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*~FRAMES IN HILBERT C*-MODULES

A. Alijani', M. A. Dehghan?

Certain facts about frames are extended for the new frames in Hilbert C*-
modules where they are called x-frames. It is shown that *-frames for Hilbert C*-modules
share several useful properties with frames for Hilbert C*-modules. The paper studies
also the operators associated to a given *-frame, x-frames for Hilbert C*-modules over
commutative unitary C*-algebras, and the construction of new *-frames. The relations
between frames and *-frames in Hilbert C*-modules are considered. Moreover, *-frames
in Hilbert C*-modules over different C*-algebras are compared, and some characteriza-
tions of x-frames in a Hilbert C*-module with respect to another Hilbert C*-module are
presented. Finally, dual x-frames are characterized.
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Introduction and Basic Definitions

Frames were first introduced in 1952 by Duffin and Schaeffer [7]. They abstracted the
fundamental notion of Gabor [11] to study signal processing. It seems, however, that Duffin-
Schaeffer ideas did not attract much interest outside the realm of nonharmonic Fourier series
until the paper by Daubechies, Grassman and Mayer [6] was published in 1986.

The theory of frames was rapidly generalized and various generalizations consisting
of different vectors in Hilbert spaces were developed [15, 20, 21]. In 2000, Frank-Larson
[9] introduced the notion of frames in Hilbert C*-modules as a generalization of frames in
Hilbert spaces and Jing [12] continued to consider them. It is well known that Hilbert C*-
modules are generalizations of Hilbert spaces by allowing the inner product to take values
in a Cx-algebra rather than in the field of complex numbers. Also, the theory of Hilbert
C*-modules has applications in the study of locally compact quantum groups, complete
maps between C*-algebras, non-commutative geometry, and K K-theory. There are some
differences between Hilbert C*-modules and Hilbert spaces. For example, we know that the
Riesz representation theorem for continuous linear functionals on Hilbert spaces dose not
extend to Hilbert C*-modules [22] and there exist closed subspaces in Hilbert C*-modules
that have no orthogonal complement [17]. Moreover, we know that every bounded operator
on a Hilbert space has an adjoint, while there are bounded operators on Hilbert C*-modules
which do not have any [18]. It is expected that problems about frames and #-frames for
Hilbert C*-modules to be more complicated than those for Hilbert spaces. This makes the
study of the frames for Hilbert C*-modules important and interesting. The main purposes
of the present paper are to introduce the x-frames, to consider the relation between frames
and x-frames in a given Hilbert C*-module, to study the properties of them in Hilbert
C*-modules with different C*-algebras and to characterize the dual *-frames.
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The paper is organized as follows. We continue this introductory section with a
review of the basic definitions and notations of C*-algebras, Hilbert C"*-modules, frames in
Hilbert spaces and frames in Hilbert C*-modules. Section 1 introduces *-frames and presents
nontrivial examples of such *-frames. In what follows, we consider corresponding operators
associated with a given x-frame, the relation between frames in Hilbert C*-modules, and
x-frames in Hilbert C*-modules over commutative C*-algebras. Following that, the new
x-frames are constructed by a given x-frame in Section 2. One of the main results of the
paper is included in Section 3, where *-frames in modular spaces with different C*-algebras
are studied and the final section states the dual *-frames as another new result.

Let us recall some definitions and basic properties of C*-algebras and Hilbert C*-
modules that we need in the rest of the parer. We also introduce frames in Hilbert space
and Hilbert C*-modules. For more details, we refer the interested reader to [5, 8, 9, 16, 19,
22].

Let A be a unitary C*-algebra and a € A. The nonzero element a is called strictly
nonzero if zero doesn’t belong to o(a), and a is said to be strictly positive if it is strictly
nonzero and positive. If a is positive, then there is a positive element b in A such that b = a.
Moreover, b commutes with all the elements that commutes with a [3, Theorem 6.2.10]. We
use the notation /a or a2 for b. The absolute value of a is defined by |a| := (a*a)2z. The
relation ” <7 given by

a<b if and only if b—a is positive

defines a partial ordering on A. Some elementary facts about ”<” are given in the following
statements for a,b,c € A.
(1) a < Ja.
(2) 0 <a <bimplies |jal]| < b, ab> 0, a+b >0, and a’ <" for ¢ € (0,1).
(3) If @ < b, then cac* < cbc*. Moreover, if ¢ commutes with a and b, then ca < ¢b for
c> 0.
(4) If @ and b are positive invertible elements and a < b, then 0 < b~! <o~ 1.

In this paper, the notation a < b denotes a < b and a # b. Now, let B be an another unitary
C*-algebra. The tensor product of the algebras A and B is the completion of A ®g;4 B with
the spatial norm and the following operation and involution,

(a®@b)(d @V)=ad @bV , (a®b)*=a*®b* Va®bd @b € ARB.
Hence A ® B is a C*-algebra such that ||a ® b|| = ||al|.||b]| for a®be AR B. f 0 < ay < ay
in Aand 0 <b; <byin B, then 0 < a3 ® by < as ® ba, see [16, Lemma 4.3].

The following proposition is a useful tool and will be used frequently in the rest of
the paper.

Proposition 0.1. /8, 13, 19] If ¢ : A — B is a x-homomorphism between C*-algebras,
then ¢ has the following properties.

