

-FRAMES IN HILBERT C^ -MODULESA. Alijani¹, M. A. Dehghan²

Certain facts about frames are extended for the new frames in Hilbert C^ -modules where they are called $*$ -frames. It is shown that $*$ -frames for Hilbert C^* -modules share several useful properties with frames for Hilbert C^* -modules. The paper studies also the operators associated to a given $*$ -frame, $*$ -frames for Hilbert C^* -modules over commutative unitary C^* -algebras, and the construction of new $*$ -frames. The relations between frames and $*$ -frames in Hilbert C^* -modules are considered. Moreover, $*$ -frames in Hilbert C^* -modules over different C^* -algebras are compared, and some characterizations of $*$ -frames in a Hilbert C^* -module with respect to another Hilbert C^* -module are presented. Finally, dual $*$ -frames are characterized.*

Keywords: : frame, $*$ -frame, $*$ -Bessel sequence, $*$ frame operator, pre- $*$ -frame operator, $*$ -frame representation, dual $*$ -frame, C^* -algebra, Hilbert C^* -module.

MSC2010: : Primary: 42C15; Secondary: 47C15, 46L99

Introduction and Basic Definitions

Frames were first introduced in 1952 by Duffin and Schaeffer [7]. They abstracted the fundamental notion of Gabor [11] to study signal processing. It seems, however, that Duffin-Schaeffer ideas did not attract much interest outside the realm of nonharmonic Fourier series until the paper by Daubechies, Grassman and Mayer [6] was published in 1986.

The theory of frames was rapidly generalized and various generalizations consisting of different vectors in Hilbert spaces were developed [15, 20, 21]. In 2000, Frank-Larson [9] introduced the notion of frames in Hilbert C^* -modules as a generalization of frames in Hilbert spaces and Jing [12] continued to consider them. It is well known that Hilbert C^* -modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C^* -algebra rather than in the field of complex numbers. Also, the theory of Hilbert C^* -modules has applications in the study of locally compact quantum groups, complete maps between C^* -algebras, non-commutative geometry, and KK -theory. There are some differences between Hilbert C^* -modules and Hilbert spaces. For example, we know that the Riesz representation theorem for continuous linear functionals on Hilbert spaces dose not extend to Hilbert C^* -modules [22] and there exist closed subspaces in Hilbert C^* -modules that have no orthogonal complement [17]. Moreover, we know that every bounded operator on a Hilbert space has an adjoint, while there are bounded operators on Hilbert C^* -modules which do not have any [18]. It is expected that problems about frames and $*$ -frames for Hilbert C^* -modules to be more complicated than those for Hilbert spaces. This makes the study of the frames for Hilbert C^* -modules important and interesting. The main purposes of the present paper are to introduce the $*$ -frames, to consider the relation between frames and $*$ -frames in a given Hilbert C^* -module, to study the properties of them in Hilbert C^* -modules with different C^* -algebras and to characterize the dual $*$ -frames.

¹ Department of Mathematics, Vali-e-Asr University, P. O. Box 518, Rafsanjan, Iran e-mail:alijani@vru.ac.ir

²Department of Mathematics, Vali-e-Asr University, P. O. Box 518, Rafsanjan, Iran e-mail: dehghan@vru.ac.ir

The paper is organized as follows. We continue this introductory section with a review of the basic definitions and notations of C^* -algebras, Hilbert C^* -modules, frames in Hilbert spaces and frames in Hilbert C^* -modules. Section 1 introduces $*$ -frames and presents nontrivial examples of such $*$ -frames. In what follows, we consider corresponding operators associated with a given $*$ -frame, the relation between frames in Hilbert C^* -modules, and $*$ -frames in Hilbert C^* -modules over commutative C^* -algebras. Following that, the new $*$ -frames are constructed by a given $*$ -frame in Section 2. One of the main results of the paper is included in Section 3, where $*$ -frames in modular spaces with different C^* -algebras are studied and the final section states the dual $*$ -frames as another new result.

Let us recall some definitions and basic properties of C^* -algebras and Hilbert C^* -modules that we need in the rest of the paper. We also introduce frames in Hilbert space and Hilbert C^* -modules. For more details, we refer the interested reader to [5, 8, 9, 16, 19, 22].

Let \mathcal{A} be a unitary C^* -algebra and $a \in \mathcal{A}$. The nonzero element a is called strictly nonzero if zero doesn't belong to $\sigma(a)$, and a is said to be strictly positive if it is strictly nonzero and positive. If a is positive, then there is a positive element b in \mathcal{A} such that $b^2 = a$. Moreover, b commutes with all the elements that commutes with a [3, Theorem 6.2.10]. We use the notation \sqrt{a} or $a^{\frac{1}{2}}$ for b . The absolute value of a is defined by $|a| := (a^*a)^{\frac{1}{2}}$. The relation " \leq " given by

$$a \leq b \text{ if and only if } b - a \text{ is positive}$$

defines a partial ordering on \mathcal{A} . Some elementary facts about " \leq " are given in the following statements for $a, b, c \in \mathcal{A}$.

- (1) $a \leq \|a\|$.
- (2) $0 \leq a \leq b$ implies $\|a\| \leq \|b\|$, $ab \geq 0$, $a + b \geq 0$, and $a^t \leq b^t$ for $t \in (0, 1)$.
- (3) If $a \leq b$, then $cac^* \leq cbc^*$. Moreover, if c commutes with a and b , then $ca \leq cb$ for $c \geq 0$.
- (4) If a and b are positive invertible elements and $a \leq b$, then $0 \leq b^{-1} \leq a^{-1}$.

In this paper, the notation $a < b$ denotes $a \leq b$ and $a \neq b$. Now, let \mathcal{B} be an another unitary C^* -algebra. The tensor product of the algebras \mathcal{A} and \mathcal{B} is the completion of $\mathcal{A} \otimes_{alg} \mathcal{B}$ with the spatial norm and the following operation and involution,

$$(a \otimes b)(a' \otimes b') = aa' \otimes bb' , \quad (a \otimes b)^* = a^* \otimes b^* \quad \forall a \otimes b, a' \otimes b' \in \mathcal{A} \otimes \mathcal{B}.$$

Hence $\mathcal{A} \otimes \mathcal{B}$ is a C^* -algebra such that $\|a \otimes b\| = \|a\| \|b\|$ for $a \otimes b \in \mathcal{A} \otimes \mathcal{B}$. If $0 \leq a_1 \leq a_2$ in \mathcal{A} and $0 \leq b_1 \leq b_2$ in \mathcal{B} , then $0 \leq a_1 \otimes b_1 \leq a_2 \otimes b_2$, see [16, Lemma 4.3].

The following proposition is a useful tool and will be used frequently in the rest of the paper.

Proposition 0.1. [8, 13, 19] *If $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is a $*$ -homomorphism between C^* -algebras, then φ has the following properties.*

- (1) $\varphi(1) = 1$.
- (2) If a is invertible, then so is $\varphi(a)$, and $\varphi(a^{-1}) = \varphi(a)^{-1}$.
- (3) The $*$ -homomorphism φ is positive and increasing, that is, $\varphi(\mathcal{A}^+) \subseteq \mathcal{B}^+$, and if $a_1 \leq a_2$, then $\varphi(a_1) \leq \varphi(a_2)$.
- (4) For $a \in \mathcal{A}$, we have $\sigma(\varphi(a)) \subseteq \sigma(a)$, and if φ is injective, then $\sigma(\varphi(a)) = \sigma(a)$.
- (5) If a is strictly positive, then so is $\varphi(a)$.

Now, we are going to introduce some of the elementary definitions and the basic properties of Hilbert C^* -modules. Let \mathcal{A} be a C^* -algebra. A pre-Hilbert C^* -module is a linear space and algebraic (left) \mathcal{A} -module \mathcal{H} together with an \mathcal{A} -inner product $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \longrightarrow \mathcal{A}$ that possesses the following properties,

- (i) $\langle f, f \rangle \geq 0$, for any $f \in \mathcal{H}$.

- (ii) $\langle f, f \rangle = 0$ if and only if $f = 0$.
- (iii) $\langle f, g \rangle = \langle g, f \rangle^*$, for any $f, g \in \mathcal{H}$.
- (iv) $\langle \lambda f, h \rangle = \lambda \langle f, h \rangle$, for any $\lambda \in \mathbb{C}$ and $f, h \in \mathcal{H}$.
- (v) $\langle af + bg, h \rangle = a\langle f, h \rangle + b\langle g, h \rangle$, for any $a, b \in \mathcal{A}$ and $f, g, h \in \mathcal{H}$.

The action of \mathcal{A} on \mathcal{H} is \mathbb{C} - and \mathcal{A} -linear i.e., $\lambda(af) = (\lambda a)f = a(\lambda f)$ for every $\lambda \in \mathbb{C}, a \in \mathcal{A}$ and $f \in \mathcal{H}$. The map $f \mapsto \|f\| = \|\langle f, f \rangle\|_{\mathcal{A}}^{\frac{1}{2}}$, defines a norm on \mathcal{H} . If a pre-Hilbert C^* -module \mathcal{H} is complete with respect to this norm, then $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle)$ is called a Hilbert C^* -module over \mathcal{A} or, simply, a Hilbert \mathcal{A} -module. We write \mathcal{H} or $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ instead of $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle)$ when the \mathcal{A} -valued inner product and the C^* -algebra are well known. The Hilbert \mathcal{A} -module \mathcal{H} is called to be a full Hilbert \mathcal{A} -module when the linear span of $\{\langle f, g \rangle : f, g \in \mathcal{H}\}$ is dense in \mathcal{A} .

