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SOLVING DIFFERENCE AND DIFFERENTIAL EQUATIONS               
BY DISCRETE DECONVOLUTION 

M. I CÎRNU1 

Prezentăm modul în care, folosind convoluţia şi deconvoluţia discretă, pot fi 
calculate valorile numerice ale soluţiilor problemelor de valori iniţiale şi la 
frontieră pentru ecuaţiile liniare neomogene cu coeficienţi constanţi, atât cu 
diferenţe cât şi diferenţiale. Sunt incluse exemple rezolvate. Metoda poate fi utilizată 
uşor  în aplicaţii şi implementată pe calculator.  

 We present the way in which, using the discrete convolution and  
deconvolution, can be  computed the numerical values of the solutions both of the 
initial and boundary value problems for linear nonhomogeneous difference  and 
differential equations with constant coefficients. Worked examples are included. The 
method can be easily used in applications and  implemented on a computer.  

 
Keywords:  difference and differential equations, discrete convolution and  
         deconvolution.  
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1. Introduction  

The convolution is a fundamental concept in mathematics and 
applications, its importance being in growth in the last time. The use of the 
convolution and others related notions, as its inverse - the deconvolution, to 
solve several kinds of equations is particularly of a great importance. 
 For that purpose, in the present paper we use the discrete convolution and  
deconvolution, to obtain the numerical solutions of the initial and boundary  value 
problems for linear nonhomogeneous difference equations and differential 
equations with constant coefficients. In whole paper, the method will be 
exemplified by several worked examples.  

In the section 1 of the paper, we present the notions of the convolution and 
deconvolution, for finite sequences of the same length and also for infinite 
sequences. The definitions of these notions come back to A.Cauchy and are 
presented, for example, in [3]. 
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 Section 2 is concerned with the exact numerical solution of the linear 
nonhomogeneous difference equations (linear recurrence equations) with constant 
coefficients, of order n . Using the notions presented in the section 1, our main 
theorem gives a formula for solving such equations, if  n  initial values of the 
solution are known. It is also considered the generalized case when the n  known  
values of the solution, are not necessary the first ones. Of course, in this case the 
existence or the unicity of the solution are not assured. This new method, based 
especially on the discrete deconvolution, gives  a direct and rapid algorithm for 
obtain the exact numerical values of  the solutions of the difference equations, 
instead of the laborious usual methods.In section 3, we apply the deconvolution 
method to obtain the approximate solution of the initial and boundary value 
problems, for nonhomogeneous linear differential equations with constant 
coefficients. This is made by replacing the unknown of the equation by the finite 
sequence of its values in the points of an equidistant net of values of the variable 
and by approximating the derivatives of the unknown function by their finite 
differences. Examples for second and third order equations are given.  
 We apply the method both for the classical initial and boundary value 
problems and for their generalizations. Thus, the boundary value problem is 
considered too in the case when the values of the unknown function and 
eventually of its derivatives are given not only in the extremities of the definition 
interval, but even for some intermediate values. The initial value problem is also 
considered when the values in the initial point of the unknown function and its 
derivatives of several orders, not necessary the firsts, are given.    
 In a subsequent paper [1], we shall use the present results for numerical 
computation of the polynomial roots. Also, in [2], the discrete convolution and 
deconvolution are used to solve nonhomogeneous linear differential equations.  

  2. Discrete convolution and deconvolution  

We call discrete convolution (or Cauchy product) of two finite 
sequences of real or complex numbers, with the same number of terms, 

( )kaaaa ;;; 10 …=   and ( )kbbbb ;...;; 10= , the finite sequence 
 

                        ( )kcccbac ;;; 10 …=∗=                                       (1) 
 
given by the relations (see for example [2])    
 
                     ∑ = −=+==

k

j jjkk bacbabacbac
010011000 ,,, …                   (2)  

 



Solving difference and differential equations by discrete deconvolution 15

The convolution product is commutative, associative, distributive related 
to the addition of the sequences and has the unit ( )0;...;0;0;1=δ . The addition and 
the multiplication with scalars of the sequences are those usual.  

