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AN EXTRAGRADIENT ALGORITHM FOR FIXED POINT PROBLEMS

AND PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

Zhangsong Yao1, Yeong-Cheng Liou2, Li-Jun Zhu3

Iterative methods for solving fixed point problems and pseudomonotone equi-

librium problems have been considered. An extragradient algorithm has been presnted
for finding a common element of the fixed points of pseudocontractive operators and the

solutions of pseudomonotone equilibrium problems in Hilbert spaces. Weak convergence

result of the suggested algorithm is proved.
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1. Introduction

Let H be a real Hilbert space with inner product and norm denoted by 〈·, ·〉 and ‖ · ‖,
respectively. Let C be a nonempty closed and convex subset of H. Let f : C ×C → R be a
bifunction. Recall that the equilibrium problem (EP) is to seek a point ũ ∈ C such that

f(ũ, u) ≥ 0, ∀u ∈ C, (1)

The solution set of equilibrium problem (1) is denoted by EP (f, C).
Equilibrium problems have been studied extensively in the literature (see e.g. [2, 7,

17]). Many problems, such as variational inequalities ([3, 9, 12, 14, 20, 21, 23, 26, 28, 29, 31,
33, 34, 36]), fixed point problems ([5, 6, 24, 27, 30, 32]), Nash equilibrium in noncooperative
games theory ([4, 8, 15]), can be formulated in the form of (1). An important method for
solving (1) is proximal point method which was originally introduced by Martinet [13] and
further developed by Rockafellar [18] for seeking a zero of maximal monotone operators.

In particular, in [4, 7], the technique of resolvent of bi-function f was used to solve
(1). For every λ > 0 and x ∈ H, there exists a point z ∈ C such that

f(z, y) +
1

λ
〈z − x, y − x〉 ≥ 0,∀y ∈ C.

Thus, we can define a resolvent operator Jfλ : H → 2C by

Jfλ = {z ∈ C|f(z, y) +
1

λ
〈z − x, y − x〉 ≥ 0,∀y ∈ C}.
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Consequently, by using the resolvent technique, Tada and Takahashi [19] presented the
following iterative algorithm for solving equilibrium problem (1) and a fixed point problem:{

un ∈ C such that 〈f(un, u) + 1
λn
〈u− un, un − xn〉 ≥ 0, ∀u ∈ C,

xn+1 = (1− δn)xn + δnTun, n ≥ 0,
(2)

where {λn} ⊂ (0,∞), {δn} ⊂ (0, 1) and T : C → C is a nonexpansive mapping.
Recently, Nguyen, Strodiot and Nguyen [16] presented a hybrid method for solving

equilibrium problem (1) and a fixed point problem: let x0 ∈ H,Q1 = C, x1 = PQ1 [x0]. Let
α ∈ (0, 2), γ ∈ (0, 1). Set n = 1.

Step 1. Compute yn = miny†∈C{λnf(xn, y
†) + 1

2‖xn − y
†‖2} and wn = (1− γm)xn +

γmyn where m is the smallest nonnegative integer such that f(wn, xn) − f(wn, yn) ≥
α

2λn
‖xn − yn‖2.

Step 2. Calculate zn = PC [xn − σngn], where gn ∈ ∂2f(zn, xn) and σn = f(wn,xn)
‖gn‖2 if

yn 6= xn and σn = 0 otherwise.
Step 3. Calculate tn = αnzn + (1 − αn)Tzn, where T : C → C is a nonexpansive

mapping.
Step 4. Compute xn+1 = PQn+1

[x0], where Qn+1 = {z ∈ Qn|‖tn− z‖2 ≤ ‖xn− z‖2−
(1− αn)αn‖zn − Tzn‖2}.