The C^* -algebra \mathcal{A} itself can be recognized as a Hilbert \mathcal{A} -module with the inner product $\langle a, b \rangle = ab^*$. The standard Hilbert \mathcal{A} -module $l_2(\mathcal{A})$ is defined by

$$l_2(\mathcal{A}) := \{\{a_j\}_{j \in \mathbb{N}} \subseteq \mathcal{A} : \sum_{j \in \mathbb{N}} a_j a_j^* \text{ converges in } \mathcal{A}\},$$

with \mathcal{A} -inner product $\langle \{a_j\}_{j \in \mathbb{N}}, \{b_j\}_{j \in \mathbb{N}} \rangle = \sum_{j \in \mathbb{N}} a_j b_j^*$. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle_1)$ and $(\mathcal{K}, \langle \cdot, \cdot \rangle_2)$ be two Hilbert \mathcal{A} -modules. A map $T : \mathcal{H} \rightarrow \mathcal{K}$ (not necessarily linear or bounded) is said to be adjointable (with respect to the \mathcal{A} -inner products $(\mathcal{H}, \langle \cdot, \cdot \rangle_1)$ and $(\mathcal{K}, \langle \cdot, \cdot \rangle_2)$), if there exists a map $T^* : \mathcal{K} \rightarrow \mathcal{H}$ satisfying $\langle Tf, g \rangle_2 = \langle f, T^*g \rangle_1$ whenever $f \in \mathcal{H}$, and $g \in \mathcal{K}$. The map T^* is called the adjoint of T [22]. The class of all adjointable maps from \mathcal{H} into \mathcal{K} is denoted by $B_*(\mathcal{H}, \mathcal{K})$ and the class of all bounded \mathcal{A} -module maps from \mathcal{H} into \mathcal{K} is denoted by $B_b(\mathcal{H}, \mathcal{K})$. It is known that $B_*(\mathcal{H}, \mathcal{K}) \subseteq B_b(\mathcal{H}, \mathcal{K})$. We denote $B_*(\mathcal{H}, \mathcal{H})$ and $B_b(\mathcal{H}, \mathcal{H})$ with $B_*(\mathcal{H})$ and $B_b(\mathcal{H})$, respectively. (We avoid the classical notation $B(\mathcal{H}, \mathcal{K})$ which is used for different notions by operator theorists and frame theorists.)

Let $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_{\mathcal{A}})$ and $(\mathcal{K}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$ be two Hilbert C^* -modules. Similarly to the tensor product of C^* -algebras, the tensor product of Hilbert C^* -modules \mathcal{H} and \mathcal{K} , that is denoted by $\mathcal{H} \otimes \mathcal{K}$, is the completion of $\mathcal{H} \otimes_{alg} \mathcal{K}$ with the following operations,

$$\langle f_1 \otimes g_1, f_2 \otimes g_2 \rangle = \langle f_1, f_2 \rangle_{\mathcal{A}} \otimes \langle g_1, g_2 \rangle_{\mathcal{B}}, \quad (a \otimes b)(f \otimes g) = af \otimes bg,$$

for $f, f_1, f_2 \in \mathcal{H}$, $g, g_1, g_2 \in \mathcal{K}$ and $a \otimes b \in \mathcal{A} \otimes \mathcal{B}$. If U and V are two module maps on \mathcal{H} and \mathcal{K} , respectively, then the tensor product $U \otimes V$ is defined by $U \otimes V(f \otimes g) = Uf \otimes Vg$ for $f \otimes g \in \mathcal{H} \otimes \mathcal{K}$.

Throughout the paper, we need the following lemma that it will illustrate lower and upper bounds of operators corresponding to a given operator T with respect to \mathcal{A} -valued inner products.

Lemma 0.1. (see [2].) *Let \mathcal{H} and \mathcal{K} be two Hilbert \mathcal{A} -modules and $T \in B_*(\mathcal{H}, \mathcal{K})$. Then*

- (i) *If T is injective and T has closed range, then the adjointable map T^*T is invertible and $\|(T^*T)^{-1}\|^{-1} \leq T^*T \leq \|T\|^2$.*
- (ii) *If T is surjective, then the adjointable map TT^* is invertible and $\|(TT^*)^{-1}\|^{-1} \leq TT^* \leq \|T\|^2$.*

The remainder of the section introduces frames in two spaces, Hilbert spaces and Hilbert C^* -modules. A frame for the Hilbert space H is a countable family $\{f_j\}_{j \in J}$ in H satisfying

$$A\|f\|^2 \leq \sum_{j \in J} |\langle f, f_j \rangle|^2 \leq B\|f\|^2,$$

for all $f \in H$ and some positive constants A and B independent of f .

The notion of frames for Hilbert spaces had been extended by Frank-Larson [10] to the notion of frames in a Hilbert \mathcal{A} -modules as a countable family $\{f_j\}_{j \in J}$ in a Hilbert

\mathcal{A} -module \mathcal{H} satisfying

$$A\langle f, f \rangle \leq \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle \leq B\langle f, f \rangle$$

for all $f \in \mathcal{H}$ and some positive constants A and B independent of f .

In the rest of this paper, we fix the notations \mathcal{A} and J for a given unitary C^* -algebra and a finite or countably infinite index set, respectively. Also, the Hilbert \mathcal{A} -module \mathcal{H} is assumed to be finitely or countably generated.

1. *-Frames and Their Corresponding Operators

In several spaces, frames can be a good candidate instead of basis. In this section, we extend the concept of Hilbert space frames to $*$ -frames in Hilbert C^* -modules with \mathcal{A} -valued bounds. In Subsection 2.1, $*$ -frames and frames are compared through some examples. Similar to the Hilbert frames case, operators corresponding to a $*$ -frame play an important role in its characterization and investigation, and are given in Subsection 2.2. We illustrate $*$ -frames in Hilbert C^* -modules over commutative C^* -algebras in the last subsection.

1.1.*-Frames

$*$ -Frames are C^* -algebra version of frames. Actually, we need strictly positive elements of C^* -algebra \mathcal{A} instead of positive real numbers.

Definition 1.1. *A sequence $\{f_j \in \mathcal{H} : j \in J\}$ is a $*$ -frame for \mathcal{H} if there exist two strictly nonzero elements A and B in \mathcal{A} such that*

$$(1.1) \quad A\langle f, f \rangle A^* \leq \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle \leq B\langle f, f \rangle B^*, \quad \forall f \in \mathcal{H}.$$

The elements A and B are called the lower and upper $$ -frame bounds, respectively.*

Since \mathcal{A} is not a partial ordered set, lower and upper $$ -frame bounds may not have order and the optimal bounds may not exist.*

If $\lambda = A = B$, then the $*$ -frame $\{f_j\}_{j \in J}$ is said to be a λ -tight $*$ -frame. In the special case $A = B = 1_{\mathcal{A}}$, it is called a Parseval $*$ -frame or a normalized $*$ -frame. Precisely, in a Hilbert \mathcal{A} -module, the set of all normalized $*$ -frames and the set of all normalized frames are the same but this is not true in the tight case. (See Example 1.1 and Example 1.2.)

If $\{f_j\}_{j \in J}$ possesses an upper $*$ -frame bound, but not necessarily a lower $*$ -frame bound, we called it a $*$ -Bessel sequence for \mathcal{H} with $*$ -Bessel bound B .

If the sum in the inequality (1.1) converges in norm, then the (normalized, tight) $*$ -frames and $*$ -Bessel sequences are called to be standard (normalized, tight) $*$ -frames and standard $*$ -Bessel sequences. In what follows, by (normalized, tight) $*$ -frames and $*$ -Bessel sequences, we mean standards ones.

We mentioned that the set of all of frames in Hilbert \mathcal{A} -modules can be considered as a subset of $*$ -frames. To illustrate this, let $\{f_j\}_{j \in J}$ be a frame for Hilbert \mathcal{A} -module \mathcal{H} with frame real bounds A and B . Note that for $f \in \mathcal{H}$,

$$(\sqrt{A})1_{\mathcal{A}}\langle f, f \rangle(\sqrt{A})1_{\mathcal{A}} \leq \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle \leq (\sqrt{B})1_{\mathcal{A}}\langle f, f \rangle(\sqrt{B})1_{\mathcal{A}}.$$

Therefore, every frame for a Hilbert \mathcal{A} -module \mathcal{H} with real bounds A and B is a $*$ -frame for \mathcal{H} with \mathcal{A} -valued $*$ -frame bounds $(\sqrt{A})1_{\mathcal{A}}$ and $(\sqrt{B})1_{\mathcal{A}}$. In the following examples, we are

going to illustrate some $*$ -frames with \mathcal{A} -valued bounds. We will show that in some cases, \mathcal{A} -valued bounds are preferred to real-valued bounds.