In the case when the finite sequences a  and c  are known  and 00 ≠a , we 
can determinate the finite sequence b , such that the relation (1) to be satisfied. 
This sequence is named the deconvolution (see [2]) of the sequence  c  by the 
sequence a , is denoted                         

                                                  acb =                                               (3) 
and its terms are given by the relations 

     ( ) ( )∑ −

= −−=−==
1

0
0

011
0

1
0

0
0

1,,1, k

j jjkkk bac
a

bbac
a

b
a
c

b …    ,         (4) 

hence can be computed by the algorithm 

                  kccc "10          kaaa "10  

                  0010 babac k"      kb
a

bac
b

a
c

b "
0

011
1

0

0
0

−
==  

                    / "011 bac − 0bac kk −                                                    (5) 
              1011 babac k"−    

                                                   
        "/              

 
 Denoting aa δ=−1 , the inverse of the finite sequence a ,we have    

                                            1−∗= acac  .                                              (6) 
 Although we will not used here, we mention the matrix possibility 

for calculus of the convolution and deconvolution, given by the  relation  

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

""""
"
"
"

""""
"
"
"

""""
"
"
"

0

10

210

0

10

210

0

10

210

00
0

00
0

00
0

c
cc
ccc

b
bb
bbb

a
aa
aaa

 , 

where  a  , b   and  bac ∗=   are the finite sequences considered above. 
 The notions of convolution and deconvolution can also be 

considered, with the same definitions and notations, in the case of the infinite 
sequences. In this case the natural number  k   from the above definitions is 
arbitrary, hence  

 ( ) ( ) =∗ ………… ;;;;;;;; 1010 kk bbbaaa  
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( ) ( )( )……… ,2,1,0:;;;;;; 1010 =∗= kbbbaaa kk  
If we multiply two absolute convergent power series having the 

coefficients ka  and kb , then the result absolute convergent power series has  the 
components of the convolution product  bac ∗=  as coefficients (Cauchy 
theorem). Consequently there results that the deconvolution of the infinite 
sequences corresponds to the division of the power series. Contrary with the 
situation at infinite sequences, in the case of finite sequences (of the same length), 
both the convolution and the deconvolution are not exactly the same with the 
multiplication and respectively the division of polynomials. This observation must 
be take into account, the more so as in MathLab, for example, the instructions 
"conv" and "deconv" means the multiplication and the division of the 
polynomials.    

If   a   is a finite sequence and  b   a finite or infinite sequence, we denote 
( )ba;   the sequence obtained by adjoining the two sequences. 

3. Linear difference equations with constant coefficients 

3.1. The main result 
 We consider the nonhomogeneous linear difference  equation 

                                    ,...1,0,
0

==∑ = +− kbuan

j kkjjn  ,                       (7) 

with the  coefficients ,00 ≠a  naa ,...,1  and right terms ,...,...,, 10 kbbb . 
  We denote                         

               ( )…… ;0;0;;;; 10 naaaa = ( )…… ;;;; 10 kaaa=         ,                (8) 
with the convention that  0=ka  ,if  nk >  ,and  

                                       ( )…… ;;;; 10 kbbbb =     .                                  (9) 
 THEOREM . The unique solution  ( )…… ;;;; 10 kuuuu =  of the                              

equation (7) with the known initial values  110 ,,, −nuuu … , is given by                                  
the formula   

( ) ( ) =+= ∑ −

= −− ……… ;0;0;;;;;;;; 010
1

0 1100100 n
n

j jjn aabbuauauauau  

    
( ) ( )( ) =∗∗= −

−−
1

110110 ;;;;;;; abuuuaaa nn ……                            (10) 
             

+∗⋅+∗= −
−

− 1
1100

1 );0;0;;;;();0;;0( aaaauab n

n

……
	�…

1
0

1
1

1
201 );0;0;;0;;0();0;0;;;;0( −

−

−
−

− ∗⋅++∗⋅+ aauaaau
n

nn …
	�…"……    .  
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 Proof .  Let denote 
                         ( ) uacccc k ∗== …… ;;;; 10   ,                                   (11) 

From the definition (2) of the convolution product, it results that  
    ∑ −

= −−− =+==
1

0 1110011000 ,,, n

j jjnn uacuauacuac …   ,                                

hence  
                   ( ) ( ) ( )110110110 ;;;;;;;;; −−− ∗= nnn uuuaaaccc ………               (12) 
If  u   is solution of the equation (7), making the index change kij +=  

and taking into account that  …,2,1,0 ==+ ka kn  , it results  

       ∑ ∑+

= −= +−−++ ===
kn

j

n

ki kiinjjknkn uauac
0 ∑= +− =

n

i kkiin bua
0

,      (13) 

