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PHASE RETRIEVAL (DUAL) FRAMES: A NEW APPROACH

Fatemeh Shojaei!, Mohammad Janfada?, Ali Akbar Arefijamaal®

The phase retrieval problem involves recovering a signal from the magnitude
of its measurements, without knowledge of its phase. Motivated by recent investigations
in the field of phase retrieval and frame theory in Hilbert spaces, we provide a charac-
terization of the problem of phase retrieval frames in Euclidean space R™. The study
focuses on the case where the signal and the measurements are both real-valued providing
a comprehensive overview of phase retrieval frames. We derive specific forms of phase
retrieval. Additionally, the general form of dual phase retrieval frames in R™ is ana-
lyzed and a complete description of phase retrieval dual frames is given. Furthermore,
we confirm the efficiency of reconstruction using phase retrieval frames by performing
numerical examples.
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1. Introduction

Frames are redundant sequence of vectors within a separable Hilbert space that pro-
vide many representations for every vector. This redundancy is what makes frames useful
for applications. In addition, frames play a significant role not only in theory, but also in
many type of applications such as noise reduction and suppression, signal processing [10],
coding and communications [12], sampling [3, 9], time-frequency analysis, voice recognition,
bio-imaging, system modelling [13] and so on. Actually, frame theory has been shown in
practice to be an effective field of research with applications.

Phase retrieval is the problem of recovering a signal f in a Hilbert space H, from
a set of intensity measurements absolute of the frame coefficients. The concept of phase
retrieval sequences in finite dimensional Hilbert spaces was first presented in [11] and then
it is reformulated in terms of frame theory by Balan, Casazza and Edidin [4] in 2006.

With this background and view of phase retrieval, the motivation behind this work is
to perform the reconstruction of each signal using the absolute value of the frame coefficients,
essentially providing a global identification of phase retrieval frames in finite dimensional
real Hilbert space based on their components. The concept of phase retrieval frames is
defined by using frame vectors and so could not be formulated as an operator form. In
view of this, the identifying of phase retrieval frames depends on the dimension of the
underlying Hilbert space and the number of frame elements, and it is not possible to provide
a unique formula for them. We will provide some concrete classifications for phase retrieval
frames and their duals. The paper also compares the reconstruction of a random signal
using the classical reconstruction formula with the phase retrieval reconstruction. This
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comparison could potentially provide insight into the efficiency and performance of different
signal reconstruction methods.

The structure of this paper is arranged in the following manner. In Section 2, we
will collect some necessary background from the basic concepts about phase retrieval frames
in Hilbert spaces. Section 3 is devoted some characterizations of phase retrieval frames
® = {p;}", in R™ when n = 2m — 1 based on the components of the frame elements.
Furthermore, we discover useful and precise ways to figure out the phase retrieval frames in
R™. Section 4, characterizes the phase retrieval of dual frames and we describe a detailed
view on how to perform the phase retrieval of dual frames in R™. Section 5, presents
some results about phase retrieval frames in R™ when n > 2m — 1, also gives several
examples to confirm our results. The last section provides, we analyzed a comparison of the
reconstruction of a random signal by using the classical frame reconstruction formula with
the phase retrieval reconstruction.

Throughout this paper, we assume that H™ is a m-dimensional real Hilbert space, H
is a separable Hilbert space and I a countable index set. For two Hilbert spaces H; and H
we denote the collection of all bounded linear operators between H; and Ho by B(Hi, Ho)
and we apply B(H) for B(H,H). Also, we denote the range and kernel of T' € B(H) by
R(T), N(T), respectively, and {e;}™; denotes the standard orthonormal basis in R™.

2. Preliminaries

In this section, we present some concepts which will be used in the next sections.