Example 1.1. Let ℓ^∞ be the unitary C^* -algebra of all bounded complex-valued sequences with the following operations.

$$uv = \{u_i v_i\}_{i \in \mathbb{N}}, \quad u^* = \{\overline{u_i}\}_{i \in \mathbb{N}}, \quad \|u\| = \sup_{i \in \mathbb{N}} |u_i|, \quad \forall u = \{u_i\}_{i \in \mathbb{N}}, v = \{v_i\}_{i \in \mathbb{N}} \in \ell^\infty.$$

Let c_0 be the set of all sequences converging to zero. Then c_0 is a Hilbert ℓ^∞ -module with ℓ^∞ -valued inner product $\langle u, v \rangle = \{u_i \overline{v_i}\}_{i \in \mathbb{N}}$, for $u, v \in c_0$. Let $J = \mathbb{N}$ and define $f_j \in c_0$ by

$$f_j = \{f_i^j\}_{i \in \mathbb{N}} \text{ such that } f_i^j = \begin{cases} \frac{1}{2} + \frac{1}{i} & i = j \\ 0 & i \neq j \end{cases}, \quad \forall j \in \mathbb{N}.$$

We observe that

$$\sum_{j \in J} \langle u, f_j \rangle \langle f_j, u \rangle = \{|u_i|^2 (\frac{1}{2} + \frac{1}{i})^2\}_{i \in \mathbb{N}} = \{\frac{1}{2} + \frac{1}{i}\}_{i \in \mathbb{N}} \langle \{u_i\}_{i \in \mathbb{N}}, \{u_i\}_{i \in \mathbb{N}} \rangle \{\frac{1}{2} + \frac{1}{i}\}_{i \in \mathbb{N}},$$

for $u = \{u_j\}_{j \in \mathbb{N}} \in c_0$. The sequence $\{f_j\}_{j \in \mathbb{N}}$ is a $\{\frac{1}{2} + \frac{1}{i}\}_{i \in \mathbb{N}}$ -tight $*$ -frame but it is not a tight frame for Hilbert ℓ^∞ -module c_0 . Note that, $\{f_j\}_{j \in \mathbb{N}}$ is a frame for Hilbert ℓ^∞ -module c_0 with optimal lower and upper real bounds $\frac{1}{2}$ and $\frac{3}{2}$, respectively.

Example 1.2. Let \mathcal{A} be the C^* -algebra of the set of all diagonal matrices in $M_{2 \times 2}(\mathbb{C})$ and suppose \mathcal{A} is the Hilbert \mathcal{A} -module over itself. (Here, diagonal matrix means a 2×2 matrix (a_{ij}) such that $a_{11} = a$, $a_{22} = b$ and $a_{12} = a_{21} = 0$, for $a, b \in \mathbb{C}$.) Consider,

$$A_i = \begin{bmatrix} \frac{1}{2^i} & 0 \\ 0 & \frac{1}{3^i} \end{bmatrix}, \text{ for all } i \in \mathbb{N}. \text{ For } A = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in \mathcal{A}, \text{ we have}$$

$$\sum_{i \in \mathbb{N}} \langle A, A_i \rangle \langle A_i, A \rangle = \begin{bmatrix} \frac{|a|^2}{3} & 0 \\ 0 & \frac{|b|^2}{8} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{8}} \end{bmatrix} \langle A, A \rangle \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{8}} \end{bmatrix}.$$

Then $\{A_i\}_{i \in \mathbb{N}}$ is a $\begin{bmatrix} \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{8}} \end{bmatrix}$ -tight $*$ -frame for Hilbert \mathcal{A} -module \mathcal{A} but this is a frame for \mathcal{A} with optimal lower and upper real bounds $\frac{1}{\sqrt{8}}$ and $\frac{1}{\sqrt{3}}$, respectively.

In the special case, that \mathcal{A} is the Hilbert C^* -module over itself, the interesting results are revealed. For example, $*$ -frames in \mathcal{A} are sequences in $l_2(\mathcal{A})$ but some elements of $l_2(\mathcal{A})$ are not $*$ -frames for \mathcal{A} . The following proposition and example consider these facts.

Proposition 1.1. Let \mathcal{A} be a Hilbert C^* -module over itself. Then the set of all $*$ -frames for \mathcal{A} is a subset of $l_2(\mathcal{A})$.

Proof. Assume that $\{f_j\}_{j \in J}$ is a $*$ -frame for \mathcal{A} . For $f \in \mathcal{A}$, we have

$$\sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle = f \left(\sum_{j \in J} |f_j|^2 \right) f^*.$$

Then $\sum_{j \in J} |f_j|^2$ converges and it implies that $\{f_j\}_{j \in J} \in l_2(\mathcal{A})$. \square

Example 1.3. Let c_0 be the Hilbert ℓ^∞ -module the same as in Example 1.1. For $j \in J$,

consider $f_j = \{f_i^j\}_{i \in \mathbb{N}}$ such that $f_i^j = \begin{cases} \frac{1}{i} & i = j, \\ 0 & i \neq j. \end{cases}$. If $u = \{u_i\}_{i \in \mathbb{N}}$ is a sequence in c_0 ,

then we have

$$\sum_{j \in J} \langle u, f_j \rangle \langle f_j, u \rangle = \left\{ \frac{|u_i|^2}{i} \right\}_{i \in \mathbb{N}} = \left\{ \frac{1}{i} \right\}_{i \in \mathbb{N}} \langle \{u_i\}_{i \in \mathbb{N}}, \{u_i\}_{i \in \mathbb{N}} \rangle \left\{ \frac{1}{i} \right\}_{i \in \mathbb{N}}.$$

Since $\{\frac{1}{i}\}_{i \in \mathbb{N}}$ is not strictly nonzero in ℓ^∞ , the sequence $\{f_j\}_{j \in J}$ has not lower bound condition in ℓ^∞ and then it is not a $*$ -frame for c_0 but $\{f_j\}_{j \in J} \in l_2(\ell^\infty)$. On the other hand, $\{f_j\}_{j \in J}$ is a $*$ -Bessel sequence with $*$ -Bessel bound $\{1, \varepsilon + \frac{1}{i}\}_{i \geq 2}$ in ℓ^∞ for $\varepsilon > 0$ and so this is a Bessel sequence for c_0 with optimal bound 1. It is interesting that $\{1, \varepsilon + \frac{1}{i}\}_{i \geq 2} < 1$, means that ℓ^∞ -valued $*$ -Bessel bound is less than real-valued Bessel bound.

1.2. Operators Corresponding to $*$ -Frames

Similar to the ordinary frames, we introduce the pre- $*$ -frame operator and $*$ -frame operator for $*$ -frames and state some of the important properties of them as follows.

Theorem 1.1. Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with lower and upper $*$ -frame bounds A and B , respectively. The $*$ -frame transform or pre- $*$ -frame operator $T : \mathcal{H} \rightarrow l_2(\mathcal{A})$ defined by $T(f) = \{\langle f, f_j \rangle\}_{j \in J}$ is an injective and closed range adjointable \mathcal{A} -module map and $\|T\| \leq \|B\|$. The adjoint operator T^* is surjective and it is given by $T^*(e_j) = f_j$ for $j \in J$ where $\{e_j : j \in J\}$ is the standard basis for $l_2(\mathcal{A})$.

Proof. By the definition of norm in $l_2(\mathcal{A})$,

$$\|Tf\|^2 = \left\| \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle \right\|^2 \leq \|B\|^2 \|\langle f, f \rangle\|, \quad \forall f \in \mathcal{H}.$$

This inequality implies that T is well defined and $\|T\| \leq \|B\|$. Clearly, T is a linear \mathcal{A} -module map. We now show that R_T is closed. Let $\{Tf_n\}_{n \in \mathbb{N}}$ be a sequence in R_T such that $Tf_n \rightarrow g$ as $n \rightarrow \infty$. By (1.1), we have $\|A\langle f_n - f_m, f_n - f_m \rangle A^*\| \leq \|T(f_n - f_m)\|^2$. Since $\{Tf_n\}_{n \in \mathbb{N}}$ is a cauchy sequence in $l_2(\mathcal{A})$, $\|A\langle f_n - f_m, f_n - f_m \rangle A^*\| \rightarrow 0$ as $n, m \rightarrow \infty$. Note that for $n, m \in \mathbb{N}$,

$$\|\langle f_n - f_m, f_n - f_m \rangle\| \leq \|A^{-1}\|^2 \|A\langle f_n - f_m, f_n - f_m \rangle A^*\|.$$

Therefore the sequence $\{f_n\}_{n \in \mathbb{N}}$ is a cauchy sequence in \mathcal{H} and hence there exists $f \in \mathcal{H}$ such that $f_n \rightarrow f$ as $n \rightarrow \infty$. Again by the definition of $*$ -frames, we obtain $\|T(f_n - f)\|^2 \leq \|B\|^2 \|\langle f_n - f, f_n - f \rangle\|$. Thus $\|Tf_n - Tf\| \rightarrow 0$ as $n \rightarrow \infty$ implies that $Tf = g$. It concludes that R_T is closed. In order to show that T is injective, suppose that $f \in \mathcal{H}$ and $Tf = 0$. By (1.1),

$$\|\langle f, f \rangle\| = \|A^{-1}A\langle f, f \rangle A^*(A^*)^{-1}\| \leq \|A^{-1}\|^2 \|Tf\|^2.$$