…,2,1,0=k  
 From the relations (12) and (13), it results that the sequence c  

given by the formula (11) has the form  
  ( ) ( )( ) =∗= −− buuaac nn ;;;;; 1010 ……  

 
( )……… ;;;;;;;; 1

0 101100100 k
n

j jjn bbbuauauaua ∑ −

= −−+=                          (14)  

 Finally, from (11) and (14) , it results that the solution u  of the equation  
(7) with the known initial values 110 ,,, −nuuu …  is given by the formula (10). 

Conversely, if the sequence  u   is given by the formula (10), then in 
conformity with the notation (11), we have 

 
( ) ( ) ( )( )buuaauaccccc nnknnn ;;;;;;;;;;; 101010 −−+− ∗=∗== ……………  , 

from where it results the relation (12) and   
 kkn bc =+  , …,1,0=k  .          (15) 

Computing the deconvolution  
( ) accuauauauaacu n

j knnjjn /;;;;;;;/ 1

0 1100100 ∑ −

= +−−+== ………  , we see 

that the first  n   components of the sequence u  are the numbers 110 ,,, −nuuu …  
Making the index change kji +=  , taking into account that  …,2,1,0 ==+ ka kn  
and the formulae (2), (11) and (15), it results 

∑ ∑ ∑=

+

=

+

= +−+−++− ====
n

j

kn

ki

kn

i kkniikniiknkjjn bcuauaua
0 0

 , …,1,0=k  , hence the 

sequence  u   given by the formula (10), satisfies the equation (7).   
 
Observation.  The last form of  u   in (10), that obviously results from the 

first one, express the fact that the general solution of the nonhomogeneous 
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difference equation (7) is the sum between its particular solution  );0;;0( 1−∗ ab
n

	�"   

and the general solution of the homogeneous  equation 
          ∑ = +− =

n

j kjjn ua
0

0  ,  …,1,0=k  ,                 (16) 

 associated to (7), that is the linear combination with arbitrary coefficients     
10 ,, −nuu …   of  the elements 1

10 );0;0;;;( −
− ∗ aaa n ""  , 1

20 );0;0;;;;0( −
− ∗ aaa n ""   

, ,…   1
0

1

);0;0;;0;;0( −

−

∗ aa
n

…
	�…   of the base of the  n - dimensional vector space of  

all solutions of the homogeneous equation.   

 3.2. Initial value ( Cauchy ) problem 

 If we known the first n   components  110 ,,, −nuuu … , named initial 
values, of the solution u  of the equation (7), the formula (10) gives the possibility 
to compute how much components of u  are required. 

 
   Example 1. The initial value problem formed by the linear 

difference equation  ,...2,1,0,32 12 ==−− ++ kkuuu kkk and the initial conditions 

110 == uu , has 3=n  , ( )…;0;0;3;2;1 −−=a , ( )…;2;1;0=b ,
 ( ) ( )( ) ( ) ( )( ) =∗−=∗= bbuuaac ;1;12;1;;; 1010 ( )…;3;2;1;0;1;1 − .   

The deconvolution algorithm 

gives the sequence  ( );...45;14;5;1;1== acu  as solution of the Cauchy 
problem.       
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3.3. Boundary value problem 

 We consider now the problem of finding the solution 
( )…… ;;;; 10 kuuuu =  of the difference equation (7) for which n  components  

nkkk uuu ,,,
21
… , named generalized boundary values, are known. Making equals 

these values with the corresponding components of the solution of the equation 
(7), given by the last form of the formula (10), we obtain a linear algebraic system 
of order n , from which it is eventually possible to compute the initial values 

.,,, 110 −nuuu …  Replacing these values in the formula (10), we obtain the solution 
of the considered boundary value problem. As will be see in the example 3 below, 
such a generalized boundary value problem can to have an unique solution, an 
infinity of solutions or can not have any solution.   

