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SOLVING DIFFERENCE AND DIFFERENTIAL EQUATIONS
BY DISCRETE DECONVOLUTION

M. | CIRNU*

Prezentam modul in care, folosind convolutia si deconvolutia discretd, pot fi
calculate valorile numerice ale solutiilor problemelor de valori initiale si la
frontiera pentru ecuatiile liniare neomogene cu coeficienti constanti, atat cu
diferente cat si diferentiale. Sunt incluse exemple rezolvate. Metoda poate fi utilizata
usor in aplicatii §i implementata pe calculator.

We present the way in which, using the discrete convolution and
deconvolution, can be computed the numerical values of the solutions both of the
initial and boundary value problems for linear nonhomogeneous difference and
differential equations with constant coefficients. Worked examples are included. The
method can be easily used in applications and implemented on a computer.

Keywords: difference and differential equations, discrete convolution and
deconvolution.
2000 Mathematics Subject Classification: 40-04, 40A05

1. Introduction

The convolution is a fundamental concept in mathematics and
applications, its importance being in growth in the last time. The use of the
convolution and others related notions, as its inverse - the deconvolution, to
solve several kinds of equations is particularly of a great importance.

For that purpose, in the present paper we use the discrete convolution and
deconvolution, to obtain the numerical solutions of the initial and boundary value
problems for linear nonhomogeneous difference equations and differential
equations with constant coefficients. In whole paper, the method will be
exemplified by several worked examples.

In the section 1 of the paper, we present the notions of the convolution and
deconvolution, for finite sequences of the same length and also for infinite
sequences. The definitions of these notions come back to A.Cauchy and are
presented, for example, in [3].
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14 M. Cirnu

Section 2 is concerned with the exact numerical solution of the linear
nonhomogeneous difference equations (linear recurrence equations) with constant
coefficients, of order ». Using the notions presented in the section 1, our main
theorem gives a formula for solving such equations, if » initial values of the
solution are known. It is also considered the generalized case when the » known
values of the solution, are not necessary the first ones. Of course, in this case the
existence or the unicity of the solution are not assured. This new method, based
especially on the discrete deconvolution, gives a direct and rapid algorithm for
obtain the exact numerical values of the solutions of the difference equations,
instead of the laborious usual methods.In section 3, we apply the deconvolution
method to obtain the approximate solution of the initial and boundary value
problems, for nonhomogeneous linear differential equations with constant
coefficients. This is made by replacing the unknown of the equation by the finite
sequence of its values in the points of an equidistant net of values of the variable
and by approximating the derivatives of the unknown function by their finite
differences. Examples for second and third order equations are given.

We apply the method both for the classical initial and boundary value
problems and for their generalizations. Thus, the boundary value problem is
considered too in the case when the values of the unknown function and
eventually of its derivatives are given not only in the extremities of the definition
interval, but even for some intermediate values. The initial value problem is also
considered when the values in the initial point of the unknown function and its
derivatives of several orders, not necessary the firsts, are given.

In a subsequent paper [1], we shall use the present results for numerical
computation of the polynomial roots. Also, in [2], the discrete convolution and
deconvolution are used to solve nonhomogeneous linear differential equations.

2. Discrete convolution and deconvolution

We call discrete convolution (or Cauchy product) of two finite
sequences of real or complex numbers, with the same number of terms,
a=(aya,;...;a,) andb = (by;b;...;b, ), the finite sequence

c=a*b=(cy;cy;...¢,) (1)
given by the relations (see for example [2])

k
¢y =aoby,c; =aby +agh,,....c, = zjzoak_jb (2)

J
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The convolution product is commutative, associative, distributive related
to the addition of the sequences and has the unit & = (1,0;0;...;0). The addition and
the multiplication with scalars of the sequences are those usual.

