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DYNAMICS OF A 3-PRR PLANAR PARALLEL ROBOT 

Ştefan STAICU1 

Lucrarea prezentă stabileşte o modelare recurentă pentru cinematica şi 
dinamica unui robot paralel plan 3-PRR. Trei lanţuri cinematice plane ce 
conectează platforma mobilă sunt situate în plan vertical. Cunoscând mişcarea 
platformei, se dezvoltă mai întâi cinematica inversă şi se determină poziţiile, 
vitezele şi acceleraţiile robotului. În continuare, se  utilizează principiul lucrului 
mecanic virtual în cadrul problemei de dinamică inversă. Unele ecuaţii matriceale 
oferă expresi iiterative şi grafice pentru o comparaţie a puterilor necesare celor trei 
sisteme de acţionare concepute în două scheme diferite: acţionori de translaţie şi 
acţionori de rotaţie.  

Recursive modelling for the kinematics and dynamics of known 3-PRR planar 
parallel robot are established in this paper. Three identical planar legs connecting 
to the moving platform are located in a vertical plane. Knowing the motion of the 
platform, we develop first the inverse kinematics and determine the positions, 
velocities and accelerations of the robot. Further, the principle of virtual work is 
used in the inverse dynamics problem. Several matrix equations offer iterative 
expressions and graphs for the power requirement comparison of each of three 
actuators in two different actuation schemes: prismatic actuators and revolute 
actuators. 
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1. Introduction 

 
Parallel manipulators are closed-loop mechanisms that consist of separate serial 

chains connecting the fixed base to the moving platform. Compared with serial 
manipulators, the followings are the potential advantages of parallel architectures: 
higher kinematical precision, lighter weight and better stiffness, greater load 
bearing, stabile capacity and suitable position of arrangement of actuators, but 
having limited workspace and complicated singularities. 

Equipped with revolute or prismatic actuators, the parallel manipulators have a 
robust construction and can move bodies of large dimensions with high velocities 
and accelerations [1]. 

Over the past decades, parallel manipulators have received more and more 
attention from researches and industries. Accuracy and precision in the direction 
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of the tasks are essential since the positioning errors of the tool could end in costly 
damage. 

Considerable efforts have been devoted to the kinematics and dynamic analysis 
of fully parallel manipulators. Among these, the class of manipulators known as 
Stewart-Gough platform focused great attention (Stewart [2]; Merlet [3]; Parenti-
Castelli and Di Gregorio [4]). They are used in flight simulators and more recently 
for Parallel Kinematics Machines. The prototype of Delta parallel robot (Clavel 
[5]; Staicu and Carp-Ciocardia [6]; Tsai and Stamper [7]) developed by Clavel at 
the Federal Polytechnic Institute of Lausanne and by Tsai and Stamper at the 
University of Maryland as well as the Star parallel manipulator (Hervé and 
Sparacino [8]) are equipped with three motors, which train on the mobile platform 
in a three-degree-of-freedom general translation motion. Angeles, Gosselin, 
Gagné and Wang [9], [10], [11] analysed the kinematics, dynamics and singularity 
loci of Agile Wrist spherical robot with three actuators. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                        Fig. 1 The 3-PRR planar parallel robot 
 
 Planar parallel robots are useful for manipulating an object on a plane. A 

mechanism is said to be a planar robot if all the moving links in the mechanism 
perform the planar motions. For a planar mechanism, the loci of all points in all 
links can be drawn conveniently on a plane. In a planar linkage, the axes of all 
revolute joints must be normal to the plane of motion, while the direction of 
translation of a prismatic joint must be parallel to the plane of motion.  
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Aradyfio and Qiao [12] examined the inverse kinematics solution for the three 
different 3-DOF planar parallel robots. Gosselin and Angeles [13] and Pennock 
and Kassner [14] each present a kinematical study of a planar parallel robot, 
where a moving platform is connected to a fixed base by three links, each leg 
consisting of two binary links and three parallel revolute joints. Sefrioui and 
Gosselin [15] give an interesting numerical solution in the inverse and direct 
kinematics of this kind of planar robot. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                         Fig. 2 Kinematical scheme of first leg A of the mechanism 
 
Recently, more general approaches have been presented. Daniali et al. [16] 

present a study of velocity relationships and singular conditions for general planar 
parallel robots. Merlet [17] solved the forward pose kinematics problem for a 
broad class of planar parallel manipulators. Williams et al. [18] analysed the 
dynamics and the control of a planar three-degree-of-freedom parallel manipulator 
at Ohio University, while Yang et al. [19] concentrate on the singularity analysis 
of a class of 3-RRR planar parallel robots developed in its laboratory. Bonev, 
Zlatanov and Gosselin [20] describe several types of singular configurations by 
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studying the direct kinematics model of a 3-RPR planar parallel robot with 
actuated base joints. 

