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AN EXTRAGRADIENT ALGORITHM FOR FIXED POINT PROBLEMS
AND PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

Zhangsong Yao', Yeong-Cheng Liou?, Li-Jun Zhu®

Iterative methods for solving fixed point problems and pseudomonotone equi-
librium problems have been considered. An extragradient algorithm has been presnted
for finding a common element of the fized points of pseudocontractive operators and the
solutions of pseudomonotone equilibrium problems in Hilbert spaces. Weak convergence
result of the suggested algorithm is proved.
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1. Introduction

Let H be a real Hilbert space with inner product and norm denoted by (-,-) and || - ||,
respectively. Let C be a nonempty closed and convex subset of H. Let f : C x C — R be a
bifunction. Recall that the equilibrium problem (EP) is to seek a point @ € C such that

f(a,u) >0, Vu e C, (1)

The solution set of equilibrium problem (1) is denoted by EP(f,C).

Equilibrium problems have been studied extensively in the literature (see e.g. [2, 7,
17]). Many problems, such as variational inequalities ([3, 9, 12, 14, 20, 21, 23, 26, 28, 29, 31,
33, 34, 36]), fixed point problems ([5, 6, 24, 27, 30, 32]), Nash equilibrium in noncooperative
games theory ([4, 8, 15]), can be formulated in the form of (1). An important method for
solving (1) is proximal point method which was originally introduced by Martinet [13] and
further developed by Rockafellar [18] for seeking a zero of maximal monotone operators.

In particular, in [4, 7], the technique of resolvent of bi-function f was used to solve
(1). For every A > 0 and « € H, there exists a point z € C' such that

1
f(z,y)+x<z—af7y—x> >0,y e C.

Thus, we can define a resolvent operator J { :H —2¢ by

1
H ={z € Clf(zy) + 3z =,y —2) > 0,vy € C}.
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Consequently, by using the resolvent technique, Tada and Takahashi [19] presented the
following iterative algorithm for solving equilibrium problem (1) and a fixed point problem:

{un € C such that {f(un,u) + %(u — Up, Uy, — Tp) > 0, Yu € C, @)

Tn41 = (1 - 6n)xn + 5nTU'n7n Z Oa

where {\,} C (0,00), {6} C (0,1) and T : C — C' is a nonexpansive mapping.

Recently, Nguyen, Strodiot and Nguyen [16] presented a hybrid method for solving
equilibrium problem (1) and a fixed point problem: let zy € H, Q1 = C,z1 = Pg, [zo]. Let
a € (0,2),y€(0,1). Set n = 1.

Step 1. Compute y,, = miny:cc{ A f(zn, y") + 3 |lzn — y7|?} and w, = (1 — ™)z, +
™y, where m is the smallest nonnegative integer such that f(w,,z,) — f(wn,yn) >
s 170 =yl

Step 2. Calculate z,, = Polx, — ongn], where g, € Oa2f(2n,zn) and o, =
Yn F# T and o, = 0 otherwise.

Step 3. Calculate t, = apzn, + (1 — ap)Tz,, where T : C — C' is a nonexpansive
mapping.

Step 4. Compute 41 = Pg,,,, [z0], where Qi1 = {z € Qul|tn — 2||* < ||z, — 2[]* —
(1= an)anl|zn — T2}

Step 5. Set n:=n+ 1 and return to Step 1.

Very recently, iterative algorithms for solving (1) and fixed point problems have been
future studied in the literature, see, for instance [1, 10, 11, 22].

Motivated and inspired by the above work in the literature, the main purpose of this
paper is to investigate the pseudomonotone equilibrium problem and fixed point problem
of pseudocontractive operators. We construct an iterative algorithm for finding a common
solution of the pseudomonotone equilibrium problem and fixed point of pseudocontractive
operators. Weak convergence analysis of the proposed procedure is given.

flwn,zn) -
Tou2 i

2. Preliminaries

Throughout, let C' be a nonempty closed and convex subset of a real Hilbert space
H. Let g : C — (—00, +00] be a function.
e g is said to be convex if g(au® + (1 —a)v’) < ag(ul) + (1 —a)g(v') for every uf, vt € C
and « € [0,1].
e ¢ is said to be p-strongly convex (p > 0) if
glau® + (1 = a)ol) + ga(l —a)flu’ = "> < ag(u®) + (1 - a)g(v’) (3)

for every uf, v’ € C and a € (0,1).
Let g : C — (—00, +00] be a convex function. Then, the subdifferential dg of g is defined by

dg(u) == {v" € H : g(u) + (v, u" —u) < g(ul),vu' € C} (4)

for each u € C.