In the case when the finite sequences a and ¢ are known and a, =0, we
can determinate the finite sequence b, such that the relation (1) to be satisfied.
This sequence is named the deconvolution (see [2]) of the sequence ¢ by the
sequence a, is denoted

b=cla (3)
and its terms are given by the relations
c 1 1 k-1
b, =i,b1 =Z(c1 —aby),....b, = Z(ck —ijoak,jbj) . @
hence can be computed by the algorithm
Co G Gy | aq a e ay
—ab
c, ab, -ab, |b, _ %o b, = G97%% b,
g ay
[ ey —aby- ¢, —aby (5)
¢ —aby--  ab
/
Denoting a™ = &/a, the inverse of the finite sequence a ,we have

cla=c*a™. (6)
Although we will not used here, we mention the matrix possibility
for calculus of the convolution and deconvolution, given by the relation

ag ay a, -\ (by b by - € & G
0 a a ||0 by b | |0 ¢ ¢
0 0 a -||0 0 b | |O 0 ¢ - ’

where a , b and c¢=ax*b are the finite sequences considered above.

The notions of convolution and deconvolution can also be
considered, with the same definitions and notations, in the case of the infinite
sequences. In this case the natural number k& from the above definitions is
arbitrary, hence

(ag;ay;..;a.;...)% (bbb, ;...) =
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=((ay;ay;...;a, )% (by;by;..;b, ) k=012,...)
If we multiply two absolute convergent power series having the
coefficients a, and b, , then the result absolute convergent power series has the

components of the convolution product c¢=ax*b as coefficients (Cauchy
theorem). Consequently there results that the deconvolution of the infinite
sequences corresponds to the division of the power series. Contrary with the
situation at infinite sequences, in the case of finite sequences (of the same length),
both the convolution and the deconvolution are not exactly the same with the
multiplication and respectively the division of polynomials. This observation must
be take into account, the more so as in MathLab, for example, the instructions
"conv" and "deconv" means the multiplication and the division of the
polynomials.
If « isafinite sequence and b a finite or infinite sequence, we denote

(a;b) the sequence obtained by adjoining the two sequences.

3. Linear difference equations with constant coefficients

3.1. The main result
We consider the nonhomogeneous linear difference equation

Z” 0 %n-jUjrk = bk'k 01.. (7)
with the coefficients a, #0, a,,...,a, and right terms bo,bl,...,bk,....
We denote
a=(aya,;...;a,;00;...)=(ag;a,;...;a,;...) (8)
with the convention that a, =0 ,if k£ >n ,and
b=(by;b,;...;D,;...) . 9)

THEOREM . The unique solution u=(uyu;...;u,;...) of the
equation (7) with the known initial values — uy,uy,...,u, ,, is given by
the formula

uz(aouo;aluo +a0ul;zwz a, ;3 byiby; .)/(ao;...;an;O;O;...)=

:(((10;al;...;an_l)*(uo;ul;...;un_l);b)*a_1 = (10)

=(0;...;0b*a™) +u, - (ay;a,;...;a, ,;;0,0;..)xa ™ +
H_J
+u, - (0ay;...;a, 5;0,0;..)¥a ™ +- +unl(0 0;a4;,0,0;...)*xa™

n —1
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Proof. Let denote

c=(cyicps-. 0.

.)za*u : (11)

From the definition (2) of the convolution product, it results that

n-1
Cy = AUy, Cy = AUy +aou1,...,Cn_1=Z_ a u.

j=0"n=1=j")
hence
(co;cl;...;cnfl)z(ao;al;...;aH)*(uo;ul;...;unfl) (12)
If u« is solution of the equation (7), making the index change j=i+k
and taking into accountthat a,,, =0,k =12,... , itresults
Cosk = Zj:gan+k—juj = Zn Uiy = Oan M =be, (13)
k=012,...

From the relations (12) and (13), it results that the sequence c¢
given by the formula (11) has the form

c =((ao;...;an,l)*(MO;...;MH);b)z

=(a0u0;aluo+a0ul;...;znl u.;byiby;... by ) (14)

0 n—l—/ J?
Finally, from (11) and (14) , it results that the solution « of the equation
(7) with the known initial values u,,u,,...,u, , is given by the formula (10).

