
U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 1, 2017 ISSN 2286-3540

NOVEL PARALLEL CTC TURBO DECODER

ARCHITECTURE FOR LTE SYSTEMS

Cristian ANGHEL1, Cristian STANCIU2, Constantin PALEOLOGU3

This paper describes a novel architecture for parallel turbo decoding used in

Long Term Evolution (LTE) systems. The decoding scheme contains only one

Quadratic Permutation Polynomial (QPP) interleaver, independently on the

parallelization factor. Also, we propose an efficient implementation for the QPP

interleaver. The arithmetic properties of the corresponding interleaver equations are

exploited to perform the address computation in a recursive manner. The proposed

decoding structure is evaluated in different radio environments and with several

connection settings (modulation, data block length.)

Keywords: LTE, turbo coding, Max Log MAP, parallel architecture, decoding

performance

1. Introduction

The channel coding is a physical layer procedure used by the wireless

communications systems to increase the transmission robustness on the radio link.

There are several methods to execute the error correcting coding: Reed-Solomon

codes, BCH codes, cyclic codes, polynomial codes, and linear block codes. Turbo

coding is one channel coding method, firstly introduced by Berrou, Glavieux, and

Thitimajshima [1, 2, 3]. It uses two recursive systematic convolutional (RSC)

constituent encoders connected in a parallel concatenation scheme.

Turbo codes faced two major problems along their existence. The first one

was related to their reported performance close to Shannon limit. It was difficult

for the technical community to accept such new theory. Once the controversy was

clarified by the authors, turbo codes started being included in several

communications standards. The Third-Generation Partnership Project (3GPP) [4]

is one organization that adopted earlier turbo codes, while Universal Mobile

Telecommunications System (UMTS) [5] and Long Term Evolution (LTE) [6, 7]

are the most famous standards including them. The Institute of Electrical and

Electronics Engineers (IEEE) group also made turbo codes part of most of the

communication standards, one example being 802.16e [8] based on which

1 Lecturer, Dept. of Telecommunications, University POLITEHNICA of Bucharest, Romania,

e-mail: canghel@comm.pub.ro
2 Lecturer, Dept. of Telecommunications, University POLITEHNICA of Bucharest, Romania,

e-mail: cristian@comm.pub.ro
3 Professor, Dept. of Telecommunications, University POLITEHNICA of Bucharest, Romania,

e-mail: pale@comm.pub.ro

mailto:canghel@comm.pub.ro
mailto:pale@comm.pub.ro

100 Cristian Anghel, Cristian Stanciu, Constantin Paleologu

Worldwide Interoperability for Microwave Access (WiMAX) systems were

developed. But due to their implementation complexity, especially on decoding

part, the second issue appeared together with the discussion if the costs are

covered by the benefits. The answer was brought and given by the technology

evolution. New more powerful Digital Signal Processors (DSPs) and Field

Programmable Gate Arrays (FPGAs) allowed efficient implementation for turbo

decoders, while simplified decoding algorithms were proposed with decoding

performance close to the classical reference. Starting from classic maximum a

posteriori probability (MAP) algorithm [9], the new Logarithmic MAP (Log

MAP) [9], Maximum Log MAP (Max Log MAP), Constant Log MAP (Const Log

MAP) [10], and Linear Log MAP (Lin Log MAP) [11] algorithms were

introduced.

For evolved wireless communications standards, such as LTE Advanced

(LTE-A), a new challenge appeared for turbo codes. In order to support high data

rates, lower decoding latency was requested. This demand applies especially for

the biggest data blocks defined in [6]. The solution is the parallelization of the

turbo decoding process.