(1) o) = 1.

(2) If a is invertible, then so is p(a), and p(a=t) = ¢(a)~t.

(3) The x-homomorphism @ is positive and increasing, that is, (AT) C BT, and if a; <

as, then p(ar) < p(asz).
(4) Fora € A, we have o(p(a)) C o(a), and if ¢ is injective, then o(p(a)) = o(a).
(5) If a is strictly positive, then so is p(a).

Now, we are going to introduce some of the elementary definitions and the basic
properties of Hilbert C*-modules. Let A be a C*-algebra. A pre-Hilbert C*-module is
a linear space and algebraic (left) A-module H together with an A-inner product (-,-) :
H x H — A that possesses the following properties,

(@) (f,f) >0, for any f € H.
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(i¢) (f,f)=0if and only if f = 0.
(iii) (f.g) = (g, )", for any f,g € H.
(iv) (Af,h) = X(f, h), for any A € C and f,h € H.
(v) {af +bg,h) = a(f,h) + b{g,h), for any a,b € Aand f,g,h € H.
The action of A on H is C- and A-linear i.e., A(af) = (Aa)f = a(Af) for every A € C,a € A
1

and f € H. The map f — || f|| = [[{f, /)|, defines a norm on H. If a pre-Hilbert
C*-module H is complete with respect to this norm, then (H, A, (-,-)) is called a Hilbert
C*-module over A or, simply, a Hilbert A-module. We write H or (H,(-,-)) instead of
(H, A, (-,-)) when the A-valued inner product and the C*-algebra are well known. The
Hilbert .A-module # is called to be a full Hilbert .A-module when the linear span of {(f, g) :
fyg € H} is dense in A.

The C*-algebra A itself can be recognized as a Hilbert A-module with the inner
product (a,b) = ab*. The standard Hilbert A-module k(.A) is defined by

b(A) = {{a;};en C A: Zaja; converges in A},
JEN

with A-inner product ({a;}jen, {b}jen) = X ey asb;. Let (M, (,-)1) and (K, (-, -)2) be two
Hilbert A-modules. A map T : H — K (not necessarily linear or bounded) is said to be
adjointable (with respect to the A-inner products (H, (-,-)1) and (I, (-, -)2)), if there exists
amap T* : K — H satistying (T'f,g)2 = (f,T*g)1 whenever f € H, and g € K. The map
T* is called the adjoint of T' [22]. The class of all adjointable maps from H into K is denoted
by B.(#,K) and the class of all bounded A-module maps from # into K is denoted by
By(H,K). It is known that B.(H,K) C By(H, K). We denote B, (H,H) and By(H,H) with
B.(H) and By(H), respectively. (We avoid the classical notation B(H,K) which is used for
different notions by operator theorists and frame theorists.)

Let (H, A, (-,-)4) and (K, B, (,)5) be two Hilbert C*-modules. Similarly to the tensor prod-
uct of C*-algebras, the tensor product of Hilbert C*-modules H and K, that is denoted by
H ® K, is the completion of H ®q4 K with the following operations,

(fi®g, fo®92) = (fi, f2)a® (91, 92)8 , (a®@b)(f®g)=af® by,

for f, fi,fo €H, g9,91,920 € Landa®be AR B. If U and V are two module maps on ‘H
and K, respectively, then the tensor product U @ V is defined by U@ V(f®¢g)=Uf®Vyg
for fegeH®K.

Throughout the paper, we need the following lemma that it will illustrate lower and
upper bounds of operators corresponding to a given operator T° with respect to A-valued
inner products.

Lemma 0.1. (see [2].) Let H and K be two Hilbert A-modules and T € B.(H,K). Then
(1) If T is injective and T' has closed range, then the adjointable map T*T is invertible
and |(T*T) |1 < T°T < | T2
(ii) If T is surjective, then the adjointable map TT* is invertible and ||(TT*)~*| !
<TT* <|T|

The remainder of the section introduces frames in two spaces, Hilbert spaces and
Hilbert C*-modules. A frame for the Hilbert space H is a countable family {f;};e; in H
satisfying

AlLFIP <D KE )P < Bl
jeJ
for all f € H and some positive constants A and B independent of f.

The notion of frames for Hilbert spaces had been extended by Frank-Larson [10] to

the notion of frames in a Hilbert A-modules as a countable family {f;};cs in a Hilbert
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A-module H satisfying
AU 1Y <Y U I 1) < B )
jeJg
for all f € H and some positive constants A and B independent of f.
In the rest of this paper, we fix the notations A and J for a given unitary C*-algebra
and a finite or countably infinite index set, respectively. Also, the Hilbert A-module H is
assumed to be finitely or countably generated.

1. *-Frames and Their Corresponding Operators

In several spaces, frames can be a good candidate instead of basis. In this section, we
extend the concept of Hilbert space frames to *-frames in Hilbert C*-modules with A-valued
bounds. In Subsection 2.1, *-frames and frames are compared through some examples. Sim-
ilar to the Hilbert frames case, operators corresponding to a #-frame play an important
role in its characterization and investigation, and are given in Subsection 2.2. We illustrate
x-frames in Hilbert C*-modules over commutative C*-algebras in the last subsection.

1.1.x-Frames

x-Frames are C*-algebra version of frames. Actually, we need strictly positive ele-
ments of C*-algebra A instead of positive real numbers.