A recursive method is introduced in the present paper, to reduce significantly 
the number of equations and computation operations by using a set of matrices for 
kinematics and dynamics models of the 3-PRR planar parallel robot.  

.    
2. Kinematics analysis 

 
Having a closed-loop structure, the planar parallel robot 3-PRR is a special 

symmetrical mechanism composed of three planar kinematical chains with 
identical topology, all connecting the fixed base to the moving platform (Fig. 1). 
The points 000 ,, CBA define the summits of a fixed triangular base and the three 
moving revolute joints 333 ,, CBA define the geometry of the moving platform. 
Each leg consists of two links, with one prismatic joint and two revolute joints. 
Together, the parallel mechanism consists of seven moving links, three prismatic 
joints and six revolute joints. Grübler mobility equation predicts that the device 
has certainly three degrees of freedom. 

In a first kind of the robot )( RRP each prismatic joint is an actively controlled 
prismatic cylinder. Thus, all prismatic actuators can be installed on the fixed base. 
In the second configuration )( RRP we consider the moving platform as the output 
link and 32 AA , 32 BB , 32CC as the input links of three mobile revolute actuators. 

For the purpose of analysis, we attach a Cartesian frame )( 0000 Tzyx to the fixed 
base with its origin located at triangle centre O , the 0z axis perpendicular to the 
base and the 0x axis pointing along the direction 00 BC . Another mobile reference 
frame GGG zyx is attached to the moving platform. The origin of this coordinate 
central system is located just at the centreG of the moving triangle (Fig. 2). 

To simplify the graphical image of the kinematical scheme of the mechanism, 
in the follows we will represent the intermediate reference systems by only two 
axes, so as is proceed in most of robotics papers [1], [3], [9]. It is noted that the 
relative translation of kT body with 1, −kkλ displacement or the relative rotation with 

1, −kkϕ angle must be always pointing about or along the direction of kz axis. 
In what follows we consider that the moving platform is initially located at a 

central configuration, where the platform is not rotated with respect to the fixed 
base and the mass centreG is at the origin O of fixed frame. 

One of three active legs (for example leg A ) consists of a prismatic joint, which 
is as well as a piston 1 of mass 1m linked at the AAA zyx 111 frame, having a rectilinear 
motion of displacement A

10λ , velocity AAv 1010 λ= and acceleration AA
1010 λγ = . Second 
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element of the leg is a rigid rod 2 linked at the AAA zyx 222 frame, having a relative 
rotation about Az2  axis with the angle A

21ϕ , velocity AA
2121 ϕω =  and acceleration 

AA
2121 ϕε = . It has the length 2l , mass 2m and tensor of inertia 2Ĵ . Finally, a revolute 

joint is introduced at a planar moving platform, which is schematised as an 
equilateral triangle with edge 3rl = , mass 3m and inertia tensor 3Ĵ with respect 
to 3A , which rotates with the angle A

32ϕ  and the angular velocity AA
3232 ϕω =  

about Az3 . 
At the central configuration, we also consider that all legs are symmetrically 

extended and that the angles of orientation of three edges of fixed platform are 
given by 
                                              

3
,,

3
παπαπα −=== CBA .                                        (1) 

Pursuing the first leg A in the 3210 AAAOA way, we obtain the following matrices 
of transformation [21]: 

                            23232122121110 ,, θθθθ ϕϕ
α aaaaaa TA === ,                     (2) 
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Analogous relations can be written for other two legs of the mechanism. 
Three displacements CBA

101010 ,, λλλ of the active links are the joint variables that 

give the input vector TCBA ][ 10101010 λλλλ = of the instantaneous position of the 
mechanism in the first study configuration. But, in the inverse geometric problem, 
we can consider that the position of the mechanism is completely given by the 
coordinates GG yx 00 ,  of the mass centre G  of the moving platform and the 
orientation angle φ of the movable frame GGG zyx . The orthogonal rotation matrix 
of the moving platform from 000 zyx  to GGG zyx  reference system is 
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Further, we suppose that the position vector of G  centre TGGG yxr ]0[ 000 =  
and the orientation angleφ , which are expressed by following analytical functions 
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can describe the general absolute motion of the moving platform. 
From the rotation conditions of the moving platform 

                                             Rccbbaa TTT === 303030303030 ,                                  (6) 
with, for example, 
                                                       Aaa αθθ 2230 = ,                                               (7) 
we obtain the following relations between angles 
                                    φϕϕϕϕϕϕ =+=+=+ CCBBAA

322132213221 .                           (8) 
The six variables AA

2110 ,ϕλ , BB
2110 ,ϕλ , CC
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loop equations, as follows 
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where one denoted 
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Actually, these vector equations mean that there is only one inverse geometric 
solution for the manipulator: 
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                                     ),,( CBAi = .                                                                (11) 
We develop the inverse kinematics problem and determine the velocities and 

accelerations of the manipulator, supposing that the planar motion of the moving 
platform is known. First, we compute the linear and angular velocities of each leg 

in terms of the angular velocity 30 uG φω = and the centre’s velocity GG rv 00 = of 
the moving platform. 