There are many parallel decoding architectures proposed in the literature

during the last years. The obtained results are evaluated on 2 axes. The first one is

the decoding performances degradation introduced by the parallel method

compared with the serial decoding scheme and the second one is the amount of

resources needed for such parallel architecture implementation. A first set of

parallel architectures is described in [12]. Starting from the classical method of

implementing the MAP algorithm, i.e., going to trellis once to compute the

Forward State Metrics (FSM) and then twice to compute the Backward State

Metrics (BSM), and also the Log Likelihood Ratios (LLR), several solutions to

reduce the decoding latency of 2K clock periods per semi-iteration, where K is the

data block length, are introduced. The first one reduces the decoding time to half

(only K) by starting simultaneously the BSM and FSM computation. After

computing half of these values, 2 LLR blocks start working in parallel, the

interleaver block also being doubled. Another proposed scheme eliminates the

need for the second interleaver but increases the decoding time with K/2 as

compared to the previous one, a total decoding latency of 3K/2 clock periods

being obtained.

A second set of parallel architectures takes advantage of the Quadratic

Permutation Polynomial (QPP) interleaver algebraic-geometric properties, as

described in [13, 14]. Here, efficient hardware implementations of the QPP

interleaver are proposed. But the parallelization factor N represents also the

number of used interleavers in these proposed architectures.

A third approach consists in using a folded memory to store

simultaneously all the values needed for parallel processing [15]. But for this kind

Novel parallel CTC turbo decoder architecture for LTE systems 101

of implementation the main challenge is to correctly distribute the data to each

decoding unit once a memory location containing all N values was read. More

precisely, the N decoding units working in parallel are writing their data in a

concatenated order to the same location, but when the interleaved reading is

taking place, these values are not going in the same order to the same decoding

unit, but instead they should be redistributed. To solve this, an architecture based

on 2 Batcher sorting networks is proposed. However, in this approach, N

interleavers are also needed to generate all the interleaved addresses that input the

master network.

In this paper, we also introduce a folded memory based approach, but the

main difference as compared to the already existent solutions described above is

that our proposed solution uses only one interleaver. Additionally, with an even-

odd merge sorting unit [16, 17], the parallel architecture remains close to the

serial one, only the Soft Input Soft Output (SISO) decoding unit being instantiated

N times. The block memories numbers and dimensions are unchanged between

the two block schemes. In terms of decoding performance, with the cost of a small

overhead added, the decoding results of the serial and parallel decoding

architectures are kept similar. Moreover, for the single interleaver, we propose a

solution that exploits key arithmetic properties of the corresponding equation to

perform the address computation in a recursive manner. The proposed method

replaces divisions and multiplications by comparisons and subtractions.

 The paper is organized as follows. Section 2 describes the serial turbo

decoding scheme and the proposed parallel turbo decoding architecture, with a

single interleaver and with the re-ordering unit. Section 3 presents the proposed

solution for interleaver implementation. Section 4 presents area and speed results

obtained when targeting a XC5VFX70T [18] chip on Xilinx ML507 [19] board; it

also provides simulation curves comparing the results obtained when using serial

decoding, parallel decoding, and parallel decoding with overlap. Section 5

contains the conclusions of this work.

2. LTE turbo decoding architecture

2.1 Serial turbo decoding scheme

According to the theoretical decoding scheme, it can be noticed that SISO

2 decoder starts working only after SISO 1 decoder finishes its job and vice-versa,

the usage of previously obtained extrinsic values being the main principle of the

turbo decoding. Also, all the processing is based on complete data blocks, since

the interleaver or deinterleaver procedures should be applied in between. It results

that the 2 SISOs are decoding data in non-overlapped time windows, so only one

SISO unit can be used to process in a time-multiplexed manner. This can be

noticed in Fig. 1, where a serial decoder block scheme based on the previous work

presented in [20] (for a WiMAX CTC decoder) is described.