2.1. Frame theory

A sequence ® = {y; }ier in H is a frame for H if there exist constants 0 < Agp < Bg

such that
Aallf I < D 1(F, @) P < Ball£I%, (f € %0).
iel

It is tight if Ag = Bg, and it is a Bessel sequence if at least the upper frame condition holds.
If {p;}icr is a Bessel sequence, the synthesis operator is the operator Tg : (2(I) — H
defined by Te{citier == ) ;c; cipi- It is well known that Ty is well-defined and bounded.
Its adjoint Ty : H — ¢2(I) of Tp which is called the analysis operator, is given by T4 f =
{{f, i) }icr- Finally, the frame operator is defined by

Se : H — K, Sof i=TeTgf = (f,0:)¢i.
icl
It is bounded, bijective as well as self-adjoint; these properties immediately lead to the
important frame decomposition

f="S8aS5 = (185" ¢i)eis (f € %) (1)
il
A Riesz basis for H is a sequence of the form {Ue; };c; where {e;};cr is an orthonormal basis
for H and U : H{ — H is a bounded bijective operator. Every Riesz basis has a unique
bi-orthogonal sequence which is also a Riesz basis [6].

If & = {p;}icr is a frame on H with the frame operator Se, the sequence {Sglcpi}iel
is also a frame which is called the canonical dual frame. Every Bessel sequence {;}ier
satisfying

el
is called a dual frame of {y;}icr.
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Theorem 2.1. [1] Let ® = {p;};cr be a frame. Then every dual frame of ® is of the form
of ¢ = {S;lgoi + u; bier where {u;}icr is a Bessel sequence such that

S pidus =0, (f € %). (3)
i€l
The excess of ®, which is denoted by E(®), represents the maximum quantity n of
elements ® that can be removed from ® while still preserving a frame. When two frames
are dual to each other, they possess the same excess [3]. A frame ® with the excess can be
expressed as {0 }ie\{iy,....int U {@irs s @i, }» Where ® = {pi}icn (4,....in} 15 & Riesz basis
for 7 and {¢;,, ..., i, } are redundant elements of ®.

2.2. Phase retrieval frames
A sequence ® = {¢;}7; € H™ is called phase retrieval if for any =,y € H™ with

‘<x7@i>‘:|<y7@i>l7 (i:1727'-'an)7
there exists § € R such that |§] = 1 and = = 0y, that is x = =y [1]. The process
of phase retrieval in R™ is characterized by a principal result, known as the complement
property. This indicates that for all subsets I C {1,2,..,n} either span{y;}icr = H™ or
span{p; ticre = H™. Given a family ® = {¢;}1_; of vectors in H™, the spark of ® is defined
as the cardinality of the smallest linearly dependent subset of ®. When spark(®) = m + 1,
every subset of size m is linearly independent and in that case, ® is said to be full spark.

Theorem 2.2. [2] A frame {p;}7, in R™ yields phase retrieval if and only if it has the
complement property. In particular, a full spark frame with 2m — 1 wvectors yields phase
retrieval. Moreover, if {p;}_, yields phase retrieval in R™, then n > 2m — 1 and no set of
2m — 2 wvectors yields phase retrieval.

2.3. Signal reconstruction without phase

Allow us to denote by H™ = H™/ ~ considered by recognizing two vectors which are

divers in a phase factor, i.e., x ~ y whenever there exists a scaler § with |#] = 1 so that
y = Ox. Obviously in a real Hilbert space we have H™ = H™ /{1, —1}. The mapping
ag : H™ — R", aglr] = {|(z, ¢i) |}z (4)

can be defined on H”™ where [z] = {y € H™ : y ~ z}. The injectivity of the non-linear
mapping ag leads to the phase retrieval property of ® and vice versa. This means that we
can reconstruct any signal in H™ by using the modulus of its frame coefficients.

3. Phase retrieval frames ® = {¢;}? | in R™ when n=2m —1

Let @ = {¢;}; be a frame in R™. In [4], it is shown that 2m —1 vectors are sufficient
for ® dose phase retrieval. In this section, we introduce a characterization of phase retrieval
frames ® = {gpi}?;”fl based on components of frame elements. Obviously, phase retrieval
property is preserved under invertible operators. On the other hand, every frame with the
finite excess contains a Riesz basis [3]. Accordingly, without loss of the generality we can
consider ® as {e;}7, U {p;}77" where {¢;}/, is an orthonormal basis of R” and we refer
to {goi}?:ll as the redundancy elements. We know that if a frame contains exactly 2m — 1
vectors, then it does phase retrieval if and only if it is full spark [2], therefore in this section,
we indeed identify all the full spark frames in R™.