Conversely, if the sequence u is given by the formula (10), then in
conformity with the notation (11), we have

il )=axu=(ag;..;a, ) *(ug;..;u,, )b)
from where it results the relation (12) and
n+k _bk ’ k 01 (15)
Computing the deconvolution

c=(cy;..i0,4:c

n-1
u=cla= aouo,alu0+a0u1,...,zlOanl/ul,cn, FCoitres )/a , We see

that the first » components of the sequence u are the numbers u,,u,,...,u, ,
Making the index change i = j +k , taking into account that «,,, =0,k=12,...
and the formulae (2), (1) and (15), it results
Zn a, u.,, = "a . u=>"a  u=c =b, ,k=01... , hence the

j=0"n=j Jtk i=k k=170 i=0  ntk—iT"i n+k

sequence u given by the formula (10), satisfies the equation (7).

Observation. The last form of « in (10), that obviously results from the
first one, express the fact that the general solution of the nonhomogeneous
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difference equation (7) is the sum between its particular solution (0;---;0;6%a™")
%/_/

and the general solution of the homogeneous equation

Z:«:o“n—f”ﬁk =0, £k=01,..., (16)
associated to (7), that is the linear combination with arbitrary coefficients
Uy,...,u, , of theelements (ay;---;a, ;;0,0;--)*a™, (0;ay;-++;a, ,;0;0;--)%a™

vy (05...30;a4;0;0;...) *a™*  of the base of the - dimensional vector space of
n-1
all solutions of the homogeneous equation.

3.2. Initial value ( Cauchy ) problem

If we known the first » components ug,u,,...,u, ;, named initial

values, of the solution u of the equation (7), the formula (10) gives the possibility
to compute how much components of « are required.

Example 1. The initial value problem formed by the linear
difference equation wu,,, —2u,, —3u, =k, k=0.12,..and the initial conditions
Uy =u, =1, has n=3 , a=(0-2-300;...),b=(012;...),

c=((ay;a,)* (ug;u, );b) = (L-2)* (L1).0) = (,-1,0:12;3;...).
The deconvolution algorithm

1
1

-1
7.
1

1 -

b | fo o

1
0
1
3
0-

N oom
IR =1 g s

-10-15 ..
14 17 .
14 -28 ..

45
45

gives the sequence u=c/a= (1;1;5;14;45;...) as solution of the Cauchy
problem.
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3.3. Boundary value problem

We consider now the problem of finding the solution
u=(ug;uy;...;u,;...) of the difference equation (7) for which » components

Uy Uy ..o, , Named generalized boundary values, are known. Making equals

these values with the corresponding components of the solution of the equation
(7), given by the last form of the formula (10), we obtain a linear algebraic system
of order n, from which it is eventually possible to compute the initial values
ug,uy,...,u, . Replacing these values in the formula (10), we obtain the solution

of the considered boundary value problem. As will be see in the example 3 below,
such a generalized boundary value problem can to have an unique solution, an
infinity of solutions or can not have any solution.

Example 2 . We consider the same equation as in example 1, but
now with the boundary conditions  u, =45u, =409. Because
a =(1-2-300;...)" = (1,0;0;...)/(L-2,-3,0;0;...) =

= (1,2;7;20;61,182;547;1640;...) ,
(here and in the following examples, the deconvolution algorithms not be
effectively presented), we have

u= (O;O;b * a‘1)+ g (ag;a;0;0;..) % a™ + u, - (0;a,;0,0;...) % a™ =
= (O;O;b * a’1)+ uy -(L-2,0,0;...)%a ™ +u, -(01,0;0;...)%a ™" =
= (0,0;0,;4;14;44:135;...)+ u, - (1,0;3;6;21;60;183,546;...) +
+u,-(0;1,2;,7,20,61,182;547;...). The boundary value conditions
ug =442, +20u, =45, u, =44+183u, +182u, =409 gives u,=u, =1.
Replacing these values in the above formula for « , we obtain the same value for
u as in example 1, namely u = (1,1,5;14;45;135;409;1228;...) .