102 Cristian Anghel, Cristian Stanciu, Constantin Paleologu

The memory blocks are used for storing data from one semi-iteration to

another and from one iteration to another. The dotted-line memory blocks are

virtual memories added only to ease the understanding of the introduced

notations. Also, it should be mentioned that the Interleaver and Deinterleaver

blocks are in fact the same, including a block memory called ILM (Interleaver

Memory) and an interleaver. The ILM is the new approach we introduced

compared with the previous serial implementation presented in [21] and the goal

is to prepare the architecture for parallel decoding also. The memory is written

with the interleaved addresses each time a new data block is received. The values

are then used as read addresses (when interleaver process is ongoing) or as write

addresses (when deinterleaver process is ongoing). This ILM, together with the 3

memories from the left side of the picture (for the input data) are switched-

buffers, allowing new data to be written while the previous one is still under

decoding process.

The scheme depicted in Fig. 1 works as follows: SISO 1 reads the memory

locations corresponding to V1(Xk) and  i

kZ vectors. The reading process is

performed forward and backward and it serves the first semi-iteration. At the end

of this process, SISO 2 reads forward and backward from the memory blocks

corresponding to V2(X’k) and  'i

kZ vectors in order to perform the second semi-

iteration.

RSC

(SISO1 or

SISO2)

Λi(Xk)

memory

Λi(Zk)

memory

Λi(Z’k)

memory

+
V1(Xk)

memory

1

2

+
V2(Xk)

memory

V2(X’k)

memoryInterleaver

1

1

2

2

W(Xk)

V1(Xk)

V2(Xk)

V2(X’k)

 (X’k)

memory

Deinterleaver
 (Xk)

memory

+

W(Xk)

memory

 i

kX

 i

kZ

 'i

kZ

 1

o

kX

 '

2

o

kX
 2

o

kX ˆ
kX

2

o

2

o

Write normal

Read interleaved

Write interleaved

Read normal

Fig. 1. Proposed serial turbo decoder block scheme

The vector V1(Xk) is obtained by adding the input vector  i

kX with the

extrinsic information vector W(Xk). While reading these 2 memories, SISO 1

starts the decoding process. At the output, the LLRs are available and performing

the subtraction between them and the delayed extrinsic values already read from

W(Xk) memory; also the vector V2(Xk) is computed and then stored into its

Novel parallel CTC turbo decoder architecture for LTE systems 103

corresponding memory in a normal order. The interleaving process is started (the

initially written ILM is read now in normal order, so that interleaved read

addresses for V2(Xk) are obtained) and the re-ordered LLRs V2(X’k) are available,

the corresponding values for the 3 tail bits X’K+1, X’K+2, X’K+3 being added at the

end of this sequence. The second semi-iteration is ongoing. The same SISO unit is

used, but reading this time data inputs from the other memory blocks. As one can

see in Fig. 1, two switching mechanisms are included in the scheme. When in

position 1, the memory blocks for V1(Xk) and  i

kZ are used, while in position 2

the memory blocks for V2(X’k) and  'i

kZ become active.

At the output of the SISO unit, after each semi-iteration, K LLRs are

obtained. The ones corresponding to the second semi-iteration are stored in the

 '

2

o

kX memory [the ILM output, which was already available for the V2(Xk)

interleaver process, is used as writing address for  '

2

o

kX memory, after a delay is

added]. Reading in a normal order  '

2

o

kX memory and also V2(Xk) memory

provides inputs for W(Xk) memory and on the same time allows a new semi-

iterations to start for SISO 1. Hence the W(Xk) memory update is made on the

same time with a new semi-iteration start.

In order to be able to handle all the data block dimensions, the used

memory blocks have 6144 locations (this is the maximum data block length),

except the ones storing the input data for RSCs, which have 6144 + 3 locations,

including here also the tail bits. Each memory locations is 10 bits wide, the first

bit being used for the sign, the next 6 bits representing the integer part and the last

3 bits indicating the fractional part. This format was decided studying the dynamic

range of the variables (for the integer part) and the variations of the decoding

performances (for the fractional part).

2.2 Parallel turbo decoding scheme

The proposed parallel architecture is similar to the serial one described in

Fig. 1, only that the RSC SISO module is instantiated N times in the scheme. We

propose an architecture that concatenates the N values from the N RSCs and

points always at the same memory location, for all the memories in the scheme.