We begin with the following lemma, to describe 1-excess phase retrieval frames in R2.

Lemma 3.1. Let ® = {p;}3_, be a frame such that {¢1, 2} is a Riesz basis for R? and
wi = (zi,yi), 1 <i< 3. Then ® is phase retrieval if and only if

(y2I3 - 9322/3)(~T1y3 - yll'ii) 7£ 0.
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Proof. The matrix
A= 1 |: Y2 — X2 :|
T1Y2 — Y1Z2 —Y1 1

is well-defined and invertible since {¢1, @2} is linearly independent. In fact, A is the change
of basis matrix from {p1,2} to {e1,ea}. On the other hand, phase retrieval property
is preserved under invertible operators, hence ® is phase retrieval if and only if A® =
{e1, e3.Aps} is phase retrieval. Now, Theorem 2.2 easily follows that A® is phase retrieval
if and only if both components of Aps = (Y223 — T2ys3, T1Ys — Y123) are non-zero. O

As a consequence of Lemma 3.1,
{{Ael, Aeg, aAeg + 5A62} taf #0 A is a 2 X 2 invertible matrix},

is the set of all phase retrieval frames in R?. Similarly a concrete characterization of phase
retrieval frames in R3 is given in the following.

Proposition 3.1. Let ® = {¢;}2_; be a sequence in R® such that 8 = {@;}?_, is a Riesz
basis. Then ® does phase retrieval if and only if all components of [p4lg, [¢5]s and [p4]s %
[ps]p are non-zero, where [plg is the coordinate vector of ¢ with respect to the basis 3.

Proof. The set 3 is a Riesz basis, so there exists an invertible operator U on R? such that
Up; =e;, 1 =1,2,3. Using the fact that the phase retrieval property is preserved under in-
vertible operators follows that ® does phase retrieval if and only if U := {e1, ea, e3,Ups, Ups}
does phase retrieval. Note that if [p4]g = (o, 8,7) and UB = {e1,e2,e3} then [Upslug =
(ar, B,7). Now if U does phase retrieval, then

(1) Span{ela €2, USD4} = RB’
(ii) span{er,Usps, Ups} = R

Theorem 2.2, (i) easily follows that the first component of U, is non-zero. Moreover, (ii)
implies that Up, and Ugs are linearly independent and the first component of Ugpy x Ugs
is non-zero, otherwise Upy x Ups € span{er, Uy, Ups}t = {0}, which is a contradiction.
The proof for other components are similar.

Conversely, let all components of [p4]g, [¢5]s and [pa]s X [¢s5]s are non-zero. It is
enough to show that ® has the complement property. For this, it is enough to prove that
the set {©4, @5, €;} is linearly independent. To this end, assume that

c1p4 + Cc2p5 + cze; = 0, (5)

for some ¢; € R, i = 1,2,3. Then (p4 X ©s5,c104 + C205 + c3€;) = c3{a X ©5,€;) = 0. The
fact that all components of [p4]g X [ps5]g are non-zero, implies that c3 = 0. Moreover, ¢4
and 5 are linearly independent and so we have ¢; = ¢z = 0. Other cases to obtain the
complement property is easily follows from the fact that all components of [p4]g, [¢5]s are
non-zero. ]

Corollary 3.1. Let ® = {e;}3_, U{p;}2_, be a frame in R®. Then ® does phase retrieval
if and only if all components of 1, p2 and p1 X Yo are non-zero.

Proposition 3.1, immediately leads to the following.
Corollary 3.2. Let a,b,c € R\ {0}. Then {e;};_,U{(a,b,c),(x,y,2)} for all (z,y,2) € R3

a a
does phase retrieval except on the axes and the planes v = gy,x =—zandy=-=z.
¢ c

We now continue to describe the general form of phase retrieval frames in R*.
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Theorem 3.1. A frame ® = {e;}}_; U{pi};_; in R* does phase retrieval if and only if the
following conditions are satisfied

(i) (pi,e;) #0 foralli=1,2,3 and j =1,2,3,4.