Example 3. The difference equation u,,, +u, =b,, k=012,...,
with b = (by;by;...;h,;...) = (2,0,-2;0;2,0,-2;0;2;...) , has a=(L010;0;...), and
a™ = (1,0;-1,0;0;-1,0;...) , hence

w=(0:0p%a )+ uy - (0,0, ) a ™t +u, - (0L0,0;..) % a™ =
=(0;0;2,0,-4;0;6;0;...) + u, - (1,0;-1,0;,0;-1,0;L; ...) + u, - (0;1,0;~1,0,1,0;-1;....)

a) If u, =0,u, =-3, itresults u, =—u, =0 and u, =—-4+u, =-3 hence
u, =1. The boundary value problem has the unique solution
u = (L0;1,0;-3,0,5,0;...) .

b) If u, =u, =-3,fromu, =2-uy,=1and u, =—-4+u, =-3, itresults
only u, =1, so the boundary value problem has an infinity of solutions given by
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the relation u =(1,0;1,0;-3,0;5,0;...)+u, - (0;1,0;-1,0;1,-1,0;...) , where u, is an
arbitrary parameter.
c) If u, #Lu, =-3 ,itresults both u, #1 and u, =1, contradiction, the

considered boundary value problem having not solution.
4. Linear differential equations with constant coefficients

4.1. Discreetization of a differential equation
Let be the linear differential equation with constant coefficients

> u(x)=f(x) (17)

where x is a real variable. We consider a net

X, =X, +kh,k=012,... ,m , where x, is a fixed real number,
h>0 (or h<0)isthe step of the net and m > n . We denote

u, =ulx,) , fi=f(x) , £=012,... (18)

If approximate the derivatives of the unknown u(x) for x=x, by the
usual formulas

U, .. —u U, ,—2u, ., +u
r(xk ) ~ k+lh k , u"(xk ) k+2 h2k+l k
Uy =3y +3u,, —u,

uw(xk) h3

u(x, )= (_hlj)j Zjo(—l)"(]_' Ju,ﬁ, i k=012,... , (19)

u

N

1

the numerical values u, of the solution u« of the differential equation
(17) in the net points x, will be the solutions of a difference equation of form
(7), where
J ¢ l’l_j+i j—i n
a, :Zi/o(_l)( n—j jhl a.; s b=t (20)
j=0%...,n ,k=012,...

Example 4. The differential equation of second order
aou"(x)+ alu'(x)+ azu(x) = f(x) (21)
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is reduced to the difference equation

Aol + (hal —2a, )”k+1 + (a'o —ha, +h’a, )“k = hzf(xk), (22)
k=012,...
Example 5. The differential equation of third order

g (x) + au”(x) + a1’ (x) + () = £(x) 23)
is reduced to the difference equation
ity — 3ty — haty ., + Bty — 2hat, + h2aty g, —
oty —hay + 2, W, =hf,, k=012,.... (24)

4.2. Boundary value problem

In conformity with those who was mentioned in the section 3.1, the
differential equation (17), with the unknown u(x) , 1s reduced to the difference

equation (7) with the coefficients given by the formula (20) and the unknown
u=uguy;..;u,;...),where u, =u(x,) and x, =x,+kh , k=012,...,m .
We suppose that the unknown function u(x) and eventually some of its
derivatives (see example 8 below) in »n different values x, are given. From these
generalized boundary conditions can be eventually deduced » components of
the sequence u = (uy;u,;...;u,;...). Using the deconvolution method presented
in the section 2, we can determine other components u«, of u , these being the
approximate values of the unknown u(x) of the differential equations in the

considered values of the variable.
Example 6. We consider the differential equation "(x)—u(x)=0

.For ¢, =0 and #=0.1, hence for the net x, =0.1-k , £ =01,... , in conformity

with the formula (21), the differential equation is reduce to the linear difference
equation Uy, —2u,; +099-u, =0 with the unknowns

u, =u(0.1-k),k=01,.... We have a =(1,-2;0.99,0,0;...), b=0,
a™ = (1,2;3.01,4.04,5.1,6.2;7.35;8.57;9.85;11.225; 16.7;....), hence
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w=uy 1-2,00;. )¢a "t +u, - (0;a™)= ug - (1,0,-0.99,-1.98; — 2.98,4;
—5.05,-6.14;,-7.28,-8.48,-9.75;...) + u, - (0;1;,2;3.01,4.04;5.1;
6.2;7.35;8.57;9.85;11.225;...) .