Thus $f = 0$ and T is injective. To determine the adjoint operator T^* , consider the equalities $\langle Tf, e_k \rangle = \langle \{ \langle f, f_j \rangle \}_{j \in J}, e_k \rangle = \langle f, f_k \rangle$, for all $k \in J$ and $f \in \mathcal{H}$. Now, given $f \in \mathcal{H}$ and $\{a_j\}_{j \in J} \in l_2(\mathcal{A})$,

$$\langle \{a_j\}_{j \in J}, Tf \rangle = \sum_{j \in J} a_j \langle f, f_j \rangle^* = \langle \sum_{j \in J} a_j f_j, f \rangle.$$

This implies that $\sum_{j \in J} a_j f_j$ converges in \mathcal{H} and $T^*(\{a_j\}_{j \in J}) = \sum_{j \in J} a_j f_j$ for every $\{a_j\}_{j \in J} \in l_2(\mathcal{A})$. By injectivity of T , the operator T^* has closed range and $\mathcal{H} = R_{T^*}$, which completes the proof. \square

Now, we are ready to define $*$ -frame operator and compare its properties with ordinary case.

Definition 1.2. Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with pre- $*$ -frame operator T and lower and upper $*$ -frame bounds A and B , respectively. The $*$ -frame operator $S : \mathcal{H} \rightarrow \mathcal{H}$ is defined by $Sf = T^*Tf = \sum_{j \in J} \langle f, f_j \rangle f_j$.

The $*$ -frame operator has some similar properties with frame operator in ordinary frames, but the other properties are different. The main cause of differences is \mathcal{A} -valued bounds. However, the reconstruction formula is given from the $*$ -frame operator.

Theorem 1.2. Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with $*$ -frame operator S and lower and upper $*$ -frame bounds A and B , respectively. Then S is positive, invertible and adjointable. Also, the following inequality $\|A^{-1}\|^{-2} \leq \|S\| \leq \|B\|^2$ holds, and the reconstruction formula $f = \sum_{j \in J} \langle f, S^{-1}f_j \rangle f_j$ holds $\forall f \in \mathcal{H}$. Moreover, $\{f_j\}_{j \in J}$ is a set of module generators of \mathcal{H} .

Proof. By Lemma 0.1 and Theorem 1.1, S is invertible. Clearly, S is positive adjointable map. The definition of $*$ -frames concludes that $\langle f, f \rangle \leq A^{-1} \langle Sf, f \rangle (A^*)^{-1}$ and $\langle Sf, f \rangle \leq B \langle f, f \rangle B^*$, and then

$$\|A^{-1}\|^{-2} \|\langle f, f \rangle\| \leq \|\langle Sf, f \rangle\| \leq \|B\|^2 \|\langle f, f \rangle\|, \quad \forall f \in \mathcal{H}.$$

If we take supremum on all $f \in \mathcal{H}$, where $\|f\| \leq 1$, then $\|A^{-1}\|^{-2} \leq \|S\| \leq \|B\|^2$.

The reconstruction formula concludes by the invertibility of S similar to ordinary frames. \square

Finding optimal bounds plays an important role in the study of frames and $*$ -frames. As we saw in the previous examples, \mathcal{A} -valued bounds may be more suitable than real valued bounds for a $*$ -frame. In addition, there are tight $*$ -frames that are not tight frames. At the end of the subsection, we introduce lower and upper real bounds for every $*$ -frame and we see that $*$ -frames can be studied as frames with different bounds.

Corollary 1.1. *Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with pre- $*$ -frame operator T and lower and upper $*$ -frame bounds A and B , respectively. Then $\{f_j\}_{j \in J}$ is a frame for \mathcal{H} with lower and upper frame bounds $\|(T^*T)^{-1}\|^{-1}$ and $\|T\|^2$, respectively.*

Proof. By Theorem 1.1, T is injective and has closed range and by Lemma 0.1,

$$\|(T^*T)^{-1}\|^{-1}\langle f, f \rangle \leq \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle \leq \|T\|^2 \langle f, f \rangle, \quad \forall f \in \mathcal{H}.$$

Then $\{f_j\}_{j \in J}$ is a frame for \mathcal{H} with lower and upper frame bounds $\|(T^*T)^{-1}\|^{-1}$ and $\|T\|^2$, respectively. \square

The given results in the next sections are valid for frames in Hilbert C^* -modules by Theorem 1.1.

1.3. $*$ -Frames on Commutative C^* -Algebras

In ordinary Hilbert spaces, their inner product has complex values and the set of complex numbers is a commutative C^* -algebra. From this point of view, it seems that $*$ -frames in a Hilbert C^* -module over a unitary commutative C^* -algebra have properties closed to ordinary frames. Therefore, we are going to study the properties of $*$ -frames in these Hilbert \mathcal{A} -modules. Throughout this section, let \mathcal{A} be a unitary commutative C^* -algebra. The $*$ -frames will appear in the following form.

The sequence $\{f_j \in \mathcal{H} : j \in J\}$ is a $*$ -frame for \mathcal{H} if there exist two strictly positive elements A and B in \mathcal{A} such that,

$$A\langle f, f \rangle \leq \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle \leq B\langle f, f \rangle, \quad \forall f \in \mathcal{H}.$$

Then \sqrt{A} and \sqrt{B} are lower and upper $*$ -frame bounds. If there exists an element $f \in \mathcal{H}$ such that $\langle f, f \rangle$ is invertible in \mathcal{A} , then the above inequality implies that $A \leq B$.

Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with $*$ -frame operator S and lower and upper $*$ -frame bounds A and B , respectively. Then $\{f_j\}_{j \in J}$ is uniformly norm bounded by $\sqrt{\|B\|}$, $\{\langle f_j, f_j \rangle\}_{j \in J}$ is a bounded sequence of positive elements in \mathcal{A} with \mathcal{A} -valued bound B , and $A \leq S \leq B$. Moreover, if $\{f_j\}_{j \in J}$ is a \sqrt{A} -tight $*$ -frame with $*$ -frame operator S , then $S = AI$ and its canonical dual $*$ -frame is $\{A^{-1}f_j\}_{j \in J}$. One of the interesting results about $*$ -frames for Hilbert \mathcal{A} -module \mathcal{A} is as follows.

Proposition 1.2. *Let \mathcal{A} be a Hilbert C^* -module over itself. Every $*$ -frame $\{f_j\}_{j \in J}$ is a tight $*$ -frame for \mathcal{A} .*

Proof. Suppose that $\{f_j\}_{j \in J}$ is a $*$ -frame for \mathcal{A} with $*$ -frame operator S . By the invertibility of S , we have

$$1_{\mathcal{A}} = SS^{-1}1_{\mathcal{A}} = \sum_{j \in J} \langle S^{-1}1_{\mathcal{A}}, f_j \rangle f_j = S^{-1}1_{\mathcal{A}} \sum_{j \in J} |f_j|^2.$$

This equality shows that $\sum_{j \in J} |f_j|^2$ is an invertible element in \mathcal{A} and then $\sum_{j \in J} |f_j|^2$ is a strictly positive element in \mathcal{A} . So the middle sum in (1.1) is

$$\sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle = \sum_{j \in J} |f_j|^2 \langle f, f \rangle, \quad \forall f \in \mathcal{A}.$$

Then $\{f_j\}_{j \in J}$ is a $\sqrt{\sum_{j \in J} |f_j|^2}$ -tight $*$ -frame and this completes the proof. \square

Proposition 1.3. *Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with $*$ -frame operator S and lower and upper $*$ -frame bounds \sqrt{A} and \sqrt{B} , respectively. Suppose that α is a strictly positive element in \mathcal{A} . Then the sequence $\{\alpha f_j\}_{j \in J}$ is a $*$ -frame for \mathcal{H} with $*$ -frame operator $|\alpha|^2 S$ and lower and upper $*$ -frame bounds $\alpha\sqrt{A}$ and $\alpha\sqrt{B}$, respectively.*

Proof. For $f \in \mathcal{H}$, we have $\sum_{j \in J} \langle f, \alpha f_j \rangle \langle \alpha f_j, f \rangle = |\alpha|^2 \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle$. Therefore $\{\alpha f_j\}_{j \in J}$ is a $*$ -frame for \mathcal{H} with lower and upper $*$ -frame bounds $\alpha\sqrt{A}$ and $\alpha\sqrt{B}$, respectively. If S_α is $*$ -frame operator $\{\alpha f_j\}_{j \in J}$, then

$$S_\alpha f = \sum_{j \in J} \langle f, \alpha f_j \rangle \alpha f_j = |\alpha|^2 \sum_{j \in J} \langle f, f_j \rangle f_j = |\alpha|^2 S f, \quad \forall f \in \mathcal{H}.$$

\square

2. Construction of Some New $*$ -Frames

In this Section, we are going to construct new $*$ -frames for Hilbert \mathcal{A} -module \mathcal{A} and for new Hilbert C^* -modules by given $*$ -frames. We will also study a family of full Hilbert C^* -modules by using new $*$ -frames. The next theorem presents a collection of $*$ -frames for Hilbert \mathcal{A} -module \mathcal{A} associated to a given $*$ -frame.