Step 5. Set n := n+ 1 and return to Step 1.
Very recently, iterative algorithms for solving (1) and fixed point problems have been

future studied in the literature, see, for instance [1, 10, 11, 22].
Motivated and inspired by the above work in the literature, the main purpose of this

paper is to investigate the pseudomonotone equilibrium problem and fixed point problem
of pseudocontractive operators. We construct an iterative algorithm for finding a common
solution of the pseudomonotone equilibrium problem and fixed point of pseudocontractive
operators. Weak convergence analysis of the proposed procedure is given.

2. Preliminaries

Throughout, let C be a nonempty closed and convex subset of a real Hilbert space
H. Let g : C → (−∞,+∞] be a function.
• g is said to be convex if g(αu† + (1−α)v†) ≤ αg(u†) + (1−α)g(v†) for every u†, v† ∈ C

and α ∈ [0, 1].
• g is said to be ρ-strongly convex (ρ > 0) if

g(αu† + (1− α)v†) +
ρ

2
α(1− α)‖u† − v†‖2 ≤ αg(u†) + (1− α)g(v†) (3)

for every u†, v† ∈ C and α ∈ (0, 1).
Let g : C → (−∞,+∞] be a convex function. Then, the subdifferential ∂g of g is defined by

∂g(u) := {v† ∈ H : g(u) + 〈v†, u† − u〉 ≤ g(u†),∀u† ∈ C} (4)

for each u ∈ C.
Recall that an operator T : C → C is said to be pseudocontractive if

‖Tu− Tu†‖2 ≤ ‖u− u†‖2 + ‖(I − T )u− (I − T )u†‖2

for all u, u† ∈ C and T is called L-Lipschitz if

‖Tu− Tu†‖ ≤ L‖u− u†‖
for all u, u† ∈ C.

The following symbols are needed in the paper.
• xn ⇀ p† indicates the weak convergence of xn to p† as n→∞.
• xn → p† implies the strong convergence of xn to p† as n→∞.
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• Fix(T ) means the set of fixed points of T .
• ωw(xn) = {p† : ∃{xni} ⊂ {xn} such that xni ⇀ p†(i→∞)}.

Lemma 2.1 ([2]). Let C be a nonempty closed and convex subset of a real Hilbert space
H. Let a function h : C → R be subdifferentiable. Then u† is a solution to the following
minimization problem

min
x∈C
{h(x)}

if and only if 0 ∈ ∂h(u†)+NC(u†), where NC(u†) means the normal cone of C at u† defined
by

NC(u†) = {ω ∈ H : 〈ω, u− u†〉 ≤ 0,∀u ∈ C}. (5)

Lemma 2.2 ([16]). In a Hilbert space H, we have
(i) for all x, y, u, v ∈ H,

2〈x− y, u− v〉 = ‖x− v‖2 + ‖y − u‖2 − ‖x− u‖2 − ‖y − v‖2.

(ii) for all u, u† ∈ H and ∀κ ∈ [0, 1],

‖κu+ (1− κ)u†‖2 = κ‖u‖2 + (1− κ)‖u†‖2 − κ(1− κ)‖u− u†‖2.

Lemma 2.3 ([25]). Assume that the operator T : C → C is L-Lipschitz pseudocontractive.
Then, for all ũ ∈ C and u† ∈ Fix(T ), we have

‖u† − T [(1− σ)ũ+ σT ũ]‖2 ≤ ‖ũ− u†‖2 + (1− σ)‖ũ− T [(1− σ)ũ+ σT ũ]‖2,

where 0 < σ < 1√
1+L2+1

.

Lemma 2.4 ([35]). If the operator T : C → C is continuous pseudocontractive, then
(i) the fixed point set Fix(T ) ⊂ C is closed and convex;
(ii) T satisfies demi-closedness, i.e., un ⇀ z̃ and Tun → z† as n→∞ imply that T z̃ = z†.

3. Main results

In this section, we introduce an iterative algorithm for solving the fixed point problems
and pseudomonotone equilibrium problems. Consequently, we show the convergence analysis
of the suggested algorithm.