(ii) {@i}?_, is linearly independent and (i, ej) # 0, for all j = 1,2,3,4 where ¢ €
(span{pi}3_;)*.
(s, 7#(1) <€j’wi> , for j,1 € {1,2,3,4} when span{y; }ic, = span{y:7,¢g} for every
<el7w1> <€lﬂ/)2>

o C{1,2,3} with |o| = 2.

(iii)

Proof. Suppose that ® is a phase retrieval frame, then span{e;}ic, U {pi}?_; = R?* for

o C {1,2,3,4} with |o] = 3, by using the complement property. Thus we conclude that
(pirej) # 0 for some 1 < i < 3,1 < j<4. Also, span{p1, @2, @3, e;} = R This shows that
{©1, 92,3} is linearly independent. Furthermore, if ¢ € (span{y;}3_;)* and (1, e;) = 0
for some 1 < j < n, then we get ¥ € span{e;, @1, 2, 3} = {0}, which is a contradiction,
hence (1, e;) # 0 for all 1 < j < 4. Finally, to obtain (iii), without loss of the generality,
assume that o = {1,2} and choose two vectors 17,1§ orthogonal to ¢; and ¢3. Now, if
<€j,’¢f> <€j»1/}é'>
(er,¥7) (e, 95)

= 0, then the linear system

(ej, Y7 )ar + (ej, g )az =0,

(e1, ¥ )an + (e, ¥ )an = 0,
has a non-trivial solution (a1, as2) # (0,0). Put & = aie; + ase; and assume that m,n ¢
{4,1}. Trivially £ # 0 and ¢ € {em, en,¥§, %3 }+ which is a contradiction. Conversely, let
conditions (i), (ii) and (iii) be satisfied, it is enough to show that ® has the complement
property. Obviously by (i), we have span{e, es, e3,p;} = R* for i = 1,2,3. Furthermore,
we have to show that {ej, eq, @3, 04} is linearly independent. Indeed, if

aie; + ages + azps + agps =0, (6)
for real scalars a;,1 <4 < 4 and span{¢)7, 1§} = span{es, p4}+, then
(e1,97)on + (e1, 93 )az =0,
(€2, 97 )z + (€2,93 )z = 0.
Using (iii) it follows that ay = 0 = e also ag = a4 = 0, by (ii). Thus it is enough to prove
that the set {1, 2, @3, e;} is linearly independent for each 1 < i < 4. Let
o191 + o + aszps + age; =0, (a; €R). (7)

and choose a non-zero ¥ € (span{y;}3_,)*, then 0 = (¥, 101 + @aps + azps + aqe;) =
ay (1, e;). Using (ii) implies that ay = 0. Moreover 1, ¢ and 3 are linearly independent
and 80, a3 = as = ag = 0 by (7). Other cases to get the complement property are
similar. O

As a consequence, we obtain the following interesting results for phase retrieval frame
in R*.
Corollary 3.3. Let {u;}}_; be an orthogonal basis in R*. Then ® = {e;}}_; U{u;}?_, does
phase retrieval if and only if we have
(i) (ej,u;) #0 foralli=1,2,3 and j =1,2,3,4.

(ii) EZZ; ” EZZZ:; for all j,1 € {1,2,3,4} and 1 <i < 3.

By an inductive approach, we are now ready to describe phase retrieval frames in R™.
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Proposition 3.2. Let ® = {e;}7,U{p;})" " be a frame in R™. Then ® does phase retrieval
if and only if:
(i) (pise;) #0 foralll <i<mand1l <j<m-—1.
(i) {p1,902, .., om—1} s linearly independent and (,e;) # 0 for 1 < j < m, where
(span{p; mfl)J- is generated by .

(iii) ‘((6317¢r>)1<l<m k| # 0, where span{y;,,...,p; }= = span{¢y, ..., ¥m_x} for all
1<r<m-—k

{i1,.yig} C{1,...om —1} and {j1, cos jm—r} C {1,...,m}.