We consider several boundary value problems :

a) u(0)=0,u(1)=1; then u, =0 ,
ul)=u,, =11.225-u, —9.75-u, =11.225-u, =1, whence u, = 0.089,
u = (0;0.089;0.178;0.27;0.36;0.45;0.55;0.65; 0.76;0.87;0.999;...), the last giving
the approximate values of the exact solution u(x)= sh(x)/sh(1) for x = 0.1k.

b)  u(0)=0,u(0.1)=1; using directly (10) we  obtain
u=(1-2)%(0:2)0,0;..) % a™ = (04,0,0;.. )*a* = (0;a7*) =
=(0;2;3.01; 4.04;5.1;6.2;7.35;8.57;9.85;11.225;...) , the approximate values of the
exact solution u(x)= sh(x)/sh(0.1) ;

"

Example 7. The differential equation " (x)—u"(x)—u'(x)+u(x) = 4e*,
with the same net x, as in example 6, is reduce in conformity with the relation
(24) to difference equation u, , —3.1-u, , + 3.19-u, , —1.089-u, =0.004-¢**
k=01....Then a=(1-3.1,3.19;-1.089;0;0;...),

a™ =(1,3.1,6.42;11.1;17.31;25.24;35.12;47.2; 61.77;79.17;99.787;0,0;...),
b =107*(40;44;49;54;60;66;73;80;90,98:109;..) , u=(0,0,0;b%a)+
+uy - (1-3.03.19,0,0;.. )+ at +uy - (04-3.10,0;.. )% a™ + u, - (00,07 ) =
= (0;0;0;0.004;0.017;0.044;0.093;0.17;0.29;0.46;0.7;...) +
+u,-(1,0;0;1.087;3.38;7;12.1,18.84;27.48;38.25;51.4;...) +
+u, -(0:1,0;-3.2;,-8.8,-17.1,-28.42,-43.12,-61.67,-84.55;-112.317;...) +
+u, '(0;0;1;3.1;6.42;11.1;17.31;25.24;35.12;47.2;61.77;...) .

We consider the following boundary problems:

a) u(0)=1, u(0.1)=1558 , u(1)=16.3 ; we have u, =1, u, =1.558 and
uy, =ul)=0.7+51.4-u, -112.317 -u, + 61.77-u, =16.3, hence u, = 2.25
Then we obtain the solution u replacing these values of u,,u,,u, in the above
expression of « or by the computation
u = ((L-3.1,3.19)*(1,1.558;2.25);b)/ a = (L~1.542;,0.6L;h)/ a =

= (1;1.558;2.25;3.1;4.13,5.4;6.85;8.6:10.7;13.2;16 1....).

b) u(0)=1u(0.9)=13.3,u(1)=16.3 ; we have u,=1, u,=u(0.9)=

=0.46+38.25-u, —84.55-u, +47.2-u, =13.3. From the algebraic system
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composed from these relations and that obtained to the point a) from the
expression  of  wy,, it results u, =152, u, =22, hence

u=((,-3.1,3.19)* (1;1.53;2.2);6)/ a = (1,-1.57;0.647;b)/ a =
= (1,1.53;2.2;3.03;4.05;5.3,6.78;8.56;10.68;13.19;16.15;....) ;

¢) u(0)=1u(0.5)=5.36,u(1)=16.3 ; we have u, =1, u, =u(0.5)=
=0.044+7 u,-17.1-u, +11.1-u, =5.36 . From these relations and that obtained
at the point a) from u,, ,we get the values u, =154, u, =2.22 , hence
u=((L-3.13.19)*(L1.54;2.22);b)/ a =

= (1,1.54;2.22;3.06;4.1;5.34;6.84;8.638;10.77;13.3;16.26;...).