Theorem 2.1. *Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with $*$ -frame operator S and lower and upper $*$ -frame bounds A and B in the center of \mathcal{A} . Suppose that f is an element in \mathcal{H} such that $\langle f, f \rangle$ is an invertible element in the center of \mathcal{A} . Then the sequence $\{\langle f_j, f \rangle\}_{j \in J}$ is a $*$ -frame for Hilbert \mathcal{A} -module \mathcal{A} with lower and upper $*$ -frame bounds $A\sqrt{\langle f, f \rangle}$ and $B\sqrt{\langle f, f \rangle}$, respectively. And its $*$ -frame operator is $S_f a = a \langle S f, f \rangle$ for $a \in \mathcal{A}$.*

Proof. For $a \in \mathcal{A}$, by the definition of $*$ -frame $\{f_j\}_{j \in J}$

$$(2.1) \quad aA\langle f, f \rangle A^*a^* \leq a \left(\sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle \right) a^* \leq aB\langle f, f \rangle B^*a^*,$$

and we have

$$(2.2) \quad \sum_{j \in J} \langle a, \langle f_j, f \rangle \rangle \langle \langle f_j, f \rangle, a \rangle = a \left(\sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle \right) a^*.$$

Since A , B and $\sqrt{\langle f, f \rangle}$ are in the center of \mathcal{A} ([3, Theorem 6.2.10]) and by (2.1) and (2.2), the following inequalities are valid for all $a \in \mathcal{A}$

$$\begin{aligned} A\sqrt{\langle f, f \rangle} \langle a, a \rangle (A\sqrt{\langle f, f \rangle})^* &\leq \sum_{j \in J} \langle a, \langle f_j, f \rangle \rangle \langle \langle f_j, f \rangle, a \rangle \\ &\leq B\sqrt{\langle f, f \rangle} \langle a, a \rangle (B\sqrt{\langle f, f \rangle})^*. \end{aligned}$$

The last inequality shows that $\{\langle f_j, f \rangle\}_{j \in J}$ is a $*$ -frame for Hilbert \mathcal{A} -module \mathcal{A} with lower and upper $*$ -frame bounds $A\sqrt{\langle f, f \rangle}$ and $B\sqrt{\langle f, f \rangle}$, respectively. To see S_f , let $a \in \mathcal{A}$. Then $S_f a = \sum_{j \in J} \langle a, \langle f_j, f \rangle \rangle \langle f_j, f \rangle = a \langle Sf, f \rangle$. \square

Remark 2.1. When \mathcal{A} is commutative, $\{\langle f_j, f \rangle\}_{j \in J}$ is a $*$ -frame if $\{f_j\}_{j \in J}$ is a $*$ -frame and $\langle f, f \rangle$ is invertible.

In this suitable situation, we find a necessary condition that \mathcal{H} is a full Hilbert C^* -module.

Corollary 2.1. Let $f \in \mathcal{H}$ and $\langle f, f \rangle$ be invertible in the center of \mathcal{A} . Then \mathcal{H} is a full Hilbert \mathcal{A} -module.

Proof. Applying Theorem 3.2 of [9], then there is a frame $\{f_j\}_{j \in J}$ for \mathcal{H} . It follows that $\overline{\text{span}}\{\langle f_j, f \rangle\}_{j \in J} = \mathcal{A}$ by Theorem 2.1. \square

The following example shows that the above necessary condition is not sufficient, i.e., there is a full Hilbert \mathcal{A} -module \mathcal{H} such that $\langle f, f \rangle$ is not invertible for all $f \in \mathcal{H}$.

Example 2.1. Assume that c_0 is the same Hilbert ℓ^∞ -module as in Example 1.1 and let $\{e_j\}_{j \in \mathbb{N}}$ be the standard basis for c_0 . The Hilbert ℓ^∞ -module c_0 is full because of

$$\overline{\text{span}}\{\langle e_j, e_j \rangle\}_{j \in \mathbb{N}} = \overline{\text{span}}\{e_j\}_{j \in \mathbb{N}} = \ell^\infty$$

. Assume that $a = \{a_j\}_{j \in \mathbb{N}} \in c_0$, then $\langle a, a \rangle \in c_0$ and $\lim_{j \rightarrow \infty} |a_j|^2 = 0$. If $\langle a, a \rangle^{-1}$ exists, then $\lim_{j \rightarrow \infty} \frac{1}{|a_j|^2} = \infty$ and $\langle a, a \rangle^{-1}$ doesn't belong to ℓ^∞ . It shows that c_0 has not any element $\{a_j\}_{j \in \mathbb{N}}$ such that $\{\langle a_j, a_j \rangle\}_{j \in \mathbb{N}}$ is invertible.

In [14], the authors have shown that a tensor product of frames in Hilbert spaces is also a frame. We study the subject in Hilbert C^* -modules.

Theorem 2.2. *Let \mathcal{H} and \mathcal{K} be two Hilbert C^* -modules over unitary C^* -algebras \mathcal{A} and \mathcal{B} , respectively. Let $\mathcal{F} = \{f_j \in \mathcal{H} : j \in J\}$ and $\mathcal{G} = \{g_j \in \mathcal{K} : j \in J\}$ be two $*$ -frames for \mathcal{H} and \mathcal{K} with $*$ -frame operators $S_{\mathcal{F}}$ and $S_{\mathcal{G}}$ and $*$ -frame bounds (A, B) and (C, D) , respectively. Then $\{f_i \otimes g_j\}_{i,j \in J}$ is a $*$ -frame for Hilbert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{H} \otimes \mathcal{K}$ with $*$ -frame operator $S_{\mathcal{F}} \otimes S_{\mathcal{G}}$ and lower and upper $*$ -frame bounds $A \otimes C$ and $B \otimes D$, respectively.*

Proof. By the definition of $*$ -frames $\{f_j\}_{j \in J}$ and $\{g_j\}_{j \in J}$, one obtains that

$$\begin{aligned} A\langle f, f \rangle A^* \otimes C\langle g, g \rangle C^* &\leq \sum_{i \in J} \langle f, f_i \rangle \langle f_i, f \rangle \otimes \sum_{j \in J} \langle g, g_j \rangle \langle g_j, g \rangle \\ (2.3) \quad &\leq B\langle f, f \rangle B^* \otimes D\langle g, g \rangle D^*, \quad \forall f \in \mathcal{H}, \forall g \in \mathcal{K}. \end{aligned}$$

Then for $f \otimes g \in \mathcal{H} \otimes \mathcal{K}$, one gets

$$\begin{aligned} (A \otimes C)\langle f \otimes g, f \otimes g \rangle (A \otimes C)^* &\leq \sum_{i \in J} \sum_{j \in J} \langle f \otimes g, f_i \otimes g_j \rangle \langle f_i \otimes g_j, f \otimes g \rangle \\ (2.4) \quad &\leq (B \otimes D)\langle f \otimes g, f \otimes g \rangle (B \otimes D)^*. \end{aligned}$$

Moreover, the inequality (2.4) is satisfied for every finite sum of elements in $\mathcal{H} \otimes_{alg} \mathcal{K}$ and then (2.4) is satisfied for all $z \in \mathcal{H} \otimes \mathcal{K}$. It shows that $\{f_i \otimes g_j\}_{i,j \in J}$ is a $*$ -frame for $\mathcal{H} \otimes \mathcal{K}$ with lower and upper $*$ -frame bounds $A \otimes C$ and $B \otimes D$, respectively. Now, to see the form of the $*$ -frame operator for $\mathcal{F} \otimes \mathcal{G}$, let $S_{\mathcal{F} \otimes \mathcal{G}}$ be the $*$ -frame operator $\mathcal{F} \otimes \mathcal{G}$. We compute

$$\begin{aligned} S_{\mathcal{F} \otimes \mathcal{G}}(f \otimes g) &= \sum_{i,j \in J} \langle f \otimes g, f_i \otimes g_j \rangle f_i \otimes g_j \\ &= \sum_{i \in J} \langle f, f_i \rangle f_i \otimes \sum_{j \in J} \langle g, g_j \rangle g_j = (S_{\mathcal{F}} \otimes S_{\mathcal{G}})(f \otimes g), \end{aligned}$$

for $f \otimes g \in \mathcal{H} \otimes \mathcal{K}$. So $S_{\mathcal{F} \otimes \mathcal{G}} = S_{\mathcal{F}} \otimes S_{\mathcal{G}}$ and this completes the proof of the theorem. \square

Let $\theta \in B_*(\mathcal{H})$. We are going to give some necessary and sufficient conditions which provided the $*$ -frame-preserving property of operator θ . The following theorem generalizes the results in [1] in the case of $*$ -frames.