 Example 2 . We consider the same equation as in example 1, but 
now with the boundary conditions 409,45 75 == uu . Because 

( ) =−−= −− 11 ;0;0;3;2;1 …a ( ) ( ) =−− …… ;0;0;3;2;1;0;0;1     
     = ( )…;1640;547;182;61;20;7;2;1   ,    

(here and in the following examples, the deconvolution algorithms not be 
effectively presented), we have 

( ) ( ) +∗⋅+∗= −− 1
100

1 ;0;0;;;0;0 aaauabu … ( ) =∗⋅ −1
01 ;0;0;;0 aau …

( ) ( ) 1
0

1 ;0;0;2;1;0;0 −− ∗−⋅+∗= auab … ( ) =∗⋅+ −1
1 ;0;0;1;0 au …             

( )+= …;135;44;14;4;1;0;0;0 ( )+⋅ …;546;183;60;21;6;3;0;10u  
( )…;547;182;61;20;7;2;1;01 ⋅+ u . The boundary value conditions 

4520214 105 =++= uuu , 40918218344 107 =++= uuu  gives 110 == uu . 
Replacing these values in the above formula for u  , we obtain the same value for 
u  as in example 1,  namely  ( )…;1228;409;135;45;14;5;1;1=u  . 

 Example 3. The difference equation    kkk buu =++2 , …,2,1,0=k , 
with ( ) == …… ;;;; 10 kbbbb ( )…;2;0;2;0;2;0;2;0;2 −−  , has  ( )…;0;0;1;0;1=a , and  

( )…;0;1;0;1;0;1;0;11 −−=−a  , hence  
( ) ( ) ( ) =∗⋅+∗⋅+∗= −−− 1

1
1

0
1 ;0;0;1;0;0;0;1;0;0 auauabu ……

( ) ( ) ( )……… ;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;6;0;4;0;2;0;0 10 −−⋅+−−⋅+−= uu  
 a) If 3,0 43 −== uu , it results 031 =−= uu  and 34 04 −=+−= uu   hence 

10 =u . The boundary value problem has the unique solution 
( )…;0;5;0;3;0;1;0;1 −=u  .  

b) If 3,1 42 −== uu , from 12 02 =−= uu  and 4u 34 0 −=+−= u , it results 
only 10 =u , so the boundary value problem has an infinity of solutions given by 
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the relation ( ) ( )…… ;0;1;1;0;1;0;1;0;0;5;0;3;0;1;0;1 1 −−⋅+−= uu  , where 1u  is an 
arbitrary parameter. 
 c) If 3,1 42 −=≠ uu  , it results both  10 ≠u   and  10 =u , contradiction, the 
considered boundary value problem having not solution. 

 4. Linear differential equations with constant coefficients 

            4.1. Discreetization of a differential equation 
Let be the linear differential equation with constant coefficients  
 

              ( ) ( ) ( )∑ = − =
n

j
j

jn xfxu
0
α   ,                                     (17) 

 
where x  is a real variable. We consider a net  

…,2,1,0,0 =+= kkhxxk m,  ,                          where  0x   is a fixed real number, 
0>h   ( or  0<h  ) is the step of the net and                 nm >  . We denote  

 
           ( )kk xuu =     ,    ( )kk xff =    ,   …,2,1,0=k           (18) 

If approximate the derivatives of the unknown  ( )xu   for kxx =  by the 
usual formulas  

 

   ( )
h

uu
xu kk

k
−

≅′ +1 , ( ) 2
12 2

h
uuu

xu kkk
k

+−
≅′′ ++ ,             

 ( ) 3
123 33

h
uuuu

xu kkkk
k

−+−
≅′′′ +++ ,,…  

 ( ) ( ) ( ) ( )∑ = +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
≅

j

i ik
i

j

j

k
j u

i
j

h
xu

0
11 , …,2,1,0, =kj    ,                           (19) 

 
the numerical values  ku   of the solution  u   of the differential equation 

(17) in the net points  kx   will be the solutions of a difference equation of form 
(7), where  

( ) ij
ijij

ij h
jn

ijn
a −

−
= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+−

−= ∑ α
0

1   ,  k
n

k fhb =  ,                        (20) 

  nj ,,1,0 …=   , …,2,1,0=k  
 
Example 4. The differential equation of second order 
   ( ) ( ) ( ) ( )xfxuxuxu =+′+′′ 210 ααα                                (21) 
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is reduced to the difference equation 
 
 ( ) ( ) ( )kkkk xfhuhhuhu 2

2
2

1010120 2 =+−+−+ ++ αααααα ,      (22) 
  …,2,1,0=k    
Example 5. The differential equation of third order   
 

