 locations (this is the maximum data block length), 

except the ones storing the input data for RSCs, which have 6144 + 3 locations, 

including here also the tail bits. Each memory locations is 10 bits wide, the first 

bit being used for the sign, the next 6 bits representing the integer part and the last 

3 bits indicating the fractional part. This format was decided studying the dynamic 

range of the variables (for the integer part) and the variations of the decoding 

performances (for the fractional part). 
 

2.2 Parallel turbo decoding scheme 

The proposed parallel architecture is similar to the serial one described in 

Fig. 1, only that the RSC SISO module is instantiated N times in the scheme. We 

propose an architecture that concatenates the N values from the N RSCs and 

points always at the same memory location, for all the memories in the scheme. 

So, instead of having K locations with 10 bits per location as in the serial scheme, 

in the parallel one each memory contains K/N locations with 10N bits per location. 

The main advantage introduced by the proposed serial architecture is the 

fact that the interleaver block works only once, before the decoding itself taking 

place. The ILM memory is written when a new data block is received, while the 

previous one is still under decoding. This approach allows a simplified parallel 

scheme way of work. Knowing the parallelization factor N, the ILM memory can 

be prepared for the parallel processing that follows. More precisely, the ILM 
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memory will have K/N locations, N values being written at each location. As 

mentioned in [18], a Virtex 5 block memory can be configured from (32k 

locations x 1 bit) to (512 locations x 72 bits). In the worst case scenario, when 

K=6144, based on the N values and keeping the stored values on 10 bits as 

previously mentioned, the parallel ILM memory can be (768 locations x 80 bits), 

(1536 locations x 40 bits), (3072 locations x 20 bits), or (6144 locations x 10 bits), 

so still only 2 BRAMs are used, as in the case of serial ILM. 

Fig. 2 describes the way ILM works.  
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Fig. 2. ILM memory writing procedure 

 

As one can observe, while writing procedure, each index i from 0 to K1 

generates corresponding interleaved values. These interleaved values are written 

in a normal order in ILM. The first K/N corresponding interleaved values occupy 

the first position on each memory locations. The second K/N values are placed on 

the second position of each location, and so on. In order to perform this 

procedure, a true dual port BRAM is used. Each time a new position in location n 

is written, the content of location n+1 is also read from the memory, so that in the 

next clock period the next interleaved value to be added to the already existing 

content at that location. When the interleaver function is needed during a semi-

iteration, the ILM is read in a normal way, so that the N interleaved values from 

one location to represent the reading addresses for V2(Xk) memory. But the QPP 

properties guarantee that the N values that should be read in the interleaved way 

from the memory are placed at the same memory location, only that their 

positions should be re-arranged before being sent to the corresponding RSCs. For 

simplifying the representation, the case of K=40 and N=8 is exemplified in Fig. 3.  
 



Novel parallel CTC turbo decoder architecture for LTE systems                       105 

     0     5    10    15    20    25    30    35

     1     6    11    16    21    26    31    36

     2     7    12    17    22    27    32    37

     3     8    13    18    23    28    33    38

     4     9    14    19    24    29    34    39

     0    25    30    15    20     5    10    35

    13    18     3     8    33    38    23    28

     6    31    36    21    26    11    16     1

    19    24     9    14    39     4    29    34

    12    37     2    27    32    17    22     7

SIS
O

a

SIS
O

b

SIS
O

c

SIS
O

d

SIS
O

e

SIS
O

f

SIS
O

g

SIS
O

h

SIS
O

a

SIS
O

b

SIS
O

c

SIS
O

d

SIS
O

e

SIS
O

f

SIS
O

g

SIS
O

h

write in V2(Xk) ILM content

 0     5    10    15    20    25    30    35

SIS
O

a

SIS
O

f

SIS
O

g

SIS
O

d

SIS
O

e

SIS
O

b

SIS
O

c

SIS
O

h

Re-ordering

write in V2(X’k)

Re-ordering

    3     8    13    18    23    28    33    38

SIS
O

c

SIS
O

d

SIS
O

a

SIS
O

b

SIS
O

g

SIS
O

h

SIS
O

e

SIS
O

f

 
Fig. 3. Virtual parallel interleaver. 

 

On the left side, one can see the content of V2(Xk) memory. Each column 

represents the outupts of one of the N RSC SISOs. On the right side, the content 

of ILM is described. The minimum values from each line of ILM (grey colour 

circle in figure) represents the line address for V2(Xk) memory. Then, using a re-

ordering module, each position from the read line is sent to its corresponding 

SISO. For example, position b from the first read line (index 5) is sent to SISO f, 

while position b from the second read line (index 8) is sent to SISO d. The same 

procedure also applies for deinterleaver process, but the write addresses are 

extracted from ILM, while the read ones are in normal order. 