The motions of the component elements of each leg (for example the leg A) are 
characterized by the following skew symmetric matrices 
                              A
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−−−−−− =+= ϕωωωω ,                      (12) 
which are associated to the absolute angular velocities given by the recursive 
relations 
                              31,0,11,0 ua A
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A
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Following relations give the velocities A
kv 0  of the joints kA  

                               31,1,0,11,0,11,0
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                         )3,2(01, ==− σσσ
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Equations of geometrical constraints (8) and (9) can be derivate with respect to 
time to obtain the following matrix conditions of connectivity [22] 
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i
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i
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3221 .                                              (15) 

where 3
~u is a skew-symmetric matrix associated to unit vector 3u  pointing in the 

positive direction of kz axis. From these equations, we obtain the relative velocities 
AAAv 322110 ,, ωω  as functions of angular velocity of the platform and velocity of mass 
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centreG . But, the conditions (15) give the complete Jacobian matrix of the 
manipulator. This matrix is a fundamental element for the analysis of the robot 
workspace and the particular configurations of singularities where the manipulator 
becomes uncontrollable. 

Rearranging, above six constraint equations (11) of the planar robot can 
immediately written as follows 
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where the “zero” position 0,0,0 00
0

0
0 === φGG yx  corresponds to the joints 

variables T]000[0
10=λ . The derivative with respect to time of conditions 

(16) leads to the matrix equation 

                                            TGG
pp yxJJ ][ 002101 φλ =                                 (17) 

for the planar robot with fixed prismatic actuators. 
Matrices pJ1 and pJ 2  are, respectively, the inverse and forward Jacobian of the 

manipulator and can be expressed as 
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The three kinds of singularities of the three closed-loop kinematical chains can be 
determined through the analysis of two Jacobian matrices pJ1 and pJ 2  [23], [24]. 

Since i
10λ is a passive variable in the second kind of the planar robot with mobile 

revolute actuators, it should be eliminated from equations (11) as follows 
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A new matrix relation is obtained by taking the derivative of equation (20) with 
respect to time 
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with 
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Now, let us assume that the robot has successively two virtual motions 
determined by the linear velocities 0,1 1010 == Bv

a
Av

a vv , 010 =Cv
av or the angular 

velocities 121 =Av
aω , 021 =Bv

aω , 021 =Cv
aω . The characteristic virtual velocities are 

expressed as functions of the position of the mechanism by the general 
kinematical constraints equations (15). 

As for the relative accelerations AAA
322110 ,, εγε of the robot, the derivatives with 

respect to time of the equations (15) give other following conditions of 
connectivity [25] 
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If the other two kinematical chains of the robot are pursued, analogous relations 
can be easily obtained. 
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The following recursive relations give the angular accelerations A
k0ε  and the 

accelerations A
k0γ  of joints kA  
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3. Dynamics simulation 
 

In the context of the real-time control, neglecting the frictions forces and 
considering the gravitational effects, the relevant objective of the dynamics is to 
determine the input torques of forces, which must be exerted by the actuators in 
order to produce a given trajectory of the effectors. 

There are three methods, which could provide the same results concerning these 
actuating torques or forces. The first one is using the Newton-Euler classic 
procedure [26], [27], [28], the second one applies the Lagrange’s equations and 
multipliers formalism [29], [30] and the third one is based on the principle of 
virtual work [1], [9], [21], [31]. 

In the inverse dynamic problem, in the present paper one applies the principle 
of virtual work in order to establish some recursive matrix relations for the powers 
of the three active systems. 

Three independent mechanical systems acting along the planar directions Az1 , 
Bz1 , Cz1 , with the forces ,31010 uff AA = 3101031010 , uffuff CCBB ==  or other three 

electric motors ,, 22 BA 2C that generate the three couples of moments 

31010 umm AA = , 31010 umm BB = , 31010 umm CC =  oriented about parallel axes can control 
the motion of the moving platform. 