Definition 1.1. A sequence {f; € H :j € J} is a *-frame for H if there exist two strictly

nonzero elements A and B in A such that

(1.1) AU DA <Y ) /) < B A)BY,  Vfen.

jeJ
The elements A and B are called the lower and upper x-frame bounds, respectively.

Since A is not a partial ordered set, lower and upper x-frame bounds may not have order

and the optimal bounds may not exist.

If A\ = A = B, then the *-frame {f;},c is said to be a A-tight *-frame. In the special
case A = B = 14, it is called a Parseval *-frame or a normalized *-frame. Precisely, in a
Hilbert A-module, the set of all normalized x-frames and the set of all normalized frames
are the same but this is not true in the tight case. (See Example 1.1 and Example 1.2.)

If {fj}jes possesses an upper *-frame bound, but not necessarily a lower x-frame
bound, we called it a x-Bessel sequence for H with *-Bessel bound B.

If the sum in the inequality (1.1) converges in norm, then the (normalized, tight)
x-frames and *-Bessel sequences are called to be standard (normalized, tight) *-frames and
standard *-Bessel sequences. In what follows, by (normalized, tight) *-frames and *-Bessel
sequences, we mean standards ones.

We mentioned that the set of all of frames in Hilbert .A-modules can be considered
as a subset of x-frames. To illustrate this, let {f;};cs be a frame for Hilbert A-module H
with frame real bounds A and B. Note that for f € H,

(VAU VA <Y )5 1) < (VB)LAlS, H(VB)1a.
jeJ
Therefore, every frame for a Hilbert A-module ‘H with real bounds A and B is a *-frame for
H with A-valued *-frame bounds (v/A)14 and (v B)14. In the following examples, we are
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going to illustrate some #-frames with A-valued bounds. We will show that in some cases,
A-valued bounds are preferred to real-valued bounds.

Example 1.1. Let I° be the unitary C*-algebra of all bounded complez-valued sequences

with the following operations.
uv = {uv; ien, U = {Ulien, |ull = sug luil, Vu={u;i}ien,v = {vi}tien € "
ic

Let cg be the set of all sequences converging to zero. Then cg is a Hilbert I°°-module with

I°-valued inner product (u,v) = {u;V; }ien, for u,v € ¢y. Let J =N and define f; € co by

, : 1+1 i=j .
fi ={f]}ien such that f] = , VjeN.
0 i F]
We observe that
1 1 1 1 1 1

Z(u, Fi)(fiu) = {|Ui|2(§ + g)z}ieN = {5 + g}ieN<{Ui}ieN» {Ui}ieN>{§ + g}iem

JjeJ
for w = {u;}jen € co. The sequence {f;}jen is a {3 + L}ien-tight *-frame but it is not a
tight frame for Hilbert I’°-module co. Note that, {f;}jen is a frame for Hilbert I°°-module

3

co with optimal lower and upper real bounds % and 3, respectively.

Example 1.2. Let A be the C*-algebra of the set of all diagonal matrices in Max2(C)
and suppose A is the Hilbert A—module over itself. (Here, diagonal matriz means a 2 X 2

matriz (a;;) such that a11 = a, aze = b and a1z = a2 = 0, for a,b € C.) Consider,

B % 0 ‘ _ [ a 0
A; = , for alli € N. For A = € A, we have
0 = | 0 b
la> o] L L 0
A ANA A= | P =]V (A,A) | V3
iEN 0 % i 0 % 0 %

0
Then {A;}ien is a V3 -tight *-frame for Hilbert A-module A but this is a frame
1
0 &
for A with optimal lower and upper real bounds % and %, respectively.

In the special case, that A is the Hilbert C*-module over itself, the interesting results
are revealed. For example, *-frames in A are sequences in l(A) but some elements of i(.A)
are not x-frames for A. The following proposition and example consider these facts.

Proposition 1.1. Let A be a Hilbert C*-module over itself. Then the set of all x-frames
for A is a subset of lb(A).
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Proof. Assume that {f;},cs is a *-frame for A. For f € A, we have

S B =FOIHID

JjeJ jeJ
Then 3=, ;| f;* converges and it implies that {f;}jes € L(A). O
Example 1.3. Let ¢y be the Hilbert I°°-module the same as in Example 1.1. For j € J,
L=
0 i#7].

consider f; = {fij}ieN such that fZJ = . If u = {u;}ien s a sequence in cp,

then we have
|ui|® 1 1

Z(vaj><fjau> = {T}ieN = {2}i€N<{ui}i€Na {Uz‘}ieNHz}ieN-

jeJ
Since {1 }ien is not strictly nonzero in I*°, the sequence {f;};cs has not lower bound con-
dition in I°° and then it is not a x-frame for c¢o but {f;}jcs € L(I>). On the other hand,
{fi}jes is a *-Bessel sequence with x-Bessel bound {1,e+ 1};>2 in I’° fore >0 and so this
is a Bessel sequence for cy with optimal bound 1. It is interesting that {1,e + %}122 <1,
means that I°°—wvalued *-Bessel bound is less than real-valued Bessel bound.

1.2. Operators Corresponding to *-Frames

Similar to the ordinary frames, we introduce the pre-x-frame operator and *-frame oper-
ator for x-frames and state some of the important properties of them as follows.