For the re-ordering module, an even-odd merge sorting network is 

considered. The even-odd merge sorting method is part of the sorting networks 

group that includes many other sorting types. One example of sorting network is 

the bubble sorting, which sorts in a repeated manner the adjacent pair of elements. 

Another example is the shell sorting, which uses an array to group the input data 

and then sorts the column of the array, in a repeated manner too, after each such 

iteration the array becoming one column smaller. A third example is the even-odd 

transposition sorting, which sorts alternatively odd-indexed and the adjacent even-

indexed elements, respectively even-indexed and the adjacent odd-indexed 

elements. Finally, another example that should be mentioned in the category of 

network sorting is the bitonic sorting. This method starts sorting the 2 halves of 

the input data in opposite direction, then jointly sorting the 2 halves to produce 

one complete sorted sequence.  

The even-odd merge sorting method was introduced by Batcher in [16]. It 

is based on a theorem saying that any list of p=4k (k is a positive integer) elements 

can be sorted if the following steps are applied: first, the two halves of the list are 

sorted separately, then the odd-indexed elements and the even-indexed elements 

are sorted separately, and finally a comparing and switching procedure is executed 

over all the elements 2m and 2m+1 (m=1,..,p/2-1). The proof of this theorem can 

be found in [17]. The example for N=8 is depicted in Fig. 4. 
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Fig. 4. Even-odd merge sorting for N=8 

Fig. 5 depicts a ModelSim capture for the case K=40 bits and N=8. One 

can observe at the input the ILM content (the 40 interleaved addresses organized 

in 5 memory locations, 8 addresses on each location), and at the output the 

minimum detected value for each ILM location (i.e., the normal-order memory 

location that shall be read) and the order data read from normal-order memory 

location shall be sent to the N decoding units.  
 

 
Fig. 5. Odd-even merge sort – Modelsim simulation 

For example, at the second clock period, the second ILM location is read, 

i.e., the addresses 13, 18, 3, 8, 33, 38, 23, 28. The sorting module will allocate an 

index from 0 to 7 to these addresses and then will arrange them in an increasing 

order. Also, the minimum value is provided at the output, in this case 3. After this 

sorting procedure, it results that location number 3 is to be read from the normal-
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order data memory. Once the location content is available, the 8 samples from the 

location will be distributed to the 8 decoding units, as indicated by the output 

index. The first sample from location will be sent to SISO number 2, the second 

sample to SISO number 3, the third one to SISO number 0, and so on. 

3. Proposed interleaver implementation 

The inteleaver reorders the input sequence kC as 

'

( ) , 1...k iC C i K  ,                                           (1) 
 

where )π(i  is an address computed as 
2

1 2( ) ( ) modi f i f i K     .                                (2) 
 

The parameters f1, f2, and the block length K are standardized in 188 possible sets 

of values and can be found in Table 5.1.3-3 in [6].  

The apparent arithmetic requirements for the computation of the memory 

addresses ( )i  consist of one addition, three multiplications, and one division 

(which is used for the extraction of the remainder associated with the modulo 

operation). The associated denominators are the values of K and the remainders 

(the results of the modulo computations) have smaller values than the 

corresponding K lengths. Fig. 6 illustrates, for each of the possible data block 

lengths K (i.e., each of the intervals i=0,…,K-1), the maximum values of the 

dividends and quotients associated with (2). It can be noticed that the minimum 

hardware resources necessary for finite numeric formats must account for 

representations of values up to billions for the dividents and millions for the 

quotients.  

 
Fig. 6. Maximum dividents and quotients for the interleaver address generator 
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The values illustrated in Fig. 6 require up to 35 bits, respectively 23, for unsigned 

integer representations. Furthermore, the hardware implementations must generate 

the values ( )i  with a minimum delay, requiring a pipe-line arithmetic. The large 

numeric ranges and the pipe-line system occupy large chip areas.  

By introducing the notation:  
2

1 2( )p i f i f i                              (3) 

it can be observed that  
 

1 2

(0) 0,

( ) ( 1) ( ), 0

p

p i p i s s i i



    
 ,                            (4) 

where 

1 1

2 2

2 2

and

0, 0,

( ) , 1,

( 1) 2 , 1.

s f

i

s i f i

s i f i






 
   

                (5) 

 

We can re-write (2) using (3) and (4) 

 1 2( ) ( ) mod ( 1) ( ) mod .i p i K p i s s i K                      (6) 

The multiplications are replaced by additions and the arithmetic 

complexity is reduced. Nevertheless, the division is still required for the modulo 

operation. Considering that the modulo operator applied to a sum of elements can 

be expressed as  

mod mod mod ,k k

k k

c K c K K
   

   
   