So, instead of having K locations with 10 bits per location as in the serial scheme,

in the parallel one each memory contains K/N locations with 10N bits per location.

The main advantage introduced by the proposed serial architecture is the

fact that the interleaver block works only once, before the decoding itself taking

place. The ILM memory is written when a new data block is received, while the

previous one is still under decoding. This approach allows a simplified parallel

scheme way of work. Knowing the parallelization factor N, the ILM memory can

be prepared for the parallel processing that follows. More precisely, the ILM

104 Cristian Anghel, Cristian Stanciu, Constantin Paleologu

memory will have K/N locations, N values being written at each location. As

mentioned in [18], a Virtex 5 block memory can be configured from (32k

locations x 1 bit) to (512 locations x 72 bits). In the worst case scenario, when

K=6144, based on the N values and keeping the stored values on 10 bits as

previously mentioned, the parallel ILM memory can be (768 locations x 80 bits),

(1536 locations x 40 bits), (3072 locations x 20 bits), or (6144 locations x 10 bits),

so still only 2 BRAMs are used, as in the case of serial ILM.

Fig. 2 describes the way ILM works.

K
/N

 l
o

c
a

ti
o

n
s

N positions per

location

Index i = 0 : K-1

WA = mod(i, K/N)

WP = floor(i, K/N)

RA = WA + 1

PC=IL(i)

WA = write address

RA = read address

WP = write position

PC = position content

IL = interleaver

...

Fig. 2. ILM memory writing procedure

As one can observe, while writing procedure, each index i from 0 to K1

generates corresponding interleaved values. These interleaved values are written

in a normal order in ILM. The first K/N corresponding interleaved values occupy

the first position on each memory locations. The second K/N values are placed on

the second position of each location, and so on. In order to perform this

procedure, a true dual port BRAM is used. Each time a new position in location n

is written, the content of location n+1 is also read from the memory, so that in the

next clock period the next interleaved value to be added to the already existing

content at that location. When the interleaver function is needed during a semi-

iteration, the ILM is read in a normal way, so that the N interleaved values from

one location to represent the reading addresses for V2(Xk) memory. But the QPP

properties guarantee that the N values that should be read in the interleaved way

from the memory are placed at the same memory location, only that their

positions should be re-arranged before being sent to the corresponding RSCs. For

simplifying the representation, the case of K=40 and N=8 is exemplified in Fig. 3.

Novel parallel CTC turbo decoder architecture for LTE systems 105

 0 5 10 15 20 25 30 35

 1 6 11 16 21 26 31 36

 2 7 12 17 22 27 32 37

 3 8 13 18 23 28 33 38

 4 9 14 19 24 29 34 39

 0 25 30 15 20 5 10 35

 13 18 3 8 33 38 23 28

 6 31 36 21 26 11 16 1

 19 24 9 14 39 4 29 34

 12 37 2 27 32 17 22 7

SIS
O

a

SIS
O

b

SIS
O

c

SIS
O

d

SIS
O

e

SIS
O

f

SIS
O

g

SIS
O

h

SIS
O

a

SIS
O

b

SIS
O

c

SIS
O

d

SIS
O

e

SIS
O

f

SIS
O

g

SIS
O

h

write in V2(Xk) ILM content

 0 5 10 15 20 25 30 35

SIS
O

a

SIS
O

f

SIS
O

g

SIS
O

d

SIS
O

e

SIS
O

b

SIS
O

c

SIS
O

h

Re-ordering

write in V2(X’k)

Re-ordering

 3 8 13 18 23 28 33 38

SIS
O

c

SIS
O

d

SIS
O

a

SIS
O

b

SIS
O

g

SIS
O

h

SIS
O

e

SIS
O

f

Fig. 3. Virtual parallel interleaver.