Theorem 1.1. Let {f; € H : j € J} be a *-frame for H with lower and upper *-frame bounds
A and B, respectively. The *-frame transform or pre-x-frame operator T : H — l(A)
defined by T(f) = {(f, f;)}jes is an injective and closed range adjointable A-module map
and |T|| < |B||. The adjoint operator T* is surjective and it is given by T*(e;) = f; for

j € J where {e; : j € J} is the standard basis for l(A).
Proof. By the definition of norm in h(A),

ITFI? = 1D (£ DI S IBIPIKE A, Vf € M.
jeJ
This inequality implies that 7' is well defined and ||T|| < ||B||. Clearly, T is a linear A-
module map. We now show that Ry is closed. Let {T'f, }»en be a sequence in Ry such that
Tf, — gasn— oo. By (1.1), we have [|A{(fn — fm, fn — fo) A%\ < I T(fr — fm)||?. Since
{T fn}nen is a cauchy sequence in l(A), ||A{fr — fm, fn— fm)A*|| — 0 as n,m — oco. Note

that for n,m € N,

1f = fons f = Fud | S NATHPNACf e = fins o = fin) A7
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Therefore the sequence {f,}nen is a cauchy sequence in H and hence there exists f € H
such that f,, — f asn — co. Again by the definition of *-frames, we obtain ||T(f, —f)||* <
BN fn—f, fn—F)|I- Thus |Tf, —Tf|| — 0 as n — oo implies that T'f = g. It concludes
that Rr is closed. In order to show that T is injective, suppose that f € H and T'f = 0. By
(1.1),
I DI = TATTAS, YA (A TH < AT PIT AP
Thus f = 0 and T is injective. To determine the adjoint operator T™*, consider the equalities
(Tf,eny = {{f, fi)}ies.enw) = (f, fx), for all k € J and f € H. Now, given f € H and
{aj}jes € b(A),
Hasdjers TF) =D ai(fi 1) = O aifs f)-

jed jed
This implies that 3, ; a; f; converges in H and T* ({a;}jes) = 3_ ;¢ a; fj for every {a;}jes €

l(A). By injectivity of T ,the operator T has closed range and H = Ry, which completes
the proof. O

Now, we are ready to define x-frame operator and compare its properties with ordinary
case.

Definition 1.2. Let {f; € H : j € J} be a *-frame for H with pre-x-frame operator T and
lower and upper x-frame bounds A and B, respectively. The *-frame operator S : H — H
is defined by Sf =T*Tf =3 ,(f fj) ;-

The *-frame operator has some similar properties with frame operator in ordinary
frames, but the other properties are different. The main cause of differences is A-valued
bounds. However, the reconstruction formula is given from the *-frame operator.

Theorem 1.2. Let {f; € H : j € J} be a x-frame for H with -frame operator S and
lower and upper x-frame bounds A and B, respectively. Then S is positive, invertible and
adjointable. Also, the following inequality |A=Y| =2 < ||S|| < ||B||* holds, and the recon-

struction formula f = > .c ;(f, S=Yfi)fj holds Vf € H. Moreover, {fj}jes is a set of

module generators of H.

Proof. By Lemma 0.1 and Theorem 1.1, S is invertible. Clearly, S is positive adjointable
map. The definition of *-frames concludes that (f, f) < A71(Sf, f)(A*)~! and (Sf, f) <
B{f, f)B*, and then

IATHIZZICE AN < IKSE DI < IBIPIC AL, Y eH.
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If we take supremum on all f € H, where ||f|| <1, then [|[A7Y|=2 < ||S| < ||BJ?.

The reconstruction formula concludes by the invertibility of S similar to ordinary frames. O

Finding optimal bounds plays an important role in the study of frames and *-frames.
As we saw in the previous examples, A-valued bounds may be more suitable than real valued
bounds for a x-frame. In addition, there are tight x-frames that are not tight frames. At
the end of the subsection, we introduce lower and upper real bounds for every *-frame and
we see that x-frames can be studied as frames with different bounds.

Corollary 1.1. Let {f; € H : j € J} be a *-frame for H with pre-x-frame operator T and
lower and upper *-frame bounds A and B, respectively. Then {f;};es is a frame for H with

lower and upper frame bounds ||(T*T)~|| =% and ||T||?, respectively.

Proof. By Theorem 1.1, T is injective and has closed range and by Lemma 0.1,

T D)L L) < D A IS ) SITIE f), Ve,
JjeJ

Then {f;}jes is a frame for H with lower and upper frame bounds [|(7*T)~1||~! and ||T||?,

respectively. O

The given results in the next sections are valid for frames in Hilbert C*-modules by
Theorem 1.1.

1.3. *-Frames on Commutative C*-Algebras

In ordinary Hilbert spaces, their inner product has complex values and the set of com-
plex numbers is a commutative C*-algebra. From this point of view, it seems that *-frames
in a Hilbert C*-module over a unitary commutative C*-algebra have properties closed to or-
dinary frames. Therefore, we are going to study the properties of *-frames in these Hilbert
A-modules. Throughout this section, let 4 be a unitary commutative C*-algebra. The
x-frames will appear in the following form.

The sequence {f; € H : j € J} is a *-frame for H if there exist two strictly positive
elements A and B in A such that,

AU Y <SP S B S, Ve,
jeJ
Then VA and VB are lower and upper #-frame bounds. If there exists an element f € H
such that (f, f) is invertible in .4, then the above inequality implies that A < B.