                             (7) 

we propose to modify the computation of ( )i  in (6) to considerably reduce the 

arithmetic complexity. The number of modulo operations increases, but the 

complexity of the corresponding divisions is reduced as a consequence of having 

smaller quotients. Consequently, using (5), (6), and (7), we obtain: 
 

 

 

1 2

1 2 2

1 2 2

( 1)( ) mod mod ( ) mod mod

( 1) mod ( 1) 2 mod mod

( 1) ( 1) mod 2 mod mod .

p i si K s K i K K

i f K s i f K K

i f s i K f K K







  

       

       

            (8) 

By taking into account in (8) that f1 and f2 are constant values for a given 

frame length K, their contribution to the function p(i) can be included into a single 

pre-computed value. Therefore, the functions s1 and s2(i) can be combined into a 

single step function: 
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3 1 2 1 2

3 2

0, 0,

( ) ( ) , 1,

( 1) 2 , 1.

i

s i s s i f f i

s i f i
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

    
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                                (9) 

By using (9) in (6), it results in 

 

 

 

3

3 2

3 2

( ) ( ) mod ( 1) ( ) mod

( 1) ( 1) 2 ) mod

( 1) ( 1) mod 2 mod mod .

i p i K p i s i K

p i s i f K

i s i K f K K





   

    

    

               (10) 

All of the values in the last stage of (10) are lower than the value K, and 

available recursively, such as ( 1)i   and 3( 1)mod ,s i K  or they can be 

predetermined and stored, like the case of 22 mod .f K  

The overall arithmetic complexity of the address generation module is 

reduced from 3K additions and 3K simplified modulo operations corresponding to 

(8), to 2K additions and 2K simplified modulo procedures associated with (10). 

 The method improves the solutions presented in [22, 23, 24], by 

eliminating any multiplications or divisions. Additionally, the low numerical 

range of the operators (with numbers lower than 2K) allows the usage of minimal 

resources for the representation of binary values.  

4. Experimental results 

For the generation of RAM/ ROM memory blocks Xilinx Core Generator 

11.1 was used. The simulations were performed with ModelSIM 6.5. The 

synthesis process was done using Xilinx XST from Xilinx ISE 11.1. Using the 

above-mentioned tools, the obtained results when implementing the decoding 

structure on a Xilinx XC5VFX70T-FFG1136 are the following: frequency of 310 

MHz and 664 Flip Flops and 568 LUTs for sorting unit. 

For the interleaver, the proposed hardware design requires 125 Slice 

Registers and 229 LUTs (Look-Up-Tables), with a maximum clock frequency of 

224.459 MHz (equivalent to a minimum clock period of 4.455 ns). Some 

comparative results in terms of used resources were provided in [15] [25], but for 

Application-Specific Integrated Circuit (ASIC). 

The following performance curves were obtained using a finite precision 

Matlab simulator. This approach was selected because the Matlab simulator 

produces exactly the same outputs as the ModelSIM simulator, while the 

simulation time is smaller. All the simulation results are using the Max Log MAP. 

The figures describe the Bit Error Rate (BER) versus Signal-to-Noise Ratio 

(SNR) expressed as the ratio between the energy per bit and the noise power 

spectral density. Fig. 7 depicts the results when a block of length K = 512 was 
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decoded in a serial manner, in a parallel without overlapping manner and in a 

parallel with overlapping manner. In this scenario, N = 2, QPSK modulation was 

used and L = 3. Fig. 8 presents the same type of results, for the case of K = 1024 

and N = 4. As one can observe from  
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Fig. 7. Comparative decoding results for                           Fig. 8. Comparative decoding results for  

        QPSK, L = 3, K = 512, N = 2                                            QPSK, L = 3, K = 1024, N = 4 
 

Figs. 7 and 8, the parallel decoding with overlap is producing the same 

results as the serial decoding.On the other hand, the parallel decoding without 

overlap introduces a certain level of degradation as compared to the serial 

decoding, the loss in terms of performance being dependent on the value of N. 

6. Conclusions 

The most important aspects regarding the implementation of a turbo 

decoder for LTE systems were presented in this paper. The serial turbo decoder 

architecture was developed and implemented in an efficient manner, especially 

from the interleaver/ deinterleaver processes point of view. The interleaver 

memory ILM was introduced, so that the interleaver process to work effectively 

only outside the decoding process itself. The ILM was written together with the 

input data, while the previous block was still under decoding. This approach 

allowed the transfer to the parallel architecture in a simplified way, using only 

concatenated values at same memory locations. The parallel architecture used the 

same number of block memories and only one interleaver, adding only an even-

odd merge sorting network. The single interleaver was implemented in an 

efficient recursive manner, replacing divisions and multiplications by 

comparisons and subtractions. The parallel decoding performances were 

compared with the serial ones and certain degradation was observed. To eliminate 
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this degradation, a small overhead was accepted by the overlapping split that was 

applied to the parallel data blocks. 
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