On the left side, one can see the content of V2(Xk) memory. Each column

represents the outupts of one of the N RSC SISOs. On the right side, the content

of ILM is described. The minimum values from each line of ILM (grey colour

circle in figure) represents the line address for V2(Xk) memory. Then, using a re-

ordering module, each position from the read line is sent to its corresponding

SISO. For example, position b from the first read line (index 5) is sent to SISO f,

while position b from the second read line (index 8) is sent to SISO d. The same

procedure also applies for deinterleaver process, but the write addresses are

extracted from ILM, while the read ones are in normal order.

For the re-ordering module, an even-odd merge sorting network is

considered. The even-odd merge sorting method is part of the sorting networks

group that includes many other sorting types. One example of sorting network is

the bubble sorting, which sorts in a repeated manner the adjacent pair of elements.

Another example is the shell sorting, which uses an array to group the input data

and then sorts the column of the array, in a repeated manner too, after each such

iteration the array becoming one column smaller. A third example is the even-odd

transposition sorting, which sorts alternatively odd-indexed and the adjacent even-

indexed elements, respectively even-indexed and the adjacent odd-indexed

elements. Finally, another example that should be mentioned in the category of

network sorting is the bitonic sorting. This method starts sorting the 2 halves of

the input data in opposite direction, then jointly sorting the 2 halves to produce

one complete sorted sequence.

The even-odd merge sorting method was introduced by Batcher in [16]. It

is based on a theorem saying that any list of p=4k (k is a positive integer) elements

can be sorted if the following steps are applied: first, the two halves of the list are

sorted separately, then the odd-indexed elements and the even-indexed elements

are sorted separately, and finally a comparing and switching procedure is executed

over all the elements 2m and 2m+1 (m=1,..,p/2-1). The proof of this theorem can

be found in [17]. The example for N=8 is depicted in Fig. 4.

106 Cristian Anghel, Cristian Stanciu, Constantin Paleologu

A

B

min(A,B)

max(A,B)

Sort separately

the 2 halves

Sort separately the odd-

indexed and even-indexed

elements

Sort adjacent

elements

Fig. 4. Even-odd merge sorting for N=8

Fig. 5 depicts a ModelSim capture for the case K=40 bits and N=8. One

can observe at the input the ILM content (the 40 interleaved addresses organized

in 5 memory locations, 8 addresses on each location), and at the output the

minimum detected value for each ILM location (i.e., the normal-order memory

location that shall be read) and the order data read from normal-order memory

location shall be sent to the N decoding units.

Fig. 5. Odd-even merge sort – Modelsim simulation

For example, at the second clock period, the second ILM location is read,

i.e., the addresses 13, 18, 3, 8, 33, 38, 23, 28. The sorting module will allocate an

index from 0 to 7 to these addresses and then will arrange them in an increasing

order. Also, the minimum value is provided at the output, in this case 3. After this

sorting procedure, it results that location number 3 is to be read from the normal-

Novel parallel CTC turbo decoder architecture for LTE systems 107

order data memory. Once the location content is available, the 8 samples from the

location will be distributed to the 8 decoding units, as indicated by the output

index. The first sample from location will be sent to SISO number 2, the second

sample to SISO number 3, the third one to SISO number 0, and so on.

3. Proposed interleaver implementation

The inteleaver reorders the input sequence kC as

'

() , 1...k iC C i K  , (1)

where)π(i is an address computed as
2

1 2() () modi f i f i K     . (2)

The parameters f1, f2, and the block length K are standardized in 188 possible sets

of values and can be found in Table 5.1.3-3 in [6].

The apparent arithmetic requirements for the computation of the memory

addresses ()i consist of one addition, three multiplications, and one division

(which is used for the extraction of the remainder associated with the modulo

operation). The associated denominators are the values of K and the remainders

(the results of the modulo computations) have smaller values than the

corresponding K lengths. Fig. 6 illustrates, for each of the possible data block

lengths K (i.e., each of the intervals i=0,…,K-1), the maximum values of the

dividends and quotients associated with (2). It can be noticed that the minimum

hardware resources necessary for finite numeric formats must account for

representations of values up to billions for the dividents and millions for the

quotients.