           ( ) ( ) ( ) ( ) ( )xfxuxuxuxu =+′+′′+′′′ 3210 αααα         (23) 
 
is reduced to the difference equation   
 
       ( ) ( ) −+−+−− +++ 12

2
1021030 233 kkk uhhuhu αααααα  

 
           ( ) kk fhuhhh 3

3
3

2
2

10 =−+−− αααα ,     …,2,1,0=k  .      (24) 

4.2. Boundary value problem 

In conformity with those who was mentioned in the section 3.1, the 
differential equation (17), with the unknown  ( )xu  , is reduced to the difference 
equation (7) with the coefficients given by the formula (20) and the unknown  

( )…… ;;;; 10 kuuuu = , where  ( )kk xuu =   and  khxxk += 0  , …,2,1,0=k m,  . 
We suppose that the unknown function  ( )xu   and eventually some of its 

derivatives (see example 8 below) in n   different values kx  are given. From these 
generalized boundary conditions can be eventually deduced  n   components of 
the sequence  ( )…… ;;;; 10 kuuuu = . Using the deconvolution method  presented 
in the section 2, we can determine other components  ku  of  u  , these being the 
approximate values of the unknown  ( )xu   of the differential equations in the 
considered values of the variable. 

 Example 6. We consider the differential equation  ( ) ( ) 0=−′′ xuxu  
.For 00 =t  and 1.0=h , hence for the net  kxk ⋅= 1.0  , …,1,0=k  , in conformity 
with the formula (21), the differential equation is reduce to the linear difference 
equation 099.02 12 =⋅+⋅− ++ kkk uuu  with the unknowns  

( ) …,1,0,1.0 =⋅= kkuuk . We have ( )…;0;0;99.0;2;1 −=a , 0=b  ,   
 =−1a ( ;225.11;85.9;57.8;35.7;2.6;1.5;04.4;01.3;2;1 )…;7.16 , hence  



M. Cîrnu 22

( ) ( ) =⋅+∗−⋅= −− 1
1

1
0 ;0;0;0;2;1 auauu … ( ;98.1;99.0;0;10 −−⋅u ;4;98.2 −−   

) ( ;1.5;04.4;01.3;2;1;0;57.9;48.8;28.7;14.6;05.5 1 ⋅+−−−−− u…
)…;225.11;85.9;57.8;35.7;2.6  . 

We consider  several boundary value problems :              
a) ( ) ( ) 11,00 == uu ; then 00 =u  ,  

( ) 1225.1175.9225.111 10110 =⋅=⋅−⋅== uuuuu , whence 089.01 ≅u ,  
( ;65.0;55.0;45.0;36.0;27.0;178.0;089.0;0=u  )…;999.0;87.0;76.0 , the last giving 

the approximate values of the exact solution ( ) ( ) ( )1shxshxu =  for kx 1.0= .   
b) ( ) ( ) 11.0,00 == uu ; using directly (10) we obtain 

( ) ( )( ) =∗∗−= −1;0;0;1;02;1 au … ( ) ( ) ==∗ −− 11 ;0;0;0;1;0 aa…   
( ;01.3;2;0= )…;522.11;85.9;57.8;35.7;2.6;1.5;04.4  , the approximate values of the 

exact solution ( ) ( ) ( )1.0shxshxu =  ;    
 
Example 7. The differential equation ( ) ( ) ( ) ( ) xexuxuxuxu 4=+′−′′−′′′ , 

with the same net kx  as in example 6, is reduce in conformity with the relation 
(24) to difference equation +⋅− ++ 23 1.3 kk uu  k

kk euu 1.0
1 004.0089.119.3 ⋅=⋅−⋅ +  

, …,1,0=k . Then  )( …;0;0;089.1;19.3;1.3;1 −−=a , 
 1−a ( ;2.47;12.35;24.25;31.17;1.11;42.6;1.3;1= )…;0;0;778.99;17.79;77.61 ,  
( )…;109;98;90;80;73;66;60;54;49;44;4010 4−=b  , ( )+∗= −1;0;0;0 abu  

( ) ( ) +∗−⋅+∗−⋅+ −− 1
1

1
0 ;0;0;1.3;1;0;0;0;19.3;1.3;1 auau …… ( ) =⋅ −1

2 ;0;0 au
+= );7.0;46.0;29.0;17.0;093.0;044.0;017.0;004.0;0;0;0( …
+⋅+ );4.51;25.38;48.27;84.18;1.12;7;38.3;087.1;0;0;1(0 …u

)+−−−−−−−−⋅+ …;317.112;55.84;67.61;12.43;42.28;1.17;8.8;2.3;0;1;0(1u
)…;77.61;2.47;12.35;24.25;31.17;1.11;42.6;1.3;1;0;0(2 ⋅+ u  . 