4. Phase retrieval dual frames

In this section, we address the problem that, given a phase retrieval frame ® in R™
how we can characterize their phase retrieval dual frames. For a frame ®, we denote by Dg
the set of all its dual frames. Also we use PDg for the subset of all phase retrieval dual
frames. We first state the following lemma which is a very useful tool for obtaining the main
results of this section.

Lemma 4.1. Let ® = {¢;}7™ " be a frame in R™. Then

m — m—1
Dy = {{Sglw +Ui} U {Sglwmﬂ +vj} oo R uy = — Z<S£1%a<ﬂm+j>%}’
i=1 j=1 j=1

where ®g = {@;}, is a Riesz basis.

Proof. Applying Theorem 2.1 shows that every dual frame ®? of ® has the form

m m—1
:{Sglw—i-ui} U{S;1¢m+j+vj} ,
i=1 j=1

where {u;};; U {v;}7" ~! is a Bessel sequence and for every f € 3 we have

m m—1
vau’b Qpl+z favj 4,0m+]*0
1=1 j=1

Hence,
m m—1 m m m—1
D (foui+ Y (Sar i emai)vidpi =D _(frui)pi + D> {050 (Pmss Sap 0i)pi
i=1 Jj=1 =1 i=1 j=1
m m—1
Z fauz wi + Z f?U] Pm+j =0.
=1 ]:1
1 _ .
So, u; = — 370, (S%lgoi,gpmH)vj, forall j =1,2,--- ,m. O

Motivated by Lemma 4.1, we are now ready to characterize phase retrieval dual
frames. The following important and applied result, will later play a key role in our main
results. For simplicity, we consider ® of the form ® = {e; }1"; U {@;}%] 1

Theorem 4.1. Let ® = {e;}1, U{p;}™ " be a frame in R™. If {v]}m:ll C R™ such that

{e; — Z;”:ll(e“ ©j)Sav; 1Ly is a Riesz baszs and the vector {n;};27" = {A(p; + Sev;)} = .
satisfies Proposition 3.2 where A is the matriz of change basis {ez +ul}l:1 to {e;}™,. Then
m—1 m—1
ol = { Z e“goj ’I)J}U{S‘glng +’Uj} € PDg.
j=1

Jj=1
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Proof. Consider that ® = {e;}7, U {p;}7" is a frame in R™ and ®! € Dg. Applying
Lemma 4.1 for following holds ®¢ = {Sg e; +u;}7, U{Sy ¢, +v; };7:11, where {v; };”;11 are
arbitrary and u; = — Z;r:ll(ei, @jyv; for all 1 < 4,5 < m. On the other hand, the matrix
of change basis {e; + u;}"; to {e;}™,, denoted by A, is invertible by the assumption.
In fact A=1 = mxm T (<Uj>ei>)1§i,j§m- Thus AS@‘I)d = {ei ;11 U {A((Pj + Sgpvj)};n:zl,
using Proposition 3.2 implies that ®! € PDg if {n;}7" satisfies (3). This completes the
proof. O

The next theorem provides a natural and intrinsic characterization of general form
of phase retrieval dual frames on R?. Note that, by Lemma 4.1, there is an one to one

correspondence between dual frames ® = {ey, ea,ae; + bea} as following
Dg = {(bz = {S,;lel - au,S;leg — bu,S;l(a,b) +ulu € RQ}.
Proposition 4.1. Let ® = {e1, e2,ae1+bea} be a phase retrieval frame in R? and u = (z,y).
Then the following are equivalent
(i) ®¢ does phase retrieval.
(ii)
ax + by # _
YT T
(ab?)x? + (b3 + b — a®b)ay + (—1 — a®)z + aby + (—a — ab?®)y? # a?, (®)
(—a?b — b)z? + (—ab® + a® + a)zy + a®by? + (—1 — b?)y — abx # b.
(iii) (2',y") := Sou satisfies
1—ax’ # by,
b+ (1+a?) # aba’, (9)
a+ (1+b%)a’ # aby'.
Proof. (i) <= (ii) Since ® is phase retrieval frame we get ab # 0 by Lemma 3.1. An easy
computations shows that
-1 _ 1 1+ b2 —ab
® T 24241 —ab 1+a?
Then {Sg'e1 — a(z,y), Sy ez — b(z,y)} is linearly independent if and only if