Fig. 6. Maximum dividents and quotients for the interleaver address generator

108 Cristian Anghel, Cristian Stanciu, Constantin Paleologu

The values illustrated in Fig. 6 require up to 35 bits, respectively 23, for unsigned

integer representations. Furthermore, the hardware implementations must generate

the values ()i with a minimum delay, requiring a pipe-line arithmetic. The large

numeric ranges and the pipe-line system occupy large chip areas.

By introducing the notation:
2

1 2()p i f i f i  (3)

it can be observed that

1 2

(0) 0,

() (1) (), 0

p

p i p i s s i i



    
 , (4)

where

1 1

2 2

2 2

and

0, 0,

() , 1,

(1) 2 , 1.

s f

i

s i f i

s i f i






 
   

 (5)

We can re-write (2) using (3) and (4)

 1 2() () mod (1) () mod .i p i K p i s s i K      (6)

The multiplications are replaced by additions and the arithmetic

complexity is reduced. Nevertheless, the division is still required for the modulo

operation. Considering that the modulo operator applied to a sum of elements can

be expressed as

mod mod mod ,k k

k k

c K c K K
   

   
   
  (7)

we propose to modify the computation of ()i in (6) to considerably reduce the

arithmetic complexity. The number of modulo operations increases, but the

complexity of the corresponding divisions is reduced as a consequence of having

smaller quotients. Consequently, using (5), (6), and (7), we obtain:

 

 

1 2

1 2 2

1 2 2

(1)() mod mod () mod mod

(1) mod (1) 2 mod mod

(1) (1) mod 2 mod mod .

p i si K s K i K K

i f K s i f K K

i f s i K f K K







  

       

       

 (8)

By taking into account in (8) that f1 and f2 are constant values for a given

frame length K, their contribution to the function p(i) can be included into a single

pre-computed value. Therefore, the functions s1 and s2(i) can be combined into a

single step function:

Novel parallel CTC turbo decoder architecture for LTE systems 109

3 1 2 1 2

3 2

0, 0,

() () , 1,

(1) 2 , 1.

i

s i s s i f f i

s i f i




    
   

 (9)

By using (9) in (6), it results in

 

 

 

3

3 2

3 2

() () mod (1) () mod

(1) (1) 2) mod

(1) (1) mod 2 mod mod .

i p i K p i s i K

p i s i f K

i s i K f K K





   

    

    

 (10)

All of the values in the last stage of (10) are lower than the value K, and

available recursively, such as (1)i  and 3(1)mod ,s i K or they can be

predetermined and stored, like the case of 22 mod .f K

The overall arithmetic complexity of the address generation module is

reduced from 3K additions and 3K simplified modulo operations corresponding to

(8), to 2K additions and 2K simplified modulo procedures associated with (10).

 The method improves the solutions presented in [22, 23, 24], by

eliminating any multiplications or divisions. Additionally, the low numerical

range of the operators (with numbers lower than 2K) allows the usage of minimal

resources for the representation of binary values.

4. Experimental results

For the generation of RAM/ ROM memory blocks Xilinx Core Generator

11.1 was used. The simulations were performed with ModelSIM 6.5. The

synthesis process was done using Xilinx XST from Xilinx ISE 11.1. Using the

above-mentioned tools, the obtained results when implementing the decoding

structure on a Xilinx XC5VFX70T-FFG1136 are the following: frequency of 310

MHz and 664 Flip Flops and 568 LUTs for sorting unit.

For the interleaver, the proposed hardware design requires 125 Slice

Registers and 229 LUTs (Look-Up-Tables), with a maximum clock frequency of

224.459 MHz (equivalent to a minimum clock period of 4.455 ns). Some

comparative results in terms of used resources were provided in [15] [25], but for

Application-Specific Integrated Circuit (ASIC).

The following performance curves were obtained using a finite precision

Matlab simulator. This approach was selected because the Matlab simulator

produces exactly the same outputs as the ModelSIM simulator, while the

simulation time is smaller. All the simulation results are using the Max Log MAP.