Let {f; € H : j € J} be a «frame for # with *frame operator S and lower and
upper *frame bounds A and B, respectively. Then {f;},es is uniformly norm bounded by
VB, {{fj; fi)}jes is a bounded sequence of positive elements in A with A-valued bound
B, and A < S < B. Moreover, if {f;};cs is a V/A-tight *-frame with *-frame operator S,
then S = Al and its canonical dual x-frame is {A7!f;},;cs. One of the interesting results
about -frames for Hilbert .A-module A is as follows.

Proposition 1.2. Let A be a Hilbert C*-module over itself. Every x-frame {f;};cs is a

tight x-frame for A.
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Proof. Suppose that {f;};cs is a *-frame for A with *-frame operator S. By the invertibility

of S, we have

la=85"a=> (S"afi)f; =5""1a D _If
jed jeJd
This equality shows that >, ;| f;|? is an invertible element in A and then ) el fil?is a

strictly positive element in A. So the middle sum in (1.1) is

STEINGD =D, YeA

jeJ jeJ

Then {fj}jes is a /3 [fi|?—tight +-frame and this completes the proof. O

Proposition 1.3. Let {f; € H : j € J} be a *-frame for H with *-frame operator S
and lower and upper x-frame bounds VA and /B, respectively. Suppose that o is a strictly
positive element in A. Then the sequence {af;}jecs is a *-frame for H with x-frame operator

||?S and lower and upper *-frame bounds aVA and /B, respectively.

Proof. For f € H,wehave ) ., (f, afj){af;, f) = || > jeslfs fi)(fjs ). Therefore {cf;}jes
is a s-frame for H with lower and upper *frame bounds av/A and av/B, respectively. If S,
is *-frame operator {af;};cs, then

Sof =Y (frafpaf;=1a*Y (f 1) fi = a?Sf, VfeH.

jeJ jeJ

2. Construction of Some New *-Frames

In this Section, we are going to construct new *-frames for Hilbert A-module A and
for new Hilbert C*-modules by given x-frames. We will also study a family of full Hilbert
C*-modules by using new *-frames. The next theorem presents a collection of *-frames for
Hilbert A-module A associated to a given x-frame.

Theorem 2.1. Let {f; € H : j € J} be a *-frame for H with *-frame operator S and lower
and upper *-frame bounds A and B in the center of A. Suppose that f is an element in H
such that (f, f) is an invertible element in the center of A. Then the sequence {(f;, f)}jcs

is a x-frame for Hilbert A-module A with lower and upper x-frame bounds A\/{f, ) and
B\/(f, f) , respectively. And its x-frame operator is Sya = a(Sf, f) fora € A.

Proof. For a € A, by the definition of *-frame {f;};cs

(2.1) aA(f, [)ATa” < a(d _(f, [;){f;: [))a® < aB(f, [)B*a”,

JjeJ
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and we have
(2:2) > a5 IS5, £y a) = QU ) f)a”
JjeJ jeJ
Since A, B and +/(f, f) are in the center of A ([3, Theorem 6.2.10]) and by (2.1) and (2.2),

the following inequalities are valid for all a € A

A\/ <.f7f><aaa>(A\/ <faf>)* < Z<aa <fj7f>><<fjaf>7a>

jeJ
< B\VA(f, f)la, a)(BV{f. )"
The last inequality shows that {(f;, f)};es is a *-frame for Hilbert A-module A with lower

and upper *-frame bounds A+/(f, f) and B+/(f, f) , respectively. To see Sy, let a € A.
Then Spa =3¢ ;(a, {f;, [){fi, [) = a{S[, f). 0

Remark 2.1. When A is commutative, {(f;, f)}jer is a *-frame if {f;};cs is a *-frame

and {f, f) is invertible.

In this suitable situation, we find a necessary condition that H is a full Hilbert C*-
module.

Corollary 2.1. Let f € H and (f, f) be invertible in the center of A. Then H is a full
Hilbert A-module.

Proof. Applying Theorem 3.2 of [9], then there is a frame {f;};cs for H. It follows that
span{(f;, f)}jes = A by Theorem 2.1. O

The following example shows that the above necessary condition is not sufficient, i.e.,
there is a full Hilbert A-module H such that (f, f) is not invertible for all f € H.

Example 2.1. Assume that cy is the same Hilbert I°°-module as in Example 1.1 and let

{e;};jen be the standard basis for co. The Hilbert I°°-module cq is full because of
span{(e;, e;)}jen = spanie;}jen = I

. Assume that a = {a;}jen € co, then (a,a) € ¢y and lim;j_, |a;|* = 0. If (a,a)™" exists,
then lim;_, ﬁ = oo and (a,a)™t doesn’t belong to I’°. It shows that co has not any
J

element {a;}jen such that {{aj,a;)}jen is invertible.

In [14], the authors have shown that a tensor product of frames in Hilbert spaces is
also a frame. We study the subject in Hilbert C*-modules.
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Theorem 2.2. Let H and K be two Hilbert C*-modules over unitary C*-algebras A and B,
respectively. Let F ={f; e H:j€ J} and G ={g; € K :j € J} be two *-frames for H and
K with x-frame operators Sx and Sg and x-frame bounds (A, B) and (C, D), respectively.
Then {fi @ gj}tijes is a *-frame for Hilbert A @ B—module H & K with -frame operator

Sr ® Sg and lower and upper x-frame bounds A ® C' and B ® D, respectively.