The force of inertia of an arbitrary rigid body A
kT , for example, 
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and the resulting moment of the forces of inertia 
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are determined with respect to the centre of joint kA . On the other hand, the 

wrench of two vectors A
kf ∗ and A

km∗  evaluates the influence of the action of the 



Dynamics of a 3-PRR planar parallel robot 13

weight gm A
k and of other external and internal forces applied to the same 

element A
kT of the manipulator, for example: 

                  20
* 81.9 uamf k
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A
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A
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Knowing the position and kinematics state of each link as well as the external 
forces acting on the robot, in that follow one apply the principle of virtual work 
for an inverse dynamic problem. The torques of actuators or the active forces 
required in a given motion of the moving platform will easily be computed using a 
recursive procedure. 

The fundamental principle of the virtual work states that a mechanism is under 
dynamic equilibrium if and only if the virtual work developed by all external, 
internal and inertia forces vanish during any general virtual displacement, which 
is compatible with the constraints imposed on the mechanism. Assuming that 
frictional forces at the joints are negligible, the virtual work produced by all forces 
of constraint at the joints is zero. Applying the fundamental equations of the 
parallel robots dynamics established by Staicu [32], the following compact matrix 
relations results 
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for the force of first active fixed prismatic joint and 
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for the torque of first active mobile revolute joint.                   

Two recursive relations generate the vectors 
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where one denoted 
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The relations (28), (29), (30) and (31) represent the inverse dynamics model of 
the 3-PRR planar parallel manipulator.  

As application let us consider a planar manipulator which has the following 
characteristics: 
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Using the MATLAB software, a computer program was developed to solve the 
inverse dynamics of the planar PRR  parallel robot. To illustrate the algorithm, it 
is assumed that for a period of three second the platform starts at rest from a 
central configuration and rotates or moves along two orthogonal directions. 

 
                                           Fig. 3 Powers AA pp 2110 , of first actuator 

                                        
                                          Fig. 4 Powers BB pp 2110 ,  of second actuator 
 
Assuming that there is no external force and moment acting on the moving 

platform, a comparative study of the robots in two configurations: prismatic 
actuators (PRR) and revolute actuators (PRR) is based on the computation of the 
power required by each actuator: ,10

Ap ,10
Bp Cp10 and ,21

Ap ,21
Bp Cp21 during the 

platform’s evolution. 



Dynamics of a 3-PRR planar parallel robot 15

Following examples are solved to illustrate the simulation. For the first 
example we consider the rotation motion of the moving platform about 0z axis 
with variable angular acceleration while all the other positional parameters are 
held equal to zero. As can be seen from AA pp 2110 ,  (Fig. 3), BB pp 2110 ,  (Fig. 4), CC pp 2110 ,  
(Fig. 5) is proved to be true that for the third legC only both actuating powers are 
permanently of opposite sign. 

 

                                                     Fig. 5 Powers CC pp 2110 ,  of third actuator        
 

                                           Fig. 6 Powers AA pp 2110 ,  of first actuator 
 
If the platform’s centre G moves along a rectilinear planar trajectory without 

rotation of platform, the powers required by the actuators 111 ,, CBA are calculated 
by the program and plotted versus time as follows: Fig. 6, Fig. 7 and Fig. 8. 
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The simulation through the MATLAB program certify a permanent equality of 
the total power of the three actuators in the two configurations and that one of the 
major advantages of the current matrix recursive formulation is a reduced number  

  
                                        Fig. 7 Powers BB pp 2110 ,  of second actuator 
 

 
                                                 Fig. 8 Powers CC pp 2110 ,  of third actuator  
 
of additions or multiplications and consequently a smaller processing time of 
numerical computation. Also, the proposed method can be applied to various 
types of complex robots, when the number of components of the mechanism is 
increased. 
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4. Conclusions 
Most of dynamical models based on the Lagrange formalism neglect the weight 

of intermediate bodies and take into consideration only the active forces or 
moments and the wrench of applied forces on the moving platform. The number 
of relations given by this approach is equal to the total number of the position 
variables and Lagrange multipliers inclusive. The commonly known Newton-
Euler method, which takes into account the free-body-diagrams of the mechanism, 
leads to a large number of equations with unknowns among which are also the 
connecting forces in the joints. 

Within the inverse kinematics analysis some exact relations that give in real-
time the position, velocity and acceleration of each element of the parallel robot 
have been established in present paper. The dynamics model takes into 
consideration the masses and forces of inertia introduced by all component 
elements of the parallel mechanism. The new approach based on the principle of 
virtual work can eliminate all forces of internal joints and establishes a direct 
determination of the time-history evolution of powers required by the actuators. 
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