We consider the following boundary problems:   
a) 1)0( =u , ( ) 558.11.0 =u  , ( ) 3.161 =u  ; we have  10 =u ,  558.11 =u  and   
( ) 010 4.517.01 uuu ⋅+== 3.1677.61317.112 21 =⋅+⋅− uu , hence 25.22 =u  . 

Then we obtain the solution  u   replacing these values of 210 ,, uuu  in the above 
expression of u  or by the computation   

( ) ( )( ) =∗−= abu /;25.2;558.1;119.3;1.3;1 ( ) =− ab /;61.0;542.1;1   
   )…;1.16;2.13;7.10;6.8;85.6;4.5;13.4;1.3;25.2;558.1;1(= .  

b) ( ) ( ) ( ) 3.161,3.139.0,10 === uuu  ; we have 10 =u , ( ) == 9.09 uu   
+= 46.0 025.38 u⋅ 3.132.4755.84 21 =⋅+⋅− uu . From the algebraic system 
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composed from these relations and that obtained to the point a) from the  
expression of 10u , it results 52.11 =u , 2.22 =u , hence 

( ) ( )( ) =∗−= abu /;2.2;53.1;119.3;1.3;1 ( ) =− ab /;647.0;57.1;1
( )…;15.16;19.13;68.10;56.8;78.6;3.5;05.4;03.3;2.2;53.1;1=  ;    

 c)  ( ) ( ) ( ) 3.161,36.55.0,10 === uuu  ;  we have  10 =u , ( ) == 5.05 uu  
36.51.111.177044.0 210 =⋅+⋅−⋅+= uuu  . From these relations and that obtained 

at the point a) from  10u  ,we get the values  54.11 =u , 22.22 =u  , hence  
( ) ( )( ) =∗−= abu /;22.2;54.1;119.3;1.3;1  

  )( …;62.16;3.13;77.10;638.8;84.6;34.5;1.4;06.3;22.2;54.1;1= . 
The values obtained at the points a), b), c) above, are approximate values of the 
exact solution  ( ) ( ) xexxxu ⋅++= 142   in the points of the considered net. 

4.3. Initial value problem.  

We denote  ( ) ( ) ( ) …,2,1,0,0 == kxuu kk  . If we known the initial values    
( )

0
0 uu = , ( ) ( )11 ,, −nuu …  of the solution  ( )xu  of the differential equation (17), from 

the relations  
 

( )

h
uu

u 011 −
≅  , ( )

2
0122 2

h
uuu

u
+−

≅  , ( ) ,,
33

3
01233 …

h
uuuu

u
−+−

≅  

  ( ) ( ) ( ) j

jk

jk

k
k u

j
k

h
u ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
≅ ∑ =0

11  , …,2,1=k  ,                 (25) 

we can determinate the approximate values  110 ,,, −nuuu …  of the solution ( )xu  in 
the points 1,,1,0,0 −=+= nkhkxxk … , of the above considered net. Taking these 
numbers as initial values for the unknown ( )…… ;;;; 10 kuuuu =  of the difference 
equation (7) to which is reduce the differential equation (17) as was indicated in 
the section 3.2, we can compute the approximate values ku  of the solution in 
another points of the net by  the deconvolution method given in the section  2. We 
can use the same method in the case in which we known values of solution and 
same of its derivatives in certain points of the net.  
 Example 8. For the differential equation from example 6, we consider the 
classical initial value problem from the point a) below, but several other 
generalized situations are given at the other points . 
 a) ( ) ( ) 20,10 =′= uu  ; then  10 =u  and ( ) 21.001 =− uu  that gives 

2.11 =u , hence ;63.1;4.1;2.1;1(=u  );72.3;34.33;7.2;4.2;12.2;9.1 … , these being the 
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approximate values of the exact solution  ( )xu ( ) 23 xx ee −−=  in the points  
kxk ⋅= 1.0  of the considered net.  