Recall that an operator T': C' — C' is said to be pseudocontractive if

|1 Tu = Tut|* < flu — |2 + (I = T)u— (I = T)ul|
for all u,u’ € C and T is called L-Lipschitz if
ITu = Tu'|| < Liju—uf|

for all u,u’ € C.

The following symbols are needed in the paper.

e 2, — p' indicates the weak convergence of x,, to p’ as n — oco.
e z, — p! implies the strong convergence of z,, to p' as n — co.
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e Fixz(T) means the set of fixed points of T
e wy(zy) ={p": IH{xn,} C {z,} such that x,, — pi(i — 00)}.

Lemma 2.1 ([2]). Let C be a nonempty closed and convexr subset of a real Hilbert space
H. Let a function h : C — R be subdifferentiable. Then u' is a solution to the following
minimization problem

min{f(z)}

if and only if 0 € Oh(u®) + No(ul), where No(ul) means the normal cone of C at ul defined
by
Ne(u') ={w e H: (w,u—u') <0,Vu e C}. (5)

Lemma 2.2 ([16]). In a Hilbert space H, we have
(i) for all x,y,u,v € H,

20z —y,u—v) = [lz —v* + ly = ull® ~ llz = ull* ~ [ly — v]*.
(ii) for all u,u' € H and Y& € [0,1],
lku+ (1= m)a|? = Kllul® + (1 = m)Jul]* = (1~ 8)[lu — .

Lemma 2.3 ([25]). Assume that the operator T : C'— C is L-Lipschitz pseudocontractive.
Then, for all i € C and u' € Fix(T), we have

luf = T[(1 — o)a + oTal[|* < ||a—u'||* + (1 = o)l|a — T[(1 ~ o)a + o Ta||?,
where 0 < o < ﬁ
Lemma 2.4 ([35]). If the operator T : C — C' is continuous pseudocontractive, then

(i) the fized point set Fix(T) C C is closed and convex;
(ii) T satisfies demi-closedness, i.e., u, — % and Tu, — z' asn — oo imply that TZ = zT.

3. Main results

In this section, we introduce an iterative algorithm for solving the fixed point problems
and pseudomonotone equilibrium problems. Consequently, we show the convergence analysis
of the suggested algorithm.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C
be a Lipschitz pseudocontractive operator with Lipschitz constant L > 0. Let f : Cx(C — R
be a bifunction which satisfies the following assumptions:

(A1): f(z1,27) =0 for all 2T € C;

(A2): f is pseudomonotone on C, i.e., f(uf,u) > 0 implies f(u,u’) <0 for all u,u’ € C;

(A3): f is jointly sequently weakly continuous on C'x C' (recall that f is called jointly sequently
weakly continuous on C x C, if z,, — z' and y,, — ¢, then f(z,,yn) — f(zt,9M));

(A4): f(z!,-) is convex and subdifferentiable for all z' € C;

(A5): f satisfies the Lipschitz-type condition: Juq, e > 0 such that

Fatyh) + fh, 2" 2 fat 2T — lla® = yT)1? = pellyt - 21112, vl yf 2P e O

Let {M\} C (0,00), {6»} C (0,1) and {on,} C (0,1) be three sequences satisfying the
following restrictions:

_ — 1 1
Cl): Ay € [A,A], where 0 < A < A < min y— 1
(C1): A, € AN "o 3
(C2):0<6<6,<6<0,<0 < ——oe=——,¥n>0.

VIFIL2+1’
In the sequel, assume that the intersection Fiz(T) N EP(f,C) # (.