Theorem 2.3. *Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with $*$ -frame operator S and lower and upper $*$ -frame bounds A and B , respectively. Then $\theta \in B_*(\mathcal{H})$ is surjective if and only if $\{\theta f_j \in \mathcal{H} : j \in J\}$ is a $*$ -frame for \mathcal{H} . In this case, $S_{\theta} := \theta S \theta^*$, $A\|(\theta\theta^*)^{-1}\|^{-\frac{1}{2}}$, and $B\|\theta\|$ are $*$ -frame operator and lower and upper $*$ -frame bounds for $\{\theta f_j\}_{j \in J}$, respectively.*

Proof. First, let θ be surjective. By the definition of $*$ -frames, for all $f \in \mathcal{H}$, we have

$$A\langle \theta^* f, \theta^* f \rangle A^* \leq \sum_{j \in J} \langle \theta^* f, f_j \rangle \langle f_j, \theta^* f \rangle \leq B\langle \theta^* f, \theta^* f \rangle B^*,$$

and then

$$(2.5) \quad A\langle\theta\theta^*f, f\rangle A^* \leq \sum_{j \in J} \langle f, \theta f_j \rangle \langle \theta f_j, f \rangle \leq B\langle\theta\theta^*f, f\rangle B^*.$$

Surjectivity of θ and Lemma 0.1 conclude that

$$\|(\theta\theta^*)^{-1}\|^{-1}\langle f, f \rangle \leq \langle\theta\theta^*f, f\rangle \leq \|\theta\|^2\langle f, f \rangle, \quad \forall f \in \mathcal{H}.$$

Multiplying with A, A^* and B, B^* on left and right parts of the last inequality, respectively, we obtain

$$A\|(\theta\theta^*)^{-1}\|^{-1}\langle f, f \rangle A^* \leq A\langle\theta\theta^*f, f\rangle A^*, \quad \text{and} \quad B\langle\theta\theta^*f, f\rangle B^* \leq B\|\theta\|\langle f, f \rangle B^*\|\theta\|.$$

Using (2.5), it follows that

$$A\|(\theta\theta^*)^{-1}\|^{-\frac{1}{2}}\langle f, f \rangle (A\|(\theta\theta^*)^{-1}\|^{-\frac{1}{2}})^* \leq \sum_{j \in J} \langle f, \theta f_j \rangle \langle \theta f_j, f \rangle \leq B\|\theta\|\langle f, f \rangle (B\|\theta\|)^*,$$

holds for every $f \in \mathcal{H}$. Thus $\{\theta f_j\}_{j \in J}$ is a $*$ -frame for \mathcal{H} . The proof of the rest of the theorem is similar to the Hilbert space case [5, Proposition 5.3.1]. \square

Let S be a positive and invertible operator in the C^* -algebra $B_*(\mathcal{H})$. For $t \in \mathbb{R}$, the map $f(\lambda) = \lambda^t$ is continuous on $(0, \infty)$. Since S is positive and invertible, $\sigma(S) \subseteq (0, \infty)$. Using the Spectral Mapping theorem and the fact that $f \in C(\sigma(S))$, we have $f(S) \in B_*(\mathcal{H})$. Now, $f(S)$ is denoted by S^t and we are ready to extend Theorem 3.1. [4] to the next corollary.

Corollary 2.2. *Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with $*$ -frame operator S and lower and upper $*$ -frame bounds A and B , respectively. For $t \in \mathbb{R}$, the sequence $\{S^{\frac{t-1}{2}} f_j\}_{j \in J}$ is a $*$ -frame for \mathcal{H} with lower and upper $*$ -frame bounds $A\|S^{1-t}\|^{-\frac{1}{2}}$ and $B\|S^{\frac{t-1}{2}}\|$, respectively. Moreover, S^t is its $*$ -frame operator.*

Proof. For the proof we use the functional calculus for the selfadjoint element S of the C^* -algebra $B_*(\mathcal{H})$ to write $S = S^{(t-1)/2}S^{(3-t)/2}$, and apply the previous theorem for $\theta = S^{(t-1)}$. \square

3. $*$ -Frames in Modular Spaces with Different C^* -Algebras

Studying frames in Hilbert C^* -modules with different inner products is interesting and important. Frank-Larson [10] studied frames in Hilbert \mathcal{A} -modules constructed by two different \mathcal{A} -valued inner products. However, we study $*$ -frames in two Hilbert C^* -modules with different C^* -algebras. Throughout this section, assume that \mathcal{A} and \mathcal{B} are two unitary C^* -algebras and let $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_{\mathcal{A}})$ and $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$ be two Hilbert C^* -modules.

First, we are going to modify the proof the result [10] to show that the theorem remains valid under slightly weaker conditions.

Proposition 3.1. Suppose that $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_1)$ is a Hilbert \mathcal{A} -module and let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_1)$ with $*$ -frame operator S_1 . Then $\{f_j\}_{j \in J}$ is a $*$ -frame for $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_2)$, that has an equivalent norm to the given one, with $*$ -frame operator S_2 if and only if there exists an injective and adjointable operator θ with closed range on \mathcal{H} such that $\langle f, g \rangle_1 = \langle \theta f, \theta g \rangle_2$ for all $f, g \in \mathcal{H}$. Furthermore, the given operator θ is self-adjoint with respect to both inner products, and the equality $\langle f, S_2^{-1}g \rangle_2 = \langle f, S_1^{-1}g \rangle_1$ holds for all $f, g \in \mathcal{H}$, the $*$ -frame operator S_1 commutes with the operator S_2^{-1} , and the $*$ -frame operators S_1 and S_2 are self-adjoint with respect to both inner products.

Proof. Proof of the 'if' part follows that [10]. For the converse, let $\theta \in B_*(H)$ be injective with closed range on \mathcal{H} such that

$$\langle f, g \rangle_1 = \langle \theta f, \theta g \rangle_2, \quad \forall f, g \in \mathcal{H}.$$

The operator $\theta^* \theta$ is invertible by Lemma 0.1 and then for $f, h \in \mathcal{H}$, we obtain

$$(3.1) \quad \langle f, (\theta^* \theta)^{-1}h \rangle_1 = \langle f, h \rangle_2, \quad \forall f, h \in \mathcal{H}.$$

Now, we can give the result by Proposition 0.1, Lemma 0.1 and (3.1). \square

Now, we consider $*$ -frames in two Hilbert C^* -modules with different C^* -algebras and the same vector spaces.

Theorem 3.1. Let $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_{\mathcal{A}})$ and $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$ be two Hilbert C^* -modules and let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a $*$ -homomorphism and θ be a map on \mathcal{H} such that $\langle \theta f, \theta g \rangle_{\mathcal{B}} = \varphi(\langle f, g \rangle_{\mathcal{A}})$ for all $f, g \in \mathcal{H}$. Also, suppose that $\{f_j \in \mathcal{H} : j \in J\}$ is a $*$ -frame for $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_{\mathcal{A}})$ with $*$ -frame operator $S_{\mathcal{A}}$ and lower and upper $*$ -frame bounds α_1, α_2 , respectively. If θ is surjective, then $\{\theta f_j\}_{j \in J}$ is a $*$ -frame for $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$ with $*$ -frame operator $S_{\mathcal{B}}$ and lower and upper $*$ -frame bounds $\varphi(\alpha_1), \varphi(\alpha_2)$, respectively, and

$$(3.2) \quad \langle S_{\mathcal{B}} \theta f, \theta g \rangle_{\mathcal{B}} = \varphi(\langle S_{\mathcal{A}} f, g \rangle_{\mathcal{A}}), \quad \forall f \in \mathcal{H}.$$

Moreover, the map θ is surjective if the following conditions are valid.

- (1) φ is surjective;
- (2) $\{\theta f_j\}_{j \in J}$ is a $*$ -frame for \mathcal{H} ; and
- (3) $\theta(af) = \varphi(a)\theta f$, for all $a \in \mathcal{A}, f \in \mathcal{H}$.