2
T —ar oy —ay
a?4b2 41 9 7& 0.
2—a2b —bx 1+la _ by
a®+b°+1 ey
Or equivalently, ax + by # ——————. Furthermore, a dual frame of ® is given by
1+ a? + b2

@g = {Sglel — au, Sq:lez — bu, S;lga + u},
where u = (z,y) € R%. So
S¢,<I)g = {(1 —ax — a®x — a®by, —a’bz — ay — abzy),
( — br — ba’x — b%ay,1 — ab’x — by — b3y),
(a +x(1 4 a?) + aby, b+ abz + y(1 + b2) }

The matrix

A— 1 1—ab’z —b(1+bDy b1+ a)z +ab’y
Tz + ax + ab®x + b3y + aby + by — 1 | @’br+a(l+6%)y 1 —a(l+a®)z —a’by |’
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is the change of basis matrix from
{(1 —ax — d’z — a’by, —a*bx — ay — abe), ( — bx — ba’x — blay, 1 — ab’z — by — b3y>}
to {e1,ea}. Thus

1
(a3—‘—a—|—al72)x—|—(b3~¢-a?b—&—b)y—1><

((ab2):c2 + (0® +b—a®b)zy — (14 a®)x + aby — (a + ab®)y? — a?,

A_15q><132 = {617 €9,

— (a®b + b)a® 4 (—ab® + a® + a)zy + a*by* — (1 4+ b*)y — abx — b) }

Therefore, 7 is phase retrieval dual frame on R? if and only if (8) is satisfied by the assertion
after Lemma 3.1.
(i) <= (ii1) Phase retrieval property is preserved under invertible operators. Hence

<I>ﬁ does phase retrieval if and only if of = {el —aSpu,es —bSeu, (a,b) + S@u} does phase

retrieval. Due to Lemma 3.1, & = {(1 —ax’,ay"), (=bz’, 1-by"), (a—2a’, b—y’)} does phase
retrieval if and only if (9) holds. O

5. Phase retrieval frames ® = {¢;}? ; in R™ when n > 2m — 1

Let ® = {p;}; be a frame in R™. Due to Theorem 2.2, n > 2m — 1. In Section 3,
we found a concrete form of phase retrieval frames ® = {¢;}7”,~" based on some conditions
for the components of ¢;’ s. In this section, we continue to describe phase retrieval frames
® = {p;}7; when n > 2m — 1. The next lemma describes this fact for m = 2.

Lemma 5.1. Let ® = {¢;}7; be a frame for R? such that {1, 02} is a Riesz basis for R?
and 0 # ; = (x4,y;), 1 <i <n. Then ® does phase retrieval if and only if

(wiy2 — z2yi) (1Y — wiy1) # 0, (10)
for some 3 <i<mn.
Proof. Assume that (10) holds for some 4, then by Lemma 3.1, {p1,92,¢;} does phase

retrieval and so ® is also phase retrieval.
Conversely, in contrary assume that

(Tiy2 — wayi)(1y; —wiyr) =0,  (3<i<n) (11)
Let {¢;}; does phase retrieval, then {Ag;}? ; is also phase retrieval, where
A= 1 |: Y2 — X2 :| )
Tiye — T2 | ~Y1 N1

Actually A is the change of basis matrix from {p1, @2} to {e1,ea}.
Take o = {1 < i < n; z;y2 — x2y; = 0}. Using (11) we obtain
o ={1<i<n; x1y; — xiy1 = 0},
since ¢; # 0, for 1 < i < n. On the other hand neither span{A¢;}ic, = R? nor
span{Ap; }icoc = R2. Hence, ® does not phase retrieval. This is contrary to the assump-
tion. ]

As a demonstration of Theorem 2.2, we immediately obtain the following characteri-
zation for phase retrieval frames on R3.