92 Zhangsong Yao, Yeong-Cheng Liou, Li-Jun Zhu

Algorithm 3.1. Let g € C be an initial value. Assume that the current sequence {x,}
has been given and then compute the next iterative sequence {xn4+1} by the following form

zn = (1= 0n)xn + 0,T[(1 — 0p)xn + 0nTxy],
. 1
Yn zargﬁlelg{f(zmyTHmllzn—yTllz} (©)

1
_ : T - 72 > 0.
Tnt1 = arg min {f(yn,y ) + N 1z — vl }n >

Remark 3.1. Since f(x,-)+55 ||a—||? is strongly convez, for each z € C, minyicc{f(z,y")+

sxllz — yT||?} has a unique solution. Therefore, the sequence {x,} generated by (6) is well-
defined.

Proposition 3.1. For all 2zt € C, we have

1
f(znaZT) Z f(zn7yn)+/\7<zn_ynazT _yn>a (7)
and
1
f(yn7 ZT) Z f(ynal‘n-&-l) + )\7<xn+l — Zn, Tn41 — ZT> (8)

Proof. According to Lemma 2.1, from the definition of y,,, we have

1
0€ 8 e s) + 551w =01

Tt follows from (9) that there exists p,, € 2 f(zn,yn) such that

+NC(yn)- (9)

yi=yn

1
T(Zn - yn> € NC(yn)

This together with the definition (5) of the normal cone N¢ implies that

—Dn +

1
< —pn+ r(zn _yn)azT _yn> < 07 VZT eC.

It follows that

1
<pnaZJr = Yn) > )\7<Zn — Yn, 2 — Yn), Vet ec. (10)
By the definition (4) of subgradient of f(z,,-) at y,, we obtain
f(Zn;ZT) > f(znvyn)+<pnva — Yn), vl eC. (11)
Combining (10) and (11), we deduce the desired result (7). Similarly, we can show that the
conclusion (8) also holds. O

Proposition 3.2. Let p € Fix(T) N EP(f,C). Then, we have
2041 = 2lI* < llzn = DI = 121 = 20 l1* = 2020 = Yn> Tnt1 — Yn)
+ 2020 = ynll® + 20220 lYn — Tna | 12)
< len =l = n(0n — du)llen — TI(1 = o) zn + 00 Ta,]||?
= (1= 2p220)[[Zn1 = Ynll® = (1 = 2 20) [yn — 2nll.
Proof. Since p € EP(f,C), then f(p,y,) > 0. By the pseudomonotonicity (A2) of f, we
have, f(yn,p) < 0. This together with (8) implies that

1
f(ynaxn+l) + )\7<xn+l — Zny Tn41 — p> § 0. (13)
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Applying the Lipschitz property (A5) of f, we obtain

fWn, @ns1) = f(zn, ng1) = (20, Yn) — pallzn — yn||2 — p2llyn — xn+1||2- (14)
By virtue of (13) and (14), we deduce
1

—{Tns1 = 20D — Tog1) > F(Zny Tng1) — F(Zny Yn) — Hall2n — ynll?
)\n< + +1) > f( +1) — f( ) | [ (15)

- M2||yn - -Tn+1||2'

Setting 2f = 2,1 in (7), we have

Fonsin) = Fonstn) 2 5o = st — ) (16)
In terms of (15) and (16), we get
{@ns1 = 200D = Tnt1) 2 (20 = Yno Tnr = Yn) — M dall2n — yal?
=t llYn = Tapa [
Using Lemma 2.2, we deduce
2ns1 — 20— Tns1) = 2n — I = [nss — 2ll® = [nss — plI> (18)
Combining (17) and (18), we derive
2o = plI* = #nt1 = 2all* = €01 = PI* 2> 2(z0 = Y, Tnt1 = Yn) — 2t Anll20 — ya|?
— 2020 | Yn = o ||
It follows that
lznt1 = plI* < llzn = 2l = l2n41 = 20ll* = 2(2n = Yns Tnt1 — Yn)
+ 201020 = yall® + 202 X0llyn — 2o | (19)
= llzn =2l = (@ = 2p2X0) |21 = yall* = (1 = 2pa ) lyn — za*.
In the light of (6) and Lemmas 2.2 and 2.3, we obtain
2 = PlI2 = (1 = 6) (@ — §) + 80 (TL(1 = 0) 0 + 0 Tn] — )1
= (1= 0n)llzn = pI* = 60 (1 = 8)IT(1 = o) 2 + 00 Tn] = 2>
+ 6, ||IT[(1 = op)uzy, + 0, Txy) — pl|?
< (1= )2 = plI* = 6u(1 = ) IT(1 = o)t + 00 Tn] — (20)
t 8u(lzn — pIP + (1= )20 — TI(L = 00)n + 0T
= llon = plI* = 8u(on = 6n)llzn — TI(1 = o)z + 00T |
(by (€2)) < |lzn —p]*.
Substituting (20) into (19), we have
lznt1 = plI* < lzn = pI* = 2ns1 = 20ll* = 2(z0 = Yn, Tns1 = Yn)
+ 20 A llzn = Yall* + 2220 [[Yn — T |
= llzn = plI* = 8u(0n = 8n)llzn — TI(1 = o)z + 0n T
= (1= 2p220)[[Zn41 = ynll® = (1 = 220 [yn — 2all.
(]