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C
be a Lipschitz pseudocontractive operator with Lipschitz constant L > 0. Let f : C×C → R
be a bifunction which satisfies the following assumptions:

(A1): f(z†, z†) = 0 for all z† ∈ C;
(A2): f is pseudomonotone on C, i.e., f(u†, u) ≥ 0 implies f(u, u†) ≤ 0 for all u, u† ∈ C;
(A3): f is jointly sequently weakly continuous on C×C (recall that f is called jointly sequently

weakly continuous on C × C, if xn ⇀ x† and yn ⇀ y†, then f(xn, yn)→ f(x†, y†));
(A4): f(z†, ·) is convex and subdifferentiable for all z† ∈ C;
(A5): f satisfies the Lipschitz-type condition: ∃µ1, µ2 > 0 such that

f(x†, y†) + f(y†, z†) ≥ f(x†, z†)− µ1‖x† − y†‖2 − µ2‖y† − z†‖2, ∀x†, y†, z† ∈ C.

Let {λn} ⊂ (0,∞), {δn} ⊂ (0, 1) and {σn} ⊂ (0, 1) be three sequences satisfying the
following restrictions:

(C1): λn ∈ [λ, λ], where 0 < λ ≤ λ < min{ 1

2µ1
,

1

2µ2
};

(C2): 0 < δ < δn < δ < σn < σ <
1√

1 + L2 + 1
,∀n ≥ 0.

In the sequel, assume that the intersection Fix(T ) ∩ EP (f, C) 6= ∅.
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Algorithm 3.1. Let x0 ∈ C be an initial value. Assume that the current sequence {xn}
has been given and then compute the next iterative sequence {xn+1} by the following form

zn = (1− δn)xn + δnT [(1− σn)xn + σnTxn],

yn = arg min
y†∈C

{
f(zn, y

†) +
1

2λn
‖zn − y†‖2

}
,

xn+1 = arg min
y†∈C

{
f(yn, y

†) +
1

2λn
‖zn − y†‖2

}
, n ≥ 0.

(6)

Remark 3.1. Since f(x, ·)+ 1
2λ‖x−·‖

2 is strongly convex, for each x ∈ C, miny†∈C{f(x, y†)+
1

2λ‖x− y
†‖2} has a unique solution. Therefore, the sequence {xn} generated by (6) is well-

defined.

Proposition 3.1. For all z† ∈ C, we have

f(zn, z
†) ≥ f(zn, yn) +

1

λn
〈zn − yn, z† − yn〉, (7)

and

f(yn, z
†) ≥ f(yn, xn+1) +

1

λn
〈xn+1 − zn, xn+1 − z†〉. (8)

Proof. According to Lemma 2.1, from the definition of yn, we have

0 ∈ ∂2

{
f(zn, y

†) +
1

2λn
‖zn − y†‖2

}∣∣∣∣
y†=yn

+NC(yn). (9)

It follows from (9) that there exists pn ∈ ∂2f(zn, yn) such that

−pn +
1

λn
(zn − yn) ∈ NC(yn).

This together with the definition (5) of the normal cone NC implies that〈
− pn +

1

λn
(zn − yn), z† − yn

〉
≤ 0, ∀z† ∈ C.

It follows that

〈pn, z† − yn〉 ≥
1

λn
〈zn − yn, z† − yn〉, ∀z† ∈ C. (10)

By the definition (4) of subgradient of f(zn, ·) at yn, we obtain

f(zn, z
†) ≥ f(zn, yn) + 〈pn, z† − yn〉, ∀z† ∈ C. (11)

Combining (10) and (11), we deduce the desired result (7). Similarly, we can show that the
conclusion (8) also holds. �

Proposition 3.2. Let p ∈ Fix(T ) ∩ EP (f, C). Then, we have

‖xn+1 − p‖2 ≤ ‖zn − p‖2 − ‖xn+1 − zn‖2 − 2〈zn − yn, xn+1 − yn〉
+ 2µ1λn‖zn − yn‖2 + 2µ2λn‖yn − xn+1‖2

≤ ‖xn − p‖2 − δn(σn − δn)‖xn − T [(1− σn)xn + σnTxn]‖2

− (1− 2µ2λn)‖xn+1 − yn‖2 − (1− 2µ1λn)‖yn − zn‖2.