Proposition 5.1. Let ® = {e;}3_, U{p;}3_, be a frame in R®. Then ® does phase retrieval
if and only if the following holds

(i) For all1 <1< 3 there exist distinct 1,7,k such that (p;,e;) 0 or (¢; X i, e;) # 0.
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(ii) The vectors {p;}3_, are linearly independent or for all 1 < 1 < 3 there exist distinct
1 <j,k <3 such that (¢; X i, e;) # 0.

Proof. Assume that ® dose phase retrieval and 1 <1 < 3. Using Theorem 2.2 for distinct
i,j5,k € {1,2,3} where | # j,k we have span{ej, e, pi} = R® or span{ey, pj, o} = R3 for
i,j,k € {1,2,3} , or equivalently, (v;,e;) # 0 or (p; X @k, e;) # 0. This proves (i). To
show (ii), assume that {¢;}3_; is not linearly independent then span{ey, @1, 92,93} = R3
for every | € {1,2,3}. By using Theorem 2.2 this easily follows that span{ej, ¢, i} = R?
for some 1 < j # k < 3. In particular (p; x ¢g,e;) # 0. Conversely, let conditions
(i) and (ii) be satisfied. It is enough to show that ® has the complement property. By
(i), span{ej,ex, i} = R3 or span{ey, pj, o} = R? is fulfilled. Other cases to obtain the
complement property is easily obtained by condition (ii). |

The advantage of using Proposition 5.1 lies in the fact that, if a frame with five
elements in R? does not phase retrieval, then by adding an appropriate member, we may
obtain a phase retrieval frame. The following example illustrates this point well.

Example 5.1. Let ® = {e;}3_; U {pi}3_; be a frame in R® where o1 = (a,b,c),pa =
a1, 03 = (x,y,2) and abc # 0. Then ® dose phase retrieval if and only if

(i) wyz # 0,

. a a b

(11) T 7é 33/795 7é %Y 7& -z

c c

Proof. Assume that ® dose phase retrieval frame in R3. Clearly, by the assumption (p; x
po,e1) = 0 for all I = 1,2,3. Using (i) of Proposition 5.1 we conclude that zyz # 0.
Furthermore, according to (ii) of Proposition 5.1 and the fact that (p1 X @2,€¢;) = 0 we

have (p1 X ps3,e;) # 0 or {(pa2 X ¢3,¢;) # 0 for all | = 1,2,3. So, since ¢; and ¢y are
linearly independent. It is sufficient to (p1 X @a,€;) # 0 for all I = 1,2,3. That means

b
T # %y,x + gz,y # —z. Conversely, if conditions (i) and (ii) are satisfied. It is enough
c c

to show that ® has the complement property. Obviously, span{e;j,ex, i} = R3 by (i).
Moreover, span{e;,ex, @1, 3} = span{e;, ex, p2, 3} = R3, by (ii) for every 1 < j,k < 3.
Finally, span{e;j, ex, ¢1, 2} = R? because of the assumption abc # 0. O

6. Numerical Results: Application and Analysis

Let ® = {p;}", be a frame for H™. It is easy to show that ® = {p;}1, is a
phase retrievable frame for H™ if and only if ag is given by (4) is injective. Thus we can
reconstruct every vector in H™ from the magnitude of its frame coefficients as follows

Baas(z] = [7], (z € H™), (12)
where B4 is a left inverse of ag. Finding a general form of 8¢ is highlighted in the next.
6.1. Reconstruction by 2D phase retrieval frames
Consider a phase retrieval frame ® = {ey, es, (a, 3)} in R?, then
ag : R? — R?, asl(21, 22)] = {|21], |22, [az1 + Baa|}.
It is not difficult to see that 8¢ : g — H is given by
a,b)], c = |aa + Bb),
PR L CD) o + )
[(aa 76)]7 c= |aa - ﬂb|a

where a = |z1|,b = |z3|,¢ = |axy + Bxe|. Applying this approach, for phase retrieval frame
® = {(1,0),(0,1),(1,1)} in R? we obtain

(21, 22)] =5q>(|331\,\x2|,|x1 +:c2|), (13)
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where

)

[(lz1], |z2])], |1 + 22| = ’|1?1\+|$2|
Ba(|71], [2], |71 + 22|) =
(21l =loaD], o1 + @2l = |2l = ol .