Theorem 3.1. The sequence {x,} generated by (6) converges weakly to some point in
Fiz(T) N EP(f,C).
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Proof. Let p € Fixz(T) N EP(f,C). Thanks to assumptions (C1) and (C2), from (12), we
deduce

[#ns1 = pll < llen = pll,

which implies that the limit lim, o ||z, — p|| exists. Thus, the sequence {z,} is bounded.
Consequently, {z,} is also bounded due to (20).
By (12), we have
n(0n = 0p)||lzn — T[(1 = on)an + JnTxn]HQ + (1 = 2u2An) | 2041 — yn||2
+ (1 =220 lyn — 20l < [z = plI” = l2n41 — I

(21)

Since limy, o0 ||, — p|| exists, ||z, — p||*> — [|[2ns+1 — p||> — 0. According to (21) and the
restrictions (C1) and (C2), we get

nh_)rgo lxn — T(1 = op)xn + onTx,]|| =0 (22)
and
limy, o0 [|Znt1 — Ynll =0 and limy, oo [|Yn — 20l = 0. (23)
From (6), we derive
20 = 2all = bnllzn = TI(1 = on)zn + onTaall|,
which together with (22) and liminf,_,. d, > 0 (by (C2)) implies that
nILH;O |z, — zn|| = 0. (24)

Take into account (23) and (24), we deduce
nh—>I20 |Znt1 — 2nll = 0. (25)
On the other hand, using the Lipschitz property of T', we have
|xn — Tzl < |on — TH1 — op)xn + onTxR]l| + |1 T[(1 — on)xn + 00 Txyn] — Tyl
<|lzn — THL — op)xn + on Tyl + Lon|lzn, — Txy||.
It follows that

|2 — Txy| < 1 | — T[(1 — op)xn + onTx]]. (26)

= Lo,
Since liminf,,, 0, < 7, combining (22) and (26), we deduce

Jim [y, — Tp[| = 0. (27)
Note that the sequence {z,} is bounded. Selecting any x' € w,(2,), there exists a subse-
quence {z,,} C {2,} such that
Zn, =~ axt € C. (28)

From (7), we obtain

1
A—(zn - yni,zT — Yn, ), vt e . (29)
g

FGnis 20) > fznym,) +
Thanks to (23), (Al) and (A3), we get
lim f(zn,,Yn,) = 0.
1—> 00
This together with (29) implies that
fzt, 2t >0, V2T e C.
Therefore, 2t € EP(f,C).
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By (24) and (28), we have z,,, — #' € C. Combining with (27), we deduce
=0.

lim ||xn, — Ty,
71— 00

Applying Lemma 2.4, we conclude that zt € Fiz(T).
Now, we have shown that wy,(z,) C EP(f,C)NFix(T). At the same time, according
to (25), Wy (z,,) is singleton. Therefore, the whole sequence {x,,} converges weakly to zf. [

Setting T' = I, the identity operator, we obtain the following iterative algorithm for
finding a solution in EP(f,C).

Algorithm 3.2. Let zg € C be an initial value. Assume that the current sequence {x,}
has been given and then compute the next iterative sequence {xn41} by the following form

1
_ ~ o Lo 12
Yn = arg mlg{f(wn,y )+ 2/\nlla*fn y'l }

yte

1
_ . t - a1t n2 > (.
Tt arg;glété{f(%ﬂ )+ 2/\nllwn yll }n 2
Corollary 3.1. Suppose that EP(f,C) # 0. Then, the sequence {x,} generated by Algo-
rithm 3.2 converges weakly to some point in EP(f,C).
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