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FINITE VOLUME SQUEEZE FLOW IN HIGHLY COMPRESSIBLE
POROUS ANNULAR DISCS

Petrica TURTOI', Mircea D. PASCOVICI?

This paper presents an original theoretical model for the axisymmetric
squeeze flow of a Newtonian fluid imbibed in the central region of a highly
compressible porous layer. The fluid flow is studied for three squeezing conditions:
constant speed, constant force and given impulse. The experimental validation of the
model is made for reticulated polyurethane foam imbibed in central region with
glycerin and subjected to squeeze with constant speed. The applications of this
innovative configuration can be in domains like automotive, sport equipment and
ballistic protection.

Keywords: lubrication, squeeze, porous material, polyurethane foam.
1. Introduction

The resistance to flow of a fluid through a porous medium is generated by
viscous friction. This effect underlies the damping effect that occurs during
compression of a porous material which has been imbibed with a fluid. The forces
generated by squeezing the porous material can be neglected compared with
hydrodynamic forces generated by the fluid flow through pores.

Damping capacity for highly compressible porous layers (HCPL) imbibed
with liquids has been investigated in theoretical and experimental studies [1-3].
The high potential of this mechanism for protection against mechanical shock has
already been shown in [4-7]. Theoretical and experimental studies have
considered squeeze process at constant speed, under constant force and by impact.
There were analyzed both conformal (disc on plane [8] or cylinder on plane
contact [5]) and nonconformal contacts (sphere on plane contact [3] or cylinder on
cylinder contact [4]). Several studies have been made [9-11] to assess damping
capacity of reticulated porous foam that have portion of material replaced with
low-density foam imbibed with liquid. During compression the fluid migrate
outwardly to the higher-density foam. To study the fluid flow through porous
structure, Dowson [9] proposes a model with two flow regimes. The model was
improved later by Vossen [11]. Both assumed that the porous structure buckle and
collapse under compression forming a band of densified layers of cells. This band
is assumed to appear in the center of the specimen and propagates symmetrically
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towards the compression plates as the specimen is further compressed [11, 12].
Elasto-plastic damping capacity of dry layers was also analyzed [10, 12, 13]. The
experimental study of Pampolini [13] showed that during compression, two
regions with different porosity are generated. However the experimental study
was made on relatively high thickness materials and the proposed model is quite
complex.

In this paper the squeeze process between two parallel flat discs is
analyzed. The element of originality is that the fluid is found initially only in
central reservoir; the surrounding annular porous ring is dry. Both the central
reservoir and the annular disk are made from the same porous material.

Experimental analysis is also original. The constant speed squeeze tests
were made with polyurethane foam imbibed with glycerin or silicone oil.

2. Analytical model

A finite volume of Newtonian fluid imbibed in a central reservoir is
squeezed out radially through a dry porous ring.

The squeeze is produced by a flat, rigid and impermeable disc of radius R,
(fig. 1). The HCPL is placed on a perfectly flat, rigid and impermeable surface.
The two surfaces remain parallel during approach.
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Fig. 1 Geometry of the model for porous material ring with fluid reservoir squeezed at constant speed

The central circular volume with radius R, and thickness /g is filled with
fluid imbibed in the porous layer. Initially, the volume between R, and R, with

thickness 4, is an annular dry layer. During squeeze process the fluid flows
radially from the central reservoir through the dry porous material. The layer of
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porous material imbibed at radius R and thickness / is subjected to squeeze. The
theoretical model is axially symmetric (fig.1).
The following assumptions are made:
a. The fluid is Newtonian and the flow is laminar, isothermal and isoviscous;
b. The elastic forces generated by the solid structure of the porous material
under squeeze can be neglected if compared with lift forces [1,16];
c. Fluid pressure is constant across HCPL thickness and the flow in radial
direction can be described using Darcy law [2,3,15];
d. Because the HCPL is considered very thin and the cross-section does not
change significantly, in normal squeeze, the product between thickness /# and

compactness o can be considered constant: oh = oghy =ct;

e. Permeability is considered related with porosity &, and correspondingly,
to the compactness o, using Kozeny-Carman equation [14];