Proof. Assume that θ is surjective. Using Proposition 0.1, we have that

$$\begin{aligned} \sum_{j \in J} \langle \theta f, \theta f_j \rangle_{\mathcal{B}} \langle \theta f_j, \theta f \rangle_{\mathcal{B}} &= \sum_{j \in J} \varphi(\langle f, f_j \rangle_{\mathcal{A}} \langle f_j, f \rangle_{\mathcal{A}}) \\ &\leq \varphi(\alpha_2 \langle f, f \rangle_{\mathcal{A}} \alpha_2^*) = \varphi(\alpha_2) \langle \theta f, \theta f \rangle_{\mathcal{B}} \varphi(\alpha_2)^*, \quad \forall f \in \mathcal{H}, \end{aligned}$$

and $\varphi(\alpha_2)$ is a strictly nonzero element of \mathcal{B} . Then the sequence $\{\theta f_j\}_{j \in J}$ has upper $*$ -frame bound $\varphi(\alpha_2)$. Similarly, $\varphi(\alpha_1)$ is a lower $*$ -frame bound for $\{\theta f_j\}_{j \in J}$ and then $\{\theta f_j\}_{j \in J}$ is a $*$ -frame for $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$. The equation (3.2) follows from

$$\sum_{j \in J} \langle \theta f, \theta f_j \rangle_{\mathcal{B}} \langle \theta f_j, \theta g \rangle_{\mathcal{B}} = \varphi \left(\sum_{j \in J} \langle f, f_j \rangle_{\mathcal{A}} \langle f_j, g \rangle_{\mathcal{A}} \right), \quad \forall f, g \in \mathcal{H}.$$

For the rest of the proof, let φ be surjective and $\theta(af) = \varphi(a)\theta f$, for all $a \in \mathcal{A}$ and $f \in \mathcal{H}$. By applying the reconstruction formula for $*$ -frame $\{\theta f_j\}_{j \in J}$, we have $g = \sum_{j \in J} \langle g, S_{\mathcal{B}}^{-1} \theta f_j \rangle_{\mathcal{B}} \theta f_j$ for $g \in \mathcal{H}$. Since φ is surjective, $\varphi(a_j) = \langle g, S_{\mathcal{B}}^{-1} \theta f_j \rangle_{\mathcal{B}}$ for some $a_j \in \mathcal{A}$ and for all $j \in J$. Observe that $g = \sum_{j \in J} \varphi(a_j) \theta f_j = \sum_{j \in J} \theta(a_j f_j) = \theta(\sum_{j \in J} a_j f_j)$. This shows that θ is surjective and the proof is complete. \square

Corollary 3.1. *Let $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_1)$ and $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_2)$ be two Hilbert \mathcal{A} -modules which have equivalent norms and let $\varphi : \mathcal{A} \longrightarrow \mathcal{A}$ be a $*$ -homomorphism such that $\varphi(\langle f, g \rangle_1) = \langle f, g \rangle_2$ for all $f, g \in \mathcal{H}$. Then $\langle f, g \rangle_1 = \langle f, g \rangle_2$ for all $f, g \in \mathcal{H}$. Therefore, if $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_1)$ is full, then φ is the identity map on \mathcal{A} .*

Proof. By [9], $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_1)$ contains a $*$ -frame with $*$ -frame operator S_1 . In Theorem 3.1, set $\theta = I_{\mathcal{H}}$. Then $\{f_j\}_{j \in J}$ is also a $*$ -frame for $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_2)$ with $*$ -frame operator S_2 . By Theorem 3.1 and Proposition 3.1, we conclude that $\langle S_2 f, g \rangle_2 = \varphi(\langle S_1 f, g \rangle_1) = \langle S_1 f, g \rangle_2$, for all $f, g \in \mathcal{H}$. Then $S_1 = S_2$ and the two \mathcal{A} -valued inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ are the same by Proposition 3.1. Now, assume that $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_1)$ is full. Thus $\overline{\text{span}}\{\langle f, g \rangle_1 : f, g \in \mathcal{H}\} = \mathcal{A}$ and by the properties of φ , φ is the identity. \square

Corollary 3.2. *Let $\mathcal{A}, \mathcal{B}, \mathcal{H}, \{f_j\}_{j \in J}$ and φ be as in Theorem 3.1. Also, let θ be a \mathcal{B} -module map on \mathcal{H} such that $\varphi(\langle f, g \rangle_{\mathcal{A}}) = \langle \theta f, \theta g \rangle_{\mathcal{B}}$. Then θ is surjective if and only if $\{\theta f_j\}_{j \in J}$ is a $*$ -frame for $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$.*

Proof. Proof of the 'if part' is similar to the proof of Theorem 3.1. For the converse, since θ is \mathcal{B} -module map, $g = \sum_{j \in J} \langle g, S_{\mathcal{B}}^{-1} \theta f_j \rangle_{\mathcal{B}} \theta f_j = \theta(\sum_{j \in J} \langle g, S_{\mathcal{B}}^{-1} \theta f_j \rangle_{\mathcal{B}} f_j)$, for $g \in \mathcal{H}$, and it completes the proof. \square

We are ready to characterize the set of *-frames for $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$ with respect to *-frames in $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_{\mathcal{A}})$. The following propositions illustrate this fact.

Proposition 3.2. *Let \mathcal{A} , \mathcal{B} and \mathcal{H} be the same in Theorem 3.1. If φ is a *-isomorphism and θ is surjective map on \mathcal{H} such that $\varphi(\langle f, g \rangle_{\mathcal{A}}) = \langle \theta f, \theta g \rangle_{\mathcal{B}}$, then the set of all *-frames for $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$ is precisely $\{\theta f_j\}_{j \in J}$ where $\{f_j\}_{j \in J}$ is a *-frame for $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_{\mathcal{A}})$.*

Proof. Theorem 3.1 concludes that the sequence $\{\theta f_j\}_{j \in J}$ is a *-frame for $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$ if $\{f_j\}_{j \in J}$ is a *-frame for $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_{\mathcal{A}})$. Now, assume that $\{g_j\}_{j \in J}$ is a *-frame for $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$ with lower and upper *-frame bounds β_1 and β_2 . By the properties of θ , and Proposition 0.1, there exist the sequence $\{f_j\}_{j \in J}$ in \mathcal{H} and two elements α_1, α_2 in \mathcal{A} such that $g_j = \theta f_j$ for $j \in J$, $\varphi(\alpha_1) = \beta_1$, and $\varphi(\alpha_2) = \beta_2$. The elements α_1 and α_2 are strictly nonzero by Proposition 0.1. Using the definition of the *-frame $\{g_j\}_{j \in J}$, we have

$$\begin{aligned} \varphi\left(\sum_{j \in J} \langle f, f_j \rangle_{\mathcal{A}} \langle f_j, f \rangle_{\mathcal{A}}\right) &= \sum_{j \in J} \langle \theta f, \theta f_j \rangle_{\mathcal{B}} \langle \theta f_j, \theta f \rangle_{\mathcal{B}} \\ &\leq \beta_2 \langle \theta f, \theta f \rangle_{\mathcal{B}} \beta_2^* = \varphi(\alpha_2 \langle f, f \rangle_{\mathcal{A}} \alpha_2^*), \quad \forall f \in \mathcal{H}. \end{aligned}$$

We apply Proposition 0.1 again, $\sum_{j \in J} \langle f, f_j \rangle_{\mathcal{A}} \langle f_j, f \rangle_{\mathcal{A}} \leq \alpha_2 \langle f, f \rangle_{\mathcal{A}} \alpha_2^*$, for $f \in \mathcal{H}$. Similarly, α_1 is a lower *-frame bound for $\{f_j\}_{j \in J}$. This shows that every *-frame in $(\mathcal{H}, \mathcal{B}, \langle \cdot, \cdot \rangle_{\mathcal{B}})$ is obtained by the action of θ on a *-frame in $(\mathcal{H}, \mathcal{A}, \langle \cdot, \cdot \rangle_{\mathcal{A}})$. \square

Also, we can characterize all *-frames in the Hilbert \mathcal{B} -module \mathcal{B} with respect to all *-frames in the Hilbert \mathcal{A} -module \mathcal{A} and obtain some relations between their operators.

Proposition 3.3. *Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a *-isomorphism. The set of all of *-frames for the Hilbert \mathcal{B} -module \mathcal{B} is precisely $\{\varphi(a_j)\}_{j \in J}$, where $\{a_j\}_{j \in J}$ is a *-frame for the Hilbert \mathcal{A} -module \mathcal{A} . Moreover, if $S_{\mathcal{A}}$ and $S_{\mathcal{B}}$ are *-frame operators for $\{a_j\}_{j \in J}$ and $\{\varphi(a_j)\}_{j \in J}$, respectively, then $\varphi o S_{\mathcal{A}} = S_{\mathcal{B}} o \varphi$.*

Proof. For a sequence $\{a_j\}_{j \in J}$ in \mathcal{A} , we have

$$(3.3) \quad \sum_{j \in J} \langle \varphi(a), \varphi(a_j) \rangle_{\mathcal{B}} \langle \varphi(a_j), \varphi(a) \rangle_{\mathcal{B}} = \varphi\left(\sum_{j \in J} \langle a, a_j \rangle_{\mathcal{A}} \langle a_j, a \rangle_{\mathcal{A}}\right), \quad \forall a \in \mathcal{A}.$$

Proposition 0.1 and the above equalities imply that $\{\varphi(a_j)\}_{j \in J}$ is a *-frame for \mathcal{B} if $\{a_j\}_{j \in J}$ is a *-frame for \mathcal{A} . Now, suppose $\{b_j\}_{j \in J}$ is a *-frame for \mathcal{B} . Since φ is surjective, there exists a sequence $\{a_j\}_{j \in J}$ in \mathcal{A} such that $b_j = \varphi(a_j)$ for $j \in J$. Also, applying Proposition 0.1 and (3.3), we obtain that $\{a_j\}_{j \in J}$ is a *-frame for \mathcal{A} . For the rest of the proof, let $S_{\mathcal{A}}$

and S_B be $*$ -frame operators for $\{a_j\}_{j \in J}$ and $\{\varphi(a_j)\}_{j \in J}$, respectively. Then $\varphi S_{\mathcal{A}}(a) = \varphi(\sum_{j \in J} a a_j^* a_j) = S_B \varphi(a)$, for all $a \in \mathcal{A}$, and $\varphi o S_{\mathcal{A}} = S_B o \varphi$. \square

4. The dual $*$ -frames

The dual frames play an important role to study of frames. In this section, we introduce dual $*$ -frames and extend the characterization of dual frames [5] to dual $*$ -frames associated to a given $*$ -frame.