Proof. By the definition of *-frames {f;},;cs and {g;},es, one obtains that

Af, F)AT ® Clg, )C <Y (f, fi)(fin 1) @ Y (9,905, 9)
(2.3) i€J jeJ

< B(f.f)B"® D{g,9)D", VfeH/VgeK.
Then for f ® g € H ® K, one gets

(A2C)fRg,feg)(AcC) <Y Y (fRg ivg)fi®g, [2g)
(2.4) ieJ jeJ

<(BeD)feyg, f®g)(B®D)".
Moreover, the inequality (2.4) is satisfied for every finite sum of elements in H ®44 K and
then (2.4) is satisfied for all z € H ® K. It shows that {f; ® g;}i jes is a *-frame for H ® K
with lower and upper *-frame bounds A ® C and B ® D, respectively. Now, to see the form

of the *-frame operator for 7 ® G, let Srgg be the x-frame operator F ® G. We compute

Sreg(f®g)= > (f@g, fi®g)fi®g;

i,€J
= Ui ®D (9,959 = (S @ Se)(f ® 9),
ieJ jEJT

for fegeH®K. So Srgg = Sr ® Sg and this completes the proof of the theorem. O

Let 0 € B.(H). We are going to give some necessary and sufficient conditions which
provided the x-frame-preserving property of operator 6. The following theorem generalizes
the results in [1] in the case of *-frames.

Theorem 2.3. Let {f; € H :j € J} be a *-frame for H with -frame operator S and lower
and upper x-frame bounds A and B, respectively. Then 6 € B,(H) is surjective if and only
if {6f; € H:jeJ} isax-frame for H. In this case, Sp := 056*, Al(00%) 1|~ 2, and B||0||

are *-frame operator and lower and upper *-frame bounds for {0 f;};cs, respectively.

Proof. First, let 8 be surjective. By the definition of *-frames, for all f € H, we have

A f,07 FYA™ <Y (07 f, [3)(f5,07 ) < B(O" f,07 ) B,

JjE€J
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and then
(2.5) A0 f, £YA* <> (f,0£;)(01;, f) < B(06" f, f)B*.
jeJ

Surjectivity of § and Lemma 0.1 conclude that

100) T ) < (007 f, F) < 61 (f. ), VfeH.

Multiplying with A, A* and B, B* on left and right parts of the last inequality, respectively,

we obtain
Al[(00")THITH FHAT < A(00° f, FYA®, and B(09*f, f)B* < B||0||(f, f)B"[|6].
Using (2.5), it follows that
Al©0) M7= (AN M 2)" < Y (. 08,)408, 1) < BIOI £)(BoI)",
JjeJ
holds for every f € H. Thus {6f;};cs is a *frame for 7{. The proof of the rest of the

theorem is similar to the Hilbert space case [5, Proposition 5.3.1]. (]

Let S be a positive and invertible operator in the C*-algebra B,(H). For t € R, the
map f(A) = A is continuous on (0,00). Since S is positive and invertible, o(S) C (0, 00).
Using the Spectral Mapping theorem and the fact that f € C(0(S)), we have f(S) € B.(H).
Now, f(S) is denoted by S* and we are ready to extend Theorem 3.1. [4] to the next corollary.

Corollary 2.2. Let {f; € H:j € J} be a *-frame for H with x-frame operator S and lower

and upper x-frame bounds A and B , respectively. Fort € R, the sequence {S% fitjesisa

s-frame for H with lower and upper -frame bounds A||S*t||"2 and B||S% I, respectively.

Moreover, St is its x-frame operator.

Proof. For the proof we use the functional calculus for the selfadjoint element S of the
C*-algebra B, (H) to write S = S(t=1/28B=1/2"and apply the previous theorem for § =
St=1), O

3. *-Frames in Modular Spaces with Different C*-Algebras

Studying frames in Hilbert C*-modules with different inner products is interesting
and important. Frank-Larson [10] studied frames in Hilbert A-modules constructed by two
different A-valued inner products. However, we study *-frames in two Hilbert C*-modules
with different C*-algebras. Throughout this section, assume that A and B are two unitary
C*-algebras and let (H, A, (-,-)4) and (H, B, (-, -)5) be two Hilbert C*-modules.

First, we are going to modify the proof the result [10] to show that the theorem
remains valid under slightly weaker conditions.



*-Frames in Hilbert C*-modules 101

Proposition 3.1. Suppose that (H, A, (-,-)1) ts a Hilbert A-module and let {f; € H :j € J}
be a *-frame for (H,A,(-,-)1) with *-frame operator Si. Then {f;}jecs is a *-frame for
(H, A, {-,-)2), that has an equivalent norm to the given one, with x-frame operator So if and
only if there exists an injective and adjointable operator 0 with closed range on H such that
(fog)1 = (0f,09)2 for all f,g € H. Furthermore, the given operator 6 is self-adjoint with
respect to both inner products, and the equality (f, Sy *g)2 = (f, Sy g)1 holds for all f,g € H,
the x-frame operator S1 commutes with the operator S{l, and the x-frame operators S and

So are self-adjoint with respect to both inner products.