¢=D(1-0) /o> (1)

/- The pores of the material are assumed to be completely filled with fluid;
g. All the pores of the material are interconnected.
h. The conservation of the squeezed finite volume gives:

R hy(1-0¢) = R*h(1 - o) )
2.1 Constant speed squeeze

At a given moment, the fluid is squeezed until it reaches the radius R. The
flow conservation, in radial coordinates, gives:

_2mréh dp
n dr

7Z7’2V= 3)

After separation of variables and simplification, the differential equation
of pressure variation is:

d 14
L= )
dr 2¢h
By integration with boundary conditions: p=0 at »=R, yields:
o2 2
= (R* -~
A ( ) 5

Integrating equation (5) on disk surface, the expression of force generated
by squeeze of porous material with fluid reservoir is:
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znV
F="T-R (6)
8¢h
In order to determine the dimensionless expression for force, based on the
hypothesis (d), the compactness ¢ can be written in terms of the dimensionless
thickness H =h/hy.

oc=0y/H (7

From equations (2) and (7), the dimensionless radius R =R/Rycan be
written as:
-0y
H -0y @®)
Using the dimensionless notation A and equation (7), the Kozeny-Carman
equation (1) for the permeability ¢, can be written as:

3
D\H - Oy
¢ = (—2) (9)
HGO
Finally, combining equations (6), (8) and (9) we get the dimensionless
force as a function of dimensionless thickness, H:

o 7[0(%(1—0'0)2

8(H - 0)°
In fig. 2 is presented the variation of dimensionless force written as
function of H, for different values of HCPL compactness. One can see that the

dimensionless force increases with the compactness for a given dimensionless
thickness.

R =

(10)
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Fig. 2 Dimensionless force F vs. dimensionless thickness H
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2.2 Constant force squeeze

This model allows determination of squeeze time until a defined thickness
(compression level) is obtained. The squeeze speed can be written as:

V =—hydH / dt (11)

If eq. (11) is introduced in eq. (6) and the permeability and thickness are
written also dimensionless, yields:

3 ﬂdg (1—0'0)2

—dr dH,
S(H -0y ) (12
. . . . tFD
where the dimensionless time 7 is defined as 7 = ——.
n Ry
After integration of equation (12) we get:
2 2
r+C= M dH (13)

32(H - o¢)*
Using the initial condition H =1 at 7 =0, the equation for the
dimensionless time 7 is obtained:

_ﬂooz(l—ao)z 1 1
r= 3 — (14)
(H-o9)" (I-09)

The wvariation of the dimensionless thickness H as function of
dimensionless time 7 is shown in fig. 3. One can see that the time of squeeze
increases with the increase of compactness, respectively the decrease of porosity.
This is not evident from equation (14), but it is obvious that more time is needed
to compress with constant force a material with higher compactness.

When H = Hjjpi¢, the squeezed fluid reaches the outer margin and
R = R, /Ry. Further, this theoretical model no longer applies. This limiting
thickness, HJjmit, can be determined as:
-0y
R, /Ry
The limit of the squeeze process represented with dashed lines in fig. 3, is

obtained when R =2. If squeezed below the limit, the fluid flows outside the
porous ring until porous material becomes solid.

Himit =09 +

(15)
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Fig. 3 Variation of dimensionless thickness H vs. dimensionless time T
2.3 Impact squeeze

Since the impact protection system based on porous ring with reservoir of
liquid is a feasible solution, the model was extended for the case of squeeze under
impact. The model allows determination of damping capacity for a ring of porous
material under impact with a body with known mass M and impact speed of V.
For squeeze under impact the impulse equation is:

MAV =—F - dt (16)

Also, according with Bowden and Tabor model [3], assuming small
displacements, it is possible to use the force determined for squeeze with constant
speed into eq. (16). Rewriting eq. (10) in dimensional form results:

__myVRgog(l—O'O)z% (17)
 8Dhy(H —op)®
Introducing eq. (17), in eq. (16) and rearranging, results:
_ﬁﬂRgag(l—Uo)z U g (18)
8DM (H-o0)
After integration, yields:

dV =

ﬂnRgGg(l—O'O)z 1 (19)
32DM (H _0-0)4

For the initial condition H=1 at =0, the expression of the speed results:

V=C+
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V:VO

_m RSG(% (l -0y )2 [ 1 3 1 ] (20)
4 4
32bM (H-00)" (1-09)
Finally, introducing eq. (20) in eq. (17) results the force generated during

squeeze motion, produced by impact:
4 2 2
g TR og(l-0p)"
8 Dhy(H — o)

VO_m]Rgag(l—ao)z 1 B 1 @1)
32DM (H-c0)* (1-a9)"

Using dimensionless parameters for the force F = FDh, /(Rgn) and

impulse M = MDYV, /(Rg 1), eq. (21) becomes:

F:ﬂag(l—ao)z v _ﬁag(l—ao)z [( 1

— - - (22
-0 |\ M| (o) (1—00)4] 22

3. Experimental results

In order to validate the theoretical model a series of experiments at
constant speed using UMT-2 CETR universal tribometer were made. The test rig
(fig. 4) has two main components: control unit (computer and data acquisition
board) and the testing unit (sensor, mobile carriage with indenter, container). The
measurement of the force generated during squeeze is made simultaneous with
time, displacement and squeeze speed. The precision of carriage vertical
displacement is 1 wm and its velocity can be varied between 0.001 -10 mm/s. The
force sensor DFH-20 mounted on the mobile carriage is capable to measure up to
200 N with a resolution of 0.02 N. The moving (upper) part is a 66 mm diameter
steel disc of 5 mm thickness.

The experiments were made for rings of porous material with an outer
diameter of 66 mm, and a central reservoir with diameter of 33 mm represented by
the same porous material disc imbibed with liquid (see fig. 4). Each disc reservoir
was imbibed with fluid prior to each test and placed in the central part of the dry
ring.
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Fig. 4 The experimental test rig
Two fluids were used in experiments: glycerin (7 = 0.6 Pa - s ) and silicone

oil (7 =11 Pa -s ). Glycerin was chosen because its behavior is very similar with

a Newtonian fluid. However, it has an important shortcoming when used for
damping or protection systems: in the presence of liquid water or vapors the
viscosity of glycerin diminishes as a result of its hydrophilic behavior. Silicon oil
is considered to be an ideal candidate because of its stability for various
conditions of use. However, the non-Newtonian behavior of the silicon oil made it
inappropriate for validation of the theoretical model.

The selected porous material is a reticulated polyurethane foam
FILTREN® TM 25133 (codification: F133). F133 have an open cellular structure
and is usually used as filtering material. Its properties are: density 20-24 kg/m’
compression resistance 2.5-4.5 kPa, ultimate elongation 100%, tensile strength 80
kPa. The average pore size varies between 1.06 and 1.6 mm. Porosity

measurements were carried out and the average value was: &y =0.95. The initial

thickness of the ring as well for the inner reservoir disc radius were /hy=4.5 mm.

Fig. 5 shows a porous ring of porous material F133 with reservoir of glycerin
imbibed before (Fig. 5a) and after squeeze (Fig. 5b) with constant speed. With
blue line is marked the limit to which the ring material was imbibed.
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a) b)
Fig. 5 The ring of porous material F133 with reservoir of fluid imbibed before squeeze - a) and
after squeeze with constant speed —b)
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Fig. 6 Squeeze force vs. porous material thickness for reservoir with silicon oil

In fig. 6 and fig. 7 are presented the experimental results with various
squeeze speed v =2, 4 and 8 mm/s and a ring reservoir filled with glycerin and
silicone oil, respectively. A rapid increase of the force can be observed in the first
part of the squeeze motion (for thickness variation between 4.5 mm and 3.5 mm).
This behavior attributed to the solid matrix response to compression. Analyzing
further these results, it can be observed that the force increases with the increase
of speed from 2 mm/s up to 4 mm/s and 8 mm/s.
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Fig. 7 Force measured on squeeze for reservoir with glycerin

Comparing the forces measured at the same speed (fig. 8), for glycerin and
silicone oil it can be seen that the squeeze force is considerably higher for the
more viscous fluid (silicone oil).
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Fig. 8 Comparison between forces measured for squeeze speed v=8 mm/s

Despite high performances and good stability characteristics of silicone
oil, it is difficult to predict its behavior with present analytical model as a result of
its non-Newtonian behavior.