Definition 4.1. Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with $*$ -frame operator S . If there exists a $*$ -frame $\{g_j \in \mathcal{H} : j \in J\}$ for \mathcal{H} such that $f = \sum_{j \in J} \langle f, g_j \rangle f_j$ for $f \in \mathcal{H}$, then the $*$ -frame $\{g_j\}_{j \in J}$ is called the dual $*$ -frame of $\{f_j\}_{j \in J}$. The spacial dual $*$ -frame $\{S^{-1} f_j\}_{j \in J}$ is said to be the canonical dual $*$ -frame of $\{f_j\}_{j \in J}$.

It is well known, that if T and V are pre- $*$ -frame operators of two $*$ -Bessel sequences $\{f_j\}_{j \in J}$ and $\{g_j\}_{j \in J}$, respectively, then $f = \sum_{j \in J} \langle f, g_j \rangle f_j$ for $f \in \mathcal{H}$ if and only if $T^* V = id_{\mathcal{H}}$. The following lemma shows that the roles of two $*$ -Bessel sequences can be changed and obtains a relation between bounds of $\{f_j\}_{j \in J}$ and $\{g_j\}_{j \in J}$.

Lemma 4.1. Let $\{f_j\}_{j \in J}$ and $\{g_j\}_{j \in J}$ be $*$ -Bessel sequences for \mathcal{H} with pre- $*$ -frame operators T and V , respectively. Then for $f \in \mathcal{H}$ the following statements are equivalent.

- i. $f = \sum_{j \in J} \langle f, g_j \rangle f_j$.
- ii. $f = \sum_{j \in J} \langle f, f_j \rangle g_j$.

In the case that one of the above equalities is satisfied, $\{f_j\}_{j \in J}$ and $\{g_j\}_{j \in J}$ are dual $*$ -frames. Moreover, if B is an upper $*$ -frame bound for $\{f_j\}_{j \in J}$ and S is its $*$ -frame operator, then $B \|S^{-1}\|^{-\frac{1}{2}} \|T\|^{-1}$ is a lower $*$ -frame bound for $\{g_j\}_{j \in J}$.

Proof. The proof of the equivalency of the two conditions is similar to the proof of [5, Lemma 5.6.2]. Now, suppose that the conditions *i* and *ii* are valid. By *i*, we have $T^* V = id_{\mathcal{H}}$ and T^* is surjective. Then it follows that the sequence $\{f_j\}_{j \in J}$ is a $*$ -frame [12]. Similarly, the $*$ -Bessel sequence $\{g_j\}_{j \in J}$ is a $*$ -frame.

Finally, let B be an upper $*$ -frame bound for $\{f_j\}_{j \in J}$. By the definition of $*$ -frames $\{f_j\}_{j \in J}$ and $T^* V = id_{\mathcal{H}}$, we can write $\langle Tf, Tf \rangle \leq B \langle T^* V f, T^* V f \rangle B^*$, for $f \in \mathcal{H}$. Using Lemma 0.1, we have $\|(T^* T)^{-1}\|^{-1} \langle f, f \rangle \leq \langle Tf, Tf \rangle$, for $f \in \mathcal{H}$. It follows that $B^{-1} \|S^{-1}\|^{-\frac{1}{2}} \|T\|^{-1} \langle f, f \rangle (B^{-1} \|S^{-1}\|^{-\frac{1}{2}} \|T\|^{-1})^* \leq \langle Vf, Vf \rangle$, for $f \in \mathcal{H}$. Therefore, $B \|S^{-1}\|^{-\frac{1}{2}} \|T\|^{-1}$ is a lower $*$ -frame bound for $\{g_j\}_{j \in J}$ and the proposition follows. \square

Proposition 4.1. *Let $\{f_j \in \mathcal{H} : j \in J\}$ be a $*$ -frame for \mathcal{H} with pre- $*$ -frame operator T . The set of all of dual $*$ -frames for $\{f_j\}_{j \in J}$ is precisely the set of the families $\{g_j\}_{j \in J} = \{V^*(e_j)\}_{j \in J}$, where $V : \mathcal{H} \longrightarrow l_2(\mathcal{A})$ is an adjointable right-inverse of T^* and the sequence $\{e_j\}_{j \in J}$ is the standard basis for $l_2(\mathcal{A})$.*

Proof. By Lemma 4.1 and [12, Proposition 3.11], the proof is clear. \square

Now, we can characterize all dual $*$ -frames for a given $*$ -frame $\{f_j \in \mathcal{H} : j \in J\}$ with respect to $*$ -Bessel sequences, similar to [5]. First, it follows from Proposition 4.1 that every right- inverse of pre- $*$ -frame operator T of $\{f_j\}_{j \in J}$ has the form $TS^{-1} + (I - TS^{-1}T^*)U$, where S is the $*$ -frame operator and U is an adjointable operator from \mathcal{H} into $l_2(\mathcal{A})$. In the end, all of dual $*$ -frames of $\{f_j\}_{j \in J}$ are precisely the families

$$\{g_j\}_{j \in J} = \{S^{-1}f_j + h_j - \sum_{i \in J} \langle S^{-1}f_j, f_i \rangle h_i\}_{j \in J}$$

where $\{h_j\}_{j \in J}$ is a $*$ -Bessel sequence for \mathcal{H} .

REFERENCES

1. A. ALDROUBI, 'Portraits of frames', *Proc. Amer. Math. Soc.*, 123 (6) (1995), 1661-1668.
2. A. ALIJANI AND M. A. DEHGHAN, 'G-frames and their duals in Hilbert C^* -modules', *Bulletin Iranian Math. Soc.*, (2011), to appear.
3. B. AUPETIT, 'A Prime on Spectral Theory', *Springer-Verlag*, (1991).
4. P. G. CASAZZA, 'Local theory of frames and Schauder bases for Hilbert spaces', *Illinois J. Math.*, 43 (1999), 291-306.
5. O. CHRISTENSEN, 'An Introduction to Frames and Riesz Bases', *Birkhäuser*, (2003).
6. I. DAUBECHIES AND A. GRASSMAN AND Y. MEYER, 'Painless nonorthogonal expansions', *J. Math. Phys.*, 27 (1986), 1271-1283.
7. R.J. DUFFIN AND A.C. SCHAEFFER, 'A class of nonharmonic fourier series', *Am. Math. soc.*, 72 (1952), 341-366.
8. G. B. FOLLAND, 'A Course in Abstract Harmonic Analysis', *Boca Raton Florida, CRC Press*, (1995).
9. M. FRANK AND D. R. LARSON, 'A module frame concept for Hilbert C^* -modules', *Functional and Harmonic Analysis of Wavelets (San Antonio, TX, Jan. 1999), Contemp. Math.*, 247 (2000), 207-233.
10. M. FRANK AND D. R. LARSON, 'Frames in Hilbert C^* -modules and C^* -algebra', *J. Operator theory*, 48 (2002), 273-314.
11. D. GABOR, 'Theory of communications', *J. Electr. Eng. (London)*, 49 (3) (1946), 429-457.
12. W. JING, 'Frames in Hilbert C^* -Modules', *Ph. D. Thesis, University of Central Florida*, (2006).
13. R. V. KADISON AND J. R. RINGROSE, 'Fundamentals of the Theory of Operator Algebras I', *Academic press, New york*, (1983).
14. A. KHOSRAVI AND B. KHOSRAVI, 'Frames and bases in tensor products of Hilbert spaces and Hilbert C^* -modules', *Proc. Indian Acad. Sci.*, 117 (1) (2007), 1-12.

15. A. KHOSRAVI AND B. KHOSRAVI, 'Fusion frames and g-frames in Hilbert C^* -modules', *Int. J. Wavelet Multiresolution and Information Processing*, 6 (3) (2008), 433-446.
16. E. C. LANCE, 'Hilbert C^* -modules, A Toolkit for Operator Algebraists': *University of Leeds, Cambridge University Press*, (1995).
17. B. MAGAJNA, 'Hilbert C^* -modules in which all closed submodules are complemented', *Proc. Amer. Math. Soc.*, 125 (3) (1997), 849-852.
18. V. M. MANUILOV, 'Adjointability of operators on Hilbert C^* -modules', *Acta Math. Univ. Comenianae*, LXV (2) (1996), 161-169.
19. G. J. MURPHY, ' C^* -algebras and Operator Theory', San Diego, California, Academic Press, (1990).
20. A. NEJATI AND A. RAHIMI, 'Generalized frames in Hilbert spaces', *Bulletin of the Iranian Mathematical Society*, 35 (1) (2009), 97-109.
21. W. SUN, 'G-frames and g-Riesz bases', *J. Math. Anal. Appl.*, 322 (2006), 437-452.
22. N. E. WEGGE OLSEN, 'K-Theory and C^* -Algebras, A Friendly Approach', *Oxford University press, Oxford, England*, (1993).