Take x = (4,1). To examine the effectiveness of (13) and (1) we remove the third sentence
in both of them. This means that
2

Paas(l4],[1],0) = £[(4, -1)], > {,Sgteiei = (

i=1

33
are approximations for x. Obviously, (4) may be deals to adaptable results.
6.2. Reconstruction by 3D phase retrieval frames
Suppose that ® = {e1, e, e3, (a1, az, a3), (B1, B2, B3)} does phase retrieval in R?, then

ap: H— R, agl(zr, 22, 23)] = {|21], |22, |23], |orz1+oszatasas|, |Brai+Bawa+Bsas|}.

Straightforward calculation indicates

[(a,b,c)], d =|ara + azb+ asc|, e = |fra + Bab + P3¢,
Baab,c,d,e) = [(a,=b,—c)], d = lara — asb — ase|, e = |fra — B2b — Psc, (14)
[(—a,b,—c)], d=|—aia+ ab—asc|, e=|— Pra+ B2b— Bscl,
[(—a,=b,c)], d=|-aia—asb+azc|, e =[— pra— B2b+ Bsc|,
where

a=lz1],b = |xa|,c = |v3],d = |11 + @2z2 + azx3], € = |B171 + P22 + B373].

We want to compare the classical reconstruction formula (1) and the phase retrieval recon-
struction (12). To serve this purpose, consider the phase retrieval frame

o ={(1,0,0),(0,1,0),(0,0,1),(1,2,1),(1,1,2)},
obtained by Proposition 3.1. With the canonical dual

5 1 1 13 1 1 13,13 1, ,1 13
{C1-peri-peithgi-pag-id)

We are going to reconstruct a vector x = (21, ¥, r3) in R? by using the frame coefficients and

their magnitude. Consider a random signal (a vector with the length 60) on the interval [0, 1]

and divide it in to sub vectors with the length 3. Then each sub vector can be reconstructed

by (1) and (12) after removing the fourth or the fifth frame coefficient in each process. Mean

squared error (MSE) is defined as mean or average of the square of the difference between

actual and estimated values. For example, if {g;}7_; is an estimate of {y;}7_;, then its

MSE is calculated as
N

MSE = % > - i)
j=1

In signal processing, a lower MSE value indicates a closer match between the estimated
signal and the true signal, implying better accuracy or fidelity of the estimation method.

Finally, we collect the average mean square error (MSE) of every sub vector and
compute the MSE for both approximations on [0,1]. We summarize the results for some
random signals in the Table 1. It is worth wide to mention that in phase retrieval recon-
struction by (12) after assuming [{(x, ;)| = 0, ¢ = 4 or i = 5 for a sub vector z it may
(Jz1], |z2l, |23, |{x, p4)|,0) or (x|, |z2]|, |23],0, [{x, @s5)]) be outside of R(ag) and so we can
not calculate B¢ for them from (14). In practice, we achieve this, by finding an element in
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the R(ag) in which has minimum distance to Bg(|21], |22, |z3], [{z, ©4)],0). Then we con-
sider ¢ on this element instead of Bg(|z1], |22, |z3], |{z, ¥4)],0). A similar argument can
be applied for the element Sg (|21, 22/, |z3], 0, [z, ¢5)]).

MSE
Signals  Classical reconstruction Phase retrieval reconstruction
Signal 1 0.0043 0.0036
Signal 2 0.0084 0.0056
Signal 3 0.0144 0.0179
Signal 4 0.0098 0.0060
Signal 5 0.0142 0.0030
MSE
Signals  Classical reconstruction Phase retrieval reconstruction
Signal 1 0.0104 0.0103
Signal 2 0.0059 0.0037
Signal 3 0.0014 0.0038
Signal 4 0.0052 0.0012
Signal 5 0.0163 0.0071

TABLE 1. The table up (down) displays the MSE of estimates
for different random signals by the classical reconstruction for-
mula (1) and phase retrieval reconstruction (12) when @® =
{(1,0,0),(0,1,0),(0,0,1),(1,2,1),(1,1,2)} under removing the fourth
(fifth) coefficient.

Overall, our