The values obtained at the points a), b), c) above, are approximate values of the
exact solution u(x)=(x? +4x+1)-¢* in the points of the considered net.

4.3. Initial value problem.

We denote  u"* =u"(x,),k=012,... . If we known the initial values
u® =uy, u,...,u"? of the solution u(x) of the differential equation (17), from
the relations

4V = U —Uy , 4@ = U, _2'/;1 +u, 1 4@ = u; —3u, "’33”1 — U .
h h h
’ —1)" ik
) E(h—k)z,~=o(‘1) (j]uj Ck=12,..., (25)

we can determinate the approximate values u,,u,,...,u, , of the solution u(x) in
the points x, = x, + hk,k=01,...,n -1, of the above considered net. Taking these
numbers as initial values for the unknown u = (uy;u,;...;u,;...) of the difference

equation (7) to which is reduce the differential equation (17) as was indicated in
the section 3.2, we can compute the approximate values u, of the solution in

another points of the net by the deconvolution method given in the section 2. We
can use the same method in the case in which we known values of solution and
same of its derivatives in certain points of the net.

Example 8. For the differential equation from example 6, we consider the
classical initial value problem from the point a) below, but several other
generalized situations are given at the other points .

a) u(0)=14'(0)=2 ; then wu,=1 and (u, —u,)/0.1=2 that gives

u, =1.2, hence u = (1,1.2,1.41.63; 1.9;2.12;2.4;2.7,33.34;3.72;...), these being the
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approximate values of the exact solution u(x)=(3ex—e_x)/2 in the points
x, =0.1-k of the considered net.

b) u(0)=0u'1)=1; we have u,=0, u'(1)=/(uy—u,)/0.1=
=13.75u, —12.7u, =13.75u, =1, which give u, =0.07 ,hence
u= (0;0.07;0.14;O.21;0.28;0.36;0.43;0.51;0.6;0.69;0.79;...), the approximate
values of the exact solution u(x)= sh(x)/ch(1) ;

) u'(0)=0u@)=1; from u'(0)=(u, —u,)/0.1=0 it results
uy = uy,u(l)= (11.225-9.75)u, =1.475u, =1,u, = 0.68,
hence u =(0.68;0.68;0.687;0.7;0.72;0.75;0.78; 0.82;0.88;0.93;...), the
approximate values of the exact solution u(x) = ch(x)/ch(l).

d) «'(0)=0, u'(1)=1 ; we have u,=u,. In conformity with the
computation making at the point b), u'(1)=(13.75-12.74)u, =1.01u, =1,
u, =0.99, hence u =(0.99;0.99;1:1.02;1.051.09;1.14; 1.2,1.27;1.36;1.46;...) the
approximate values of the exact solution u(x) = ch(x)/sh(l) .

Example 9. Let be the differential equation considered in example 7, now

with the initial values (0)=1,4'(0)=5,4"(0)=11. With the same notations we
have uo = u(o) = u(O):l , u(l) = % = u'(O): 5, that gives Ml =15 and

(2) _ U, —2u, +u,
0.01

formula of « obtained in example 7), we have wu=(ugu;...;u,;...)
= (u(0);u(0.2),...;u(0.2%)...) =

= (0;0;0;0.004;0.017;0.044;0.093;0.17;0.29;0.46;0.7;...) +
+(10;0;1.087;3.38;7;12.1,18.84,27.48;38.25;51.4;...) +
+1.5-(0,0,-3.2,-8.8,-17.1,-28.42;,-43.12,-61.67;-84.55,-112.317;...) +
+2.11-(0;0;1;3.1,6.42;11.1,17.31;25.24;35.12;47.2;61.77;.. ) =.

= (1;1.5;2.11;4.37;4.96;6.22;7.66;9.35;11.28;14.56;...) .