Proof. Proof of the ’if” part follows that [10]. For the converse, let 8 € B.(H) be injective

with closed range on H such that

<f7g>1 = <9fa 99>2, Vf,g cH.

The operator #*6 is invertible by Lemma 0.1 and then for f,h € H, we obtain
(3.1) (£,(0°0) " h)yr = (f,h)2, Vf heH.

Now, we can give the result by Proposition 0.1, Lemma 0.1 and (3.1). |

Now, we consider *-frames in two Hilbert C*-modules with different C*-algebras and
the same vector spaces.

Theorem 3.1. Let (H, A, (")) and (H,B,(-,-)s) be two Hilbert C*-modules and let ¢ :
A — B be a x-homomorphism and 0 be a map on H such that (0f,09)s = o({f,g)4) for all
f,g € H. Also, suppose that {f; € H :j € J} is a -frame for (H, A, (-,-)4) with *-frame
operator Sy and lower and upper x-frame bounds o, s, respectively. If 0 is surjective,
then {0f;}jes is a x-frame for (H, B, (-,-)B) with *-frame operator Sg and lower and upper

x-frame bounds o(a1), p(ag), respectively, and

(3.2) (SB0f,09)5 = o((Saf,9)a), VYfeH.

Moreover, the map 6 is surjective if the following conditions are valid.
(1) ¢ is surjective;
(2) {6f;}jes is a *-frame for H; and
(3) 6(af) = p(a)df, forallac A, f € H.
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Proof. Assume that 6 is surjective. Using Proposition 0.1, we have that

S 0805801088 =D o((f, £1)alfi, )a)

jeJ jed
< ploo(f, flaas) = e(a2)(0f,0f)sp(a2)", VfeH,
and ¢(as) is a strictly nonzero element of B. Then the sequence {6 f;};cs has upper *frame
bound ¢(az). Similarly, p(a) is a lower *-frame bound for {6f;},c; and then {0f;},c is

a *-frame for (H, B, (-, -)5). The equation (3.2) follows from

D (05.015)8(015,09)8 = 0O _(f: i) alfss9)a), Vg EeH.

jed jeJ
For the rest of the proof, let ¢ be surjective and 6(af) = ¢(a)df, for alla € Aand f € H. By
applying the reconstruction formula for x-frame {6 f;};c s, we have g = ZJ.e](g7 Sglﬁfj>30fj
for g € H. Since ¢ is surjective, p(a;) = (g, Sz 0f;)5 for some a; € A and for all j € J.
Observe that g = > . ;0(a;)0f; = > ;c;0(a;f;) = 0(3;c5a,f;)- This shows that 6 is

surjective and the proof is complete. O

Corollary 3.1. Let (H,A,{-,)1) and (H,A,(-,-)2) be two Hilbert A-modules which have
equivalent norms and let p : A — A be a x-homomorphism such that ©({f,g)1) = (f,g)2
for all f,g € H. Then (f,g)1 = (f,g)2 for all f,g € H. Therefore, if (H, A, (-,-)1) is full,

then ¢ is the identity map on A.

Proof. By [9], (H,A,{-,-)1) contains a *-frame with %-frame operator S;. In Theorem 3.1,
set @ = Iy. Then {f;},cs is also a x-frame for (#, A, (-,-)2) with *-frame operator S;. By
Theorem 3.1 and Proposition 3.1, we conclude that (Saf, g)2 = ©((S1f,9)1) = (S1f, g)2, for
all f,g € H. Then S; = So and the two A-valued inner products (-,-); and (-,-)2 are the
same by Proposition 3.1. Now, assume that (#, A, (-,-)1) is full. Thus span{(f,¢g)1: f,g9 €

‘H} = A and by the properties of ¢, ¢ is the identity. O

Corollary 3.2. Let A, B, H, {f;}jcs and ¢ be as in Theorem 3.1. Also, let 0 be a B-module
map on H such that o({f,g9)4) = (0f,09)5 . Then 6 is surjective if and only if {0f;};cr is
a x-frame for (H,B, (-,-)B).

Proof. Proof of the ’if part’ is similar to the proof of Theorem 3.1. For the converse, since

# is B-module map, g = EjeJ<g,SB_19fj>39fj = 9(2j61<g,5519fj>5fj), for g € H, and it

completes the proof. O
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We are ready to characterize the set of x-frames for (H, B, (-,-)g) with respect to
w-frames in (H, A, (-,-).4). The following propositions illustrate this fact.

Proposition 3.2. Let A, B and H be the same in Theorem 8.1. If ¢ is a *-isomorphism
and 0 is surjective map on H such that ({f,g)4) = (0f,09)5, then the set of all x-frames
for (H,B,(-,-)B) tis precisely {0f;};jcs where {f;}jcs is a x-frame for (H, A, (-,-)4).