b) ( ) ( ) 11,00 =′= uu ; we have 00 =u , ( ) ( ) =−=′ 1.01 910 uuu  
175.137.1275.13 101 ==−= uuu , which give  07.01 =u ,hence 

( )…;79.0;69.0;6.0;51.0;43.0;36.0;28.0;21.0;14.0;07.0;0=u , the approximate 
values of the exact solution  ( ) ( ) ( )1chxshxu =  ; 

c) ( ) ( ) 11,00 ==′ uu ; from ( ) ( ) 01.00 01 =−≅′ uuu  it results 

10 uu = , ( ) =1u ( ) 000 ,1475.175.9225.11 uuu ==− 68.0= , 
hence ( ;78.0;75.0;72.0;7.0;687.0;68.0;68.0=u )…;1;93.0;88.0;82.0 , the  
approximate values of the exact solution ( ) ( ) ( )1chxchxu = .  

d) ( ) 00 =′u , ( ) 11 =′u  ; we have  10 uu = . In conformity with the 
computation making at the point b),  ( ) ( ) 101.174.1275.131 00 ==−=′ uuu , 

=0u 99.0 , hence ( ;14.1;09.1;05.1;02.1;1;99.0;99.0=u )…;46.1;36.1;27.1;2.1  the 
approximate values of the exact solution ( ) ( ) ( )1shxchxu =  . 

 
Example 9. Let be the differential equation considered in example 7, now 

with the initial values  ( ) ( ) ( ) 110,50,10 =′′=′= uuu . With the same notations we 

have ( ) ( ) 100 === uuu o  ,  ( ) ( ) 50
1.0

011 =′=
−

= u
uu

u , that gives  5.11 =u  and  

( ) ( ) 110
01.0

2 0122 =′′=
+−

= u
uuu

u  , that gives 11.22 =u  . Replacing these values in 

formula of u  obtained in example 7), we have ( )…… ;;;; 10 kuuuu =  
= ( ) ( ) ( )( ) =…… ;1.0;;1.0;0 kuuu  

+= );7.0;46.0;29.0;17.0;093.0;044.0;017.0;004.0;0;0;0( …
++ );4.51;25.38;48.27;84.18;1.12;7;38.3;087.1;0;0;1( …

)+−−−−−−−−⋅+ …;317.112;55.84;67.61;12.43;42.28;1.17;8.8;2.3;0;1;0(5.1
) =⋅+ …;77.61;2.47;12.35;24.25;31.17;1.11;42.6;1.3;1;0;0(11.2  . 

( )…;56.14;28.11;35.9;66.7;22.6;96.4;37.4;11.2;5.1;1=  . 

4.4. Determination of the initial values 

Applying the differentiation of order k  to the equation (17) and taking 
0xx =  ,it results that the sequence ( ) ( )( )…… ;;;; 1

0
kuuu =  
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( ) ( ) ( ) ( )( )…… ;;;; 000 xuxuxu k′=  of the initial values of  the unknown  ( )xu  of the 
differential equation (17)  is solution of the difference equation 

 ( ) ( ) ( )∑ =
+

− =
n

j
kkj

jn xfu
0 0α   ,  …,2,1,0=k ,                    (26) 

 
hence is the difference equation of form (7) with kka α=  and ( ) ( )0xfb k

k = , 
…,2,1,0=k  Using the deconvolution method given in the section 2, from the 

difference equation (26) we can compute as much as we like of the values 
( ) ( )0xu k , if we known  n  of them. Similar to the difference equations case, the 

problem considered in this section for differential equations can to have an unique 
or an infinity of solutions or can  have not any solution, as can we see in the 
following example, based on the example 3 above. 
 

Example 10. Denoting  ( ) ( )2πk
k uu =  ,  …,1,0=k , the differential 

equation   ( ) ( ) ( )tfttutu ==+′′ sin2 , is reduced to the difference equation  
( ) ( )

k
kk buu =++2 ,where  ( ) ( ) ( )kk

k fb 122 −⋅== π , …,2,1,0=k that was 
considered in example 3).  