(12)

Proof. Since p ∈ EP (f, C), then f(p, yn) ≥ 0. By the pseudomonotonicity (A2) of f , we
have, f(yn, p) ≤ 0. This together with (8) implies that

f(yn, xn+1) +
1

λn
〈xn+1 − zn, xn+1 − p〉 ≤ 0. (13)
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Applying the Lipschitz property (A5) of f , we obtain

f(yn, xn+1) ≥ f(zn, xn+1)− f(zn, yn)− µ1‖zn − yn‖2 − µ2‖yn − xn+1‖2. (14)

By virtue of (13) and (14), we deduce

1

λn
〈xn+1 − zn, p− xn+1〉 ≥ f(zn, xn+1)− f(zn, yn)− µ1‖zn − yn‖2

− µ2‖yn − xn+1‖2.
(15)

Setting z† = xn+1 in (7), we have

f(zn, xn+1)− f(zn, yn) ≥ 1

λn
〈zn − yn, xn+1 − yn〉. (16)

In terms of (15) and (16), we get

〈xn+1 − zn, p− xn+1〉 ≥ 〈zn − yn, xn+1 − yn〉 − µ1λn‖zn − yn‖2

− µ2λn‖yn − xn+1‖2.
(17)

Using Lemma 2.2, we deduce

2〈xn+1 − zn, p− xn+1〉 = ‖zn − p‖2 − ‖xn+1 − zn‖2 − ‖xn+1 − p‖2. (18)

Combining (17) and (18), we derive

‖zn − p‖2 − ‖xn+1 − zn‖2 − ‖xn+1 − p‖2 ≥ 2〈zn − yn, xn+1 − yn〉 − 2µ1λn‖zn − yn‖2

− 2µ2λn‖yn − xn+1‖2.

It follows that

‖xn+1 − p‖2 ≤ ‖zn − p‖2 − ‖xn+1 − zn‖2 − 2〈zn − yn, xn+1 − yn〉
+ 2µ1λn‖zn − yn‖2 + 2µ2λn‖yn − xn+1‖2

= ‖zn − p‖2 − (1− 2µ2λn)‖xn+1 − yn‖2 − (1− 2µ1λn)‖yn − zn‖2.
(19)

In the light of (6) and Lemmas 2.2 and 2.3, we obtain

‖zn − p‖2 = ‖(1− δn)(xn − p) + δn(T [(1− σn)xn + σnTxn]− p)‖2

= (1− δn)‖xn − p‖2 − δn(1− δn)‖T [(1− σn)xn + σnTxn]− xn‖2

+ δn‖T [(1− σn)uxn + σnTxn]− p‖2

≤ (1− δn)‖xn − p‖2 − δn(1− δn)‖T [(1− σn)xn + σnTxn]− xn‖2

+ δn(‖xn − p‖2 + (1− σn)‖xn − T [(1− σn)xn + σnTxn]‖2)

= ‖xn − p‖2 − δn(σn − δn)‖xn − T [(1− σn)xn + σnTxn]‖2

(by (C2 )) ≤ ‖xn − p‖2.

(20)

Substituting (20) into (19), we have

‖xn+1 − p‖2 ≤ ‖zn − p‖2 − ‖xn+1 − zn‖2 − 2〈zn − yn, xn+1 − yn〉
+ 2µ1λn‖zn − yn‖2 + 2µ2λn‖yn − xn+1‖2

= ‖xn − p‖2 − δn(σn − δn)‖xn − T [(1− σn)xn + σnTxn]‖2

− (1− 2µ2λn)‖xn+1 − yn‖2 − (1− 2µ1λn)‖yn − zn‖2.