The figures describe the Bit Error Rate (BER) versus Signal-to-Noise Ratio

(SNR) expressed as the ratio between the energy per bit and the noise power

spectral density. Fig. 7 depicts the results when a block of length K = 512 was

110 Cristian Anghel, Cristian Stanciu, Constantin Paleologu

decoded in a serial manner, in a parallel without overlapping manner and in a

parallel with overlapping manner. In this scenario, N = 2, QPSK modulation was

used and L = 3. Fig. 8 presents the same type of results, for the case of K = 1024

and N = 4. As one can observe from

-3 -2 -1 0 1 2 3
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

QPSK, 3 iter, 512 bits, N = 2

SNR[dB]

B
E

R

serial

parallel with overlap

parallel without overlap

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

QPSK, 1024, 3 iter, N = 4

SNR[dB]

B
E

R

parallel with overlap

parallel without overlap

serial

Fig. 7. Comparative decoding results for Fig. 8. Comparative decoding results for

 QPSK, L = 3, K = 512, N = 2 QPSK, L = 3, K = 1024, N = 4

Figs. 7 and 8, the parallel decoding with overlap is producing the same

results as the serial decoding.On the other hand, the parallel decoding without

overlap introduces a certain level of degradation as compared to the serial

decoding, the loss in terms of performance being dependent on the value of N.

6. Conclusions

The most important aspects regarding the implementation of a turbo

decoder for LTE systems were presented in this paper. The serial turbo decoder

architecture was developed and implemented in an efficient manner, especially

from the interleaver/ deinterleaver processes point of view. The interleaver

memory ILM was introduced, so that the interleaver process to work effectively

only outside the decoding process itself. The ILM was written together with the

input data, while the previous block was still under decoding. This approach

allowed the transfer to the parallel architecture in a simplified way, using only

concatenated values at same memory locations. The parallel architecture used the

same number of block memories and only one interleaver, adding only an even-

odd merge sorting network. The single interleaver was implemented in an

efficient recursive manner, replacing divisions and multiplications by

comparisons and subtractions. The parallel decoding performances were

compared with the serial ones and certain degradation was observed. To eliminate

Novel parallel CTC turbo decoder architecture for LTE systems 111

this degradation, a small overhead was accepted by the overlapping split that was

applied to the parallel data blocks.

Acknowledgement

The work has been funded by the Sectoral Operational Programme Human

Resources Development 2007-2013 of the Ministry of European Funds through

the Financial Agreement POSDRU/159/1.5/S/134398.

R E F E R E N C E S

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, Near Shannon limit error-correcting coding

and decoding: Turbo Codes, IEEE Proceedings of the Int. Conf. on Communications,

Geneva, Switzerland, May 1993, pp. 1064-1070.

[2] C. Berrou and A. Glavieux, Near optimum error correcting coding and decoding: Turbo-

Codes, IEEE Trans. Communications, vol. 44, no. 10, pp. 1261-1271, Oct. 1996.

[3] C. Berrou and M. Jézéquel, Non binary convolutional codes for turbo coding, Electronics

Letters, vol. 35, no. 1, pp. 9-40, Jan. 1999.

[4] Third Generation Partnership Project. 3GPP home page. www.3gpp.org.

[5] M. C. Valenti and J. Sun, The UMTS turbo code and an efficient decoder implementation

suitable for software-defined radios, International Journal of Wireless Information

Networks, vol. 8, no. 4, Oct. 2001.

[6] 3GPP TS 36.212 V8.7.0 (2009-05) Technical Specification, “3rd Generation Partnership

Project; Technical Specification Group Radio Access Network; Evolved Universal

Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 8).”

[7] F. Khan, LTE for 4G Mobile Broadband, Cambridge University Press, New York, 2009.