If we consider the initial conditions:   
  a) ( ) ( ) ( ) ( ) 32,02 43 −== ππ uu ; b) ( ) 12 =′′ πu , ( ) ( ) 324 −=πu  ;  
c) ( ) ( ) ( ) 32,12 4 −=≠′′ ππ uu , we obtain the same situations and solutions as in 
example 3, these solutions ku  being now the initial values  ( ) ( ) …,2,1,0,2 =ku k π  
. 

Example 11. As it results from the second Newton' law, the mathematical 
model for a mass-spring system is governed by the linear  differential equation 
( ) ( ) ( ) 0=+′+′′ tqutuptu  , where  mkq = ,  where m  is the weight of the mass, 

k   the elasticity constant of the spring given  by the Hooke law and  p  the 
constant of proportionality between the air resistance and velocity. Using the 
notation ( ) ( ) ( )0tuu kk = , the differential equation is reduced to the difference 
equation ( ) ( ) ( ) 012 =++ ++ kkk qupuu  , …,1,0=k . If are known the initial position 
( ) ( )0

0 utu =  of the mass and the initial velocity  ( ) ( )1
0 utu =′ , then  the initial  

acceleration can be obtained by the deconvolution between the sequences 
=c ( ) ( )( ) ( )( ) =∗ …;0;;1; 10 puu ( ) ( ) ( )( )…;0;; 100 upuu +  and ( )…;0;0;;;1 qpa = , namely  
( ) ( ) ( ) ( )( )102

0 puquutu +−==′′  .  
 
The solution by deconvolution for the problem considered here will be 

also used in the following point. 
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  4.5. Generalized initial value problem  

Let suppose that we known n   initial values ( )( ) ( )jj jj uxu =0 ,  ni ,,2,1 …=  
, of the unknown ( )xu  of the linear differential equation (17) and we want to 
determine the values ( ) kk uxu =  , in the net points hkxxk ⋅+= 0 , …,2,1,0=k , m ,  
with 0>h  and  nm > . 

For this, we shall combine the methods given in the sections 4.4. and  4.3. 
Namely, we will determinate by formula (10) the first n  initial values  

( ) ( ) ( )nuuuu ,,, 1
0

0 …=   by the method given at the section 4.4. for the difference 
equation (26). In conformity with the method given in the section 4.3., from these 
initial values we shall compute using the relations (25), the values 

( )0
0 uu = , nuu ,,1 …  of the function u   in the first  n   points of  the net by the 

relations (25). Using again the formula (10), now for the difference equation (7), 
we obtain the desired values mkuk ,,1,0, …= , of the solution ( )xu  of  the 
differential equation (17) in the points of the net. 

Example 12. We consider the differential equation from the examples 7  
and 9, ( ) ( ) ( ) ( ) xexuxuxuxu ⋅=+′−′′−′′′ 4 , with the same net  

10,,1,0,1.0 …=⋅= kkxk   and the initial values  ( ) 190 =′′′u , ( ) ( ) 4105 =u , 
( ) ( ) 5506 =u . Denoting ( ) ( ) ( )0jj uu = , …,1,0=j ,  differentiating of j  times the 

equation and taking 0=x , we obtain the difference equation  
( ) ( ) ( ) ( ) 4123 =+−− +++ jjjj uuuu  , for …,1,0=j  . With the notations  
( )…;0;0;1;1;1;1 −−=a   and  ( )…;4;4=b  , applying the formula (10) it results that 

the solution of the difference equation has the form  
( ) ( ) ( ) ( ) ( ) +∗−⋅+∗−−⋅+∗= −−− 11101 ;0;0;1;1;0;0;0;1;1;1;0;0;0 auauabu ……
( ) ( )12 ;0;0 −⋅+ au ( ) ( ) ( )+−−−−−⋅+= …… ;3;2;21;1;0;0;1;36;24;16;8;4;0;0;0 0u
( ) ( )…;1;0;1;0;1;0;1;01 ⋅+ u ( ) ( )…;3;3;2;2;1;1;0;02 ⋅+ u  . Using the given initial values, 

we obtain the relations ( ) ( ) ( ) ( ) 194 2103 =++−= uuuu ,   
( ) ( ) ( ) ( ) 412216 2105 =⋅++⋅−= uuuu , ( ) ( ) ( ) 553224 206 =⋅+⋅−= uuu , from which 

it results ( ) ( ) ( ) 11,5,1 210 === uuu  and the calculus continues as in example 9.  
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