Proof. Theorem 3.1 concludes that the sequence {0f;};cs is a *-frame for (H,B ,(-,-))
if {f;j}jes is a xframe for (H, A, (,-)4). Now, assume that {g;};cs is a *frame for
(H, B, (-,-)p) with lower and upper *-frame bounds 3; and B2. By the properties of 6,
and Proposition 0.1, there exist the sequence {f;};cs in H and two elements oy, as in A
such that g; = 0f; for j € J, ¢(a1) = f1, and p(a2) = Pa2. The elements oy and s are
strictly nonzero by Proposition 0.1. Using the definition of the *-frame {g,},cs, we have
O I allis £ a) = (0£.0£5)8(015,01)5
jed jeJ
< BA0f.0f)8B3 = p(aa(f, flaaz),  VfeH.
We apply Proposition 0.1 again, ZjeJ<f, fiyalfi, Hra < aolf, f)acs, for f € H. Similarly,
oy is a lower *-frame bound for {f;};cs. This shows that every *-frame in (¥, B, (-,)g) is
obtained by the action of 6 on a *-frame in (H, A, {-,-).4). O

Also, we can characterize all x-frames in the Hilbert B-module B with respect to all
x-frames in the Hilbert A-module A and obtain some relations between their operators.

Proposition 3.3. Let ¢ : A — B be a x-isomorphism. The set of all of x-frames for
the Hilbert B-module B is precisely {¢(a;)}jcs, where {a;}ics is a *-frame for the Hilbert
A-module A. Moreover, if Sq and Sp are x-frame operators for {a;};cs and {¢(a;)}jer,

respectively, then oS4 = Spop.

Proof. For a sequence {a;}jecs in A, we have
(33) > (), olay))s(e(ay), p(a)s = 9> _(a,a;) alaj, a)a), VYa € A

jed jeJ
Proposition 0.1 and the above equalities imply that {¢(a;)};es is a *-frame for B if {a;};cs
is a -frame for A. Now, suppose {b;};jcs is a x-frame for B. Since ¢ is surjective, there
exists a sequence {a,};cs in A such that b; = ¢(a;) for j € J. Also, applying Proposition

0.1 and (3.3), we obtain that {a;};cs is a *frame for A. For the rest of the proof, let Sy
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and Sp be *-frame operators for {a;};c; and {¢(a;)};cs, respectively. Then ¢S4(a) =

(X esaaja;) = Spp(a), for all a € A, and poSa = Spop. O

4. The dual *-frames

The dual frames play an important role to study of frames. In this section, we
introduce dual *-frames and extend the characterization of dual frames [5] to dual *-frames
associated to a given #-frame.

Definition 4.1. Let {f; € H :j € J} be a *-frame for H with x-frame operator S. If there
exists a *-frame {g; € H : j € J} for H such that f =3 ;. ;(f.9;)f; for f € H, then the
x-frame {g;}je is called the dual -frame of {f;};jes. The spacial dual x-frame {S™ f;}jcs

is said to be the canonical dual x-frame of {f;}jes.

It is well known, that if 7" and V are pre-x-frame operators of two *-Bessel sequences

{fi}jes and {g;};e s, respectively, then f =3 . ;(f,g;)f; for f € H if and only if T*V =
idy. The following lemma shows that the roles of two *-Bessel sequences can be changed
and obtains a relation between bounds of {f;};cs and {g;};es.

Lemma 4.1. Let {f;};cs and {g;}jes be x-Bessel sequences for H with pre-x-frame oper-
ators T and V', respectively. Then for f € H the following statements are equivalent.

i f= Zjej<fagj>fj'

ii. f= Zje.]<f7 fj>9j~
In the case that one of the above equalities is satisfied, {f;}jes and {g;}jes are dual -frames.
Moreover, if B is an upper x-frame bound for {f;};jcs and S is its x-frame operator, then

B||S7Y|~2||T||* is a lower x-frame bound for {gi}jer-

Proof. The proof of the equivalency of the two conditions is similar to the proof of [5, Lemma
5.6.2]. Now, suppose that the conditions i and i are valid. By ¢, we have T*V = idy and
T* is surjective. Then it follows that the sequence {f;} e is a *-frame [12]. Similarly, the
*-Bessel sequence {g;},es is a *frame.

Finally, let B be an upper *-frame bound for {f;};c;. By the definition of x-
frames {f;};cs and T*V = idy, we can write (T'f,Tf) < B(T*V f,T*V f)B*, for f €
H. Using Lemma 0.1, we have ||(T*T)7Y|71f, f) < (Tf,Tf), for f € H. It follows
that B-YIS~YHITI=LS, £)(B-UIS Y HITITY)T < (VA V), for f € H. Therefore,

B||S~Y|~2||T||* is a lower *-frame bound for {gj}jes and the proposition follows. O
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Proposition 4.1. Let {f; € H : j € J} be a x-frame for H with pre-x-frame operator T.
The set of all of dual *-frames for {f;};jcs is precisely the set of the families {g;}jes =
{V*(ej)}jcs, where V : H — b(A) is an adjointable right-inverse of T* and the sequence

{ej}jes is the standard basis for lr(A).

Proof. By Lemma 4.1 and [12, Proposition 3.11], the proof is clear. ]

Now, we can characterize all dual *-frames for a given *-frame {f; € H : j € J} with
respect to x-Bessel sequences, similar to [5]. First, it follows from Proposition 4.1 that every
right- inverse of pre-x-frame operator T of {f;};es has the form TS~ + (I — T'S™'T*)U,
where S is the *-frame operator and U is an adjointable operator from # into (.A). In the
end, all of dual *-frames of {f;};cs are precisely the families

{9} jer = {57 fi + by = D (ST Sy fidhidses
ieJ

where {h;};c is a *-Bessel sequence for H.
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