[8] IEEE organization, https://standards.ieee.org/about/get/802/802.16.html

[9] P. Robertson, E. Villebrun, and P. Hoeher, A Comparison of Optimal and Sub-Optimal

MAP Decoding Algorithms Operating in the Log Domain, Proc. IEEE International

Conference on Communications (ICC’95), Seattle, pp. 1009-1013, June 1995.

[10] S. Papaharalabos, P. Sweeney, and B. G. Evans, Constant log-MAP decoding algorithm for

duo-binary turbo codes, Electronics Letters vol. 42, issue 12, pp. 709 – 710, June 2006.

[11] J.-F. Cheng and T. Ottosson, Linearly approximated log-MAP algorithms for turbo

decoding, Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyo.

2000 IEEE 51st vol. 3, pp. 2252 – 2256, 2000.

[12] S. Chae, A low complexity parallel architecture of turbo decoder based on QPP interleaver

for 3GPP-LTE/LTE-A, http://www.design-reuse.com /articles/31907/turbo-decoder-

architecture-qpp-interleaver-3gpp-lte-lte-a.html

[13] Y. Sun and J. R. Cavallaro, Efficient hardware implementation of a highly-parallel 3GPP

LTE/ LTE-advance turbo decoder, Integration, the VLSI Journal, vol. 44, issue 4, pp. 305-

315, Sept. 2011.

[14] D. Wu, R. Asghar, Y. Huang, and D. Liu, Implementation of a high-speed parallel turbo

decoder for 3GPP LTE terminals, ASICON ’09, IEEE 8th International Conference on

ASIC, pp. 481-484, 2009.

[15] C. Studer, C. Benkeser, S. Belfanti, and Quiting Huang, Design and implementation of a

parallel turbo-decoder ASIC for 3GPP-LTE, IEEE Journal of Solid-State Circuits, vol. 46,

issue 1, pp 8-17, Jan. 2011.

[16] K. E. Batcher, Sorting Networks and their Applications, in Proc. AFIPS Spring Joint Comput.

Conf., Vol. 32, 1968.

http://www.3gpp.org/

112 Cristian Anghel, Cristian Stanciu, Constantin Paleologu

[17] Massachusetts Institute of Technology, Mathematics, math.mit.edu/~shor/18.310/batcher.pdf

[18] Xilinx Virtex 5 family user guide, www.xilinx.com.

[19] Xilinx ML507 evaluation platform user guide, www.xilinx.com.

[20] C. Anghel, A. A. Enescu, C. Paleologu, and S. Ciochina, CTC Turbo Decoding Architecture

for H-ARQ Capable WiMAX Systems Implemented on FPGA, Ninth International

Conference on Networks (ICN), Menuires, France, April 2010.

[21] C. Anghel, V. Stanciu, C. Stanciu, and C. Paleologu, CTC Turbo Decoding Architecture for

LTE Systems Implemented on FPGA, Eleventh International Conference on Networks

(ICN), Reunion, France, February 2012.

[22] Di Wu, R. Asghar, Yulin Huang, and D. Liu, Implementation of a high-speed parallel turbo

decoder for 3GPP LTE terminals, ASICON ’09, IEEE 8th International Conference on

ASIC, pp. 481-484, 2009.

[23] R. Asghar, Di Wu, J. Eilert, and D. Liu, Memory Conflict Analysis and a Re-configurable

Interleaver Architecture Supporting Unified Parallel Turbo Decoding, Journal of Signal

Processing Systems, vol. 60, issue 1, pp. 15-19, July 2010.

[24] S. Wang, L. Liu, and Z. Wen, High Speed QPP Generator with Optimized Parallel

Architecture for 4G LTE-A System, Int. Journal of Advancements in Computing

Technology, vol. 4, issue 23, pp. 355-364, July 2010.

[25] E. Mumolo, G. Capello, and M. Nolich, “VHDL design of a scalable VLSI sorting device

based on pipelined comutation,” in Journal of Computing and Information Technology -

CIT 12, 2004, Vol 12, No. 1, pp. 1–14.

http://www.xilinx.com/