�

Theorem 3.1. The sequence {xn} generated by (6) converges weakly to some point in
Fix(T ) ∩ EP (f, C).
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Proof. Let p ∈ Fix(T ) ∩ EP (f, C). Thanks to assumptions (C1) and (C2), from (12), we
deduce

‖xn+1 − p‖ ≤ ‖xn − p‖,
which implies that the limit limn→∞ ‖xn − p‖ exists. Thus, the sequence {xn} is bounded.
Consequently, {zn} is also bounded due to (20).

By (12), we have

δn(σn − δn)‖xn − T [(1− σn)xn + σnTxn]‖2 + (1− 2µ2λn)‖xn+1 − yn‖2

+ (1− 2µ1λn)‖yn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.
(21)

Since limn→∞ ‖xn − p‖ exists, ‖xn − p‖2 − ‖xn+1 − p‖2 → 0. According to (21) and the
restrictions (C1) and (C2), we get

lim
n→∞

‖xn − T [(1− σn)xn + σnTxn]‖ = 0 (22)

and

limn→∞ ‖xn+1 − yn‖ = 0 and limn→∞ ‖yn − zn‖ = 0. (23)

From (6), we derive

‖zn − xn‖ = δn‖xn − T [(1− σn)xn + σnTxn]‖,
which together with (22) and lim infn→∞ δn > 0 (by (C2)) implies that

lim
n→∞

‖zn − xn‖ = 0. (24)

Take into account (23) and (24), we deduce

lim
n→∞

‖xn+1 − xn‖ = 0. (25)

On the other hand, using the Lipschitz property of T , we have

‖xn − Txn‖ ≤ ‖xn − T [(1− σn)xn + σnTxn]‖+ ‖T [(1− σn)xn + σnTxn]− Txn‖
≤ ‖xn − T [(1− σn)xn + σnTxn]‖+ Lσn‖xn − Txn‖.

It follows that

‖xn − Txn‖ ≤
1

1− Lσn
‖xn − T [(1− σn)xn + σnTxn]‖. (26)

Since lim infn→∞ σn <
1
L , combining (22) and (26), we deduce

lim
n→∞

‖xn − Txn‖ = 0. (27)

Note that the sequence {zn} is bounded. Selecting any x† ∈ ωw(zn), there exists a subse-
quence {zni

} ⊂ {zn} such that

zni ⇀ x† ∈ C. (28)

From (7), we obtain

f(zni , z
†) ≥ f(zni , yni) +

1

λni

〈zni − yni , z
† − yni〉, ∀z† ∈ C. (29)

Thanks to (23), (A1) and (A3), we get

lim
i→∞

f(zni , yni) = 0.

This together with (29) implies that

f(x†, z†) ≥ 0, ∀z† ∈ C.
Therefore, x† ∈ EP (f, C).
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By (24) and (28), we have xni ⇀ x† ∈ C. Combining with (27), we deduce

lim
i→∞

‖xni
− Txni

‖ = 0.

Applying Lemma 2.4, we conclude that x† ∈ Fix(T ).
Now, we have shown that ωw(xn) ⊂ EP (f, C)∩Fix(T ). At the same time, according

to (25), ωw(xn) is singleton. Therefore, the whole sequence {xn} converges weakly to x†. �

Setting T = I, the identity operator, we obtain the following iterative algorithm for
finding a solution in EP (f, C).

Algorithm 3.2. Let x0 ∈ C be an initial value. Assume that the current sequence {xn}
has been given and then compute the next iterative sequence {xn+1} by the following form

yn = arg min
y†∈C

{
f(xn, y

†) +
1

2λn
‖xn − y†‖2

}
,

xn+1 = arg min
y†∈C

{
f(yn, y

†) +
1

2λn
‖xn − y†‖2

}
, n ≥ 0.

Corollary 3.1. Suppose that EP (f, C) 6= ∅. Then, the sequence {xn} generated by Algo-
rithm 3.2 converges weakly to some point in EP (f, C).
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