The variation of the force for dry material during squeeze is shown in fig.
7. Even smaller than those measured during squeeze with glycerin, the forces
cannot be ignored. Applying the principle of superposition, one can identify the
contribution of fluid squeeze only. The resulting force obtained for glycerin, is
presented in fig. 9.
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Fig. 9 Fluid squeeze force for glycerin calculated from the experimental data

4. Validation of theoretical model for constant speed squeeze

According to the proposed model, the force generated by constant speed
squeeze can be expressed in terms of the instantaneous thickness of the porous
layer by replacing equation (9) in equation (6):

g 40! —O'())Q}zgl’ego'2

23
8Dh3(1—60;0)5 23)

The values for the parameters used in equation (23) are presented in
Tablel.

Table 1
Parameter Value Parameter Value
D 1.3:10™"" m’ Ry 16.5 mm
Oy 0.05 i 0.6 Pa s
hy 4.5 mm

Because no other method was available, for the determination of
parameter D, this was calculated using the experimental data and assuming valid
the proposed model. Three values of D (each corresponding to a value of the
speed, u) were calculated by fitting the experimental force with that predicted by
the model. The average of these is presented in table 1.

The experimental data for force variation with the layer thickness is
compared with the predicted values of the force, calculated with eq. (23) and the
results are plotted in fig. 10.
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Fig. 10 Experimental vs. analytical results for glycerin at speed 2 mm/s
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Fig. 11 Experimental vs. analytical results for glycerin at speed 4 mm/s
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Fig. 12 Experimental vs. analytical results for glycerin at speed 8 mm/s
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The analytical results are in quite good correlation with the experimental
results. It can be concluded that the analytical model is valid. The differences
between the experimental data and theoretical results are acceptable. The sources
of errors are multiple. The permeability ¢ of the material is defined using
Kozeny-Carman equation. The accuracy of this equation is influenced by the
parameter D, which was obtained by fitting the experimental data for force with
the predicted force.

The accuracy of the measured values for the initial layer thickness and
material porosity can also be a source of the differences between the values of
experimental and analytical force.

A boundary can be found between the imbibed disc reservoir and the
annular foam disc. It includes cross-section gaps or blocked pores as result of
cutting process.

List of notations

C constant of integration;

D material parameter from Kozeny-Carman equation;

F force; h  thickness; M mass; p  pressure,

r radial coordinate; R  external limit of fluid reservoir;
R, external radius of the porous ring; ¢ time; V  speed.

Indices
0  atinitial moment.

Greek alphabet notations Dimensionless notations

&  porosity; F = FhOD/(nVRg) force;

n  dynamic viscosity; H=h/hy thickness;
o compactness; R= R2 / Rg radius;

¢  permeability. M =MDV (Rgn)  impulse;

r=tFD/n R} time.

7. Conclusions

An original theoretical model for a given volume of Newtonian fluid
imbibed in central area (reservoir) squeezed through a surrounding porous ring
was developed. The theoretical model was developed for three cases of squeeze:
with constant speed, constant force and for a given impulse.

The theoretical model was validated using the experimental data for
squeeze with constant speed of reticulated polyurethane foam imbibed with
glycerin.

The observed differences are mainly related to the fact that the analytical
model considers a continuous HCPL without a border between central region (the
reservoir) and the dry porous ring. In the experimental model this boundary exists.
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Further experiments should be performed for multiple materials and fluids.

The influence on performance of the central reservoir dimension must be also
evaluated.
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