=u"(0)=11 , that gives u, = 2.11 . Replacing these values in

4.4. Determination of the initial values

Applying the differentiation of order 4 to the equation (17) and taking
x=x, it results that the  sequence  (uo;u®;..;u®;..)=
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= (1o (3 ;..;u™(x, );....) of the initial values of the unknown u(x) of the
differential equation (17) is solution of the difference equation

ijoa,,,,u<f+"> = f¥(x,) , k=012,..., (26)
hence is the difference equation of form (7) with a, =, and b, = f*(x,),
k=0.12,... Using the deconvolution method given in the section 2, from the
difference equation (26) we can compute as much as we like of the values
u®(x,), if we known n of them. Similar to the difference equations case, the

problem considered in this section for differential equations can to have an unique
or an infinity of solutions or can have not any solution, as can we see in the
following example, based on the example 3 above.

Example 10. Denoting u, =u"(z/2) , k=01,..., the differential
equation  u"(¢)+u(t)=2sint = f(¢), is reduced to the difference equation
u™? 4™ = p_where b, = f(z/2)=2-(-1)", k=012,..that was
considered in example 3).

If we consider the initial conditions:

a) u®(z/2)=0,u"(z/2)=-3;b) u"(z/2)=1, u'¥(z/2)=-3 ;
¢) u"(z/2)#1,u"(r/2)=-3, we obtain the same situations and solutions as in
example 3, these solutions «, being now the initial values u“(z/2),k =012,...

Example 11. As it results from the second Newton' law, the mathematical
model for a mass-spring system is governed by the linear differential equation
u"(t)+ pu'(t)+qu(t)=0 , where g =k/m, where m is the weight of the mass,
k the elasticity constant of the spring given by the Hooke law and p the
constant of proportionality between the air resistance and velocity. Using the
notation u(k):u(k)(z‘o), the differential equation is reduced to the difference

equation u“*? + pu™? + qu™ =0 ,k=01,.... If are known the initial position
u(ty)=u' of the mass and the initial velocity u'(z,)=u", then the initial
acceleration can be obtained by the deconvolution between the sequences
= ((@®;u®) @ p)o;...) = @®; pu® +u®:0;...) and a = (1; p;¢;00;...), namely
u"(to)z u? = —(qu ©) 4 pu (1)) .

The solution by deconvolution for the problem considered here will be
also used in the following point.
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4.5. Generalized initial value problem

Let suppose that we known » initial values «'/(x,) =", i=12,....n
, of the unknown u(x) of the linear differential equation (17) and we want to
determine the values u(x, )=u, , in the net points x, =x, +k-h,k=012,...,m
with >0 and m>n.

For this, we shall combine the methods given in the sections 4.4. and 4.3.
Namely, we will determinate by formula (10) the first » initial values

©) @ .. u" by the method given at the section 4.4. for the difference

equation (26). In conformity with the method given in the section 4.3., from these
initial values we shall compute using the relations (25), the values

u, =u(0),u1,...,un of the function » in the first » points of the net by the

relations (25). Using again the formula (10), now for the difference equation (7),
we obtain the desired values u,,k=01,...,m, of the solution u(x) of the

differential equation (17) in the points of the net.
Example 12. We consider the differential equation from the examples 7

and 9,  u"(x)-u"(x)-u'(x)+u(x)=4-¢*, with the same net
x, =0.1-k,k=04,...,10 and the initial values u"(0)=19, u®®(0)=41,
u'®(0)=55. Denoting «') =u'"(0), j=04,..., differentiating of j times the
equation and taking x=0, we obtain the difference equation
uV® U2 U U =4 for  j=01.. . With the notations
a=(L-1-110,0;...) and b=(44;...), applying the formula (10) it results that
the  solution of  the difference equation has the form
u=(0,00;6%a)+u® - L-L-100;.. )*a ™ +u® - (0L-L0,0;...)+a* +
+u2) (0:0;a%) = (0,0,0;4:816;24;36;.. )+ u® - (L0;0;-L;-1— 2;-2;-3;.. )+

u® - (0:402020%;...) +u? - (0,0:11;2;2;3;3;...) . Using the given initial values,
We obtain the relations u® =4- u0)+u(1)+u =19,

=16- 2 u +u ) 424 =41, u® =24-2.49 4+3.4? =55, from which
it results u® =1,4Y =5 4% =11 and the calculus continues as in example 9.

u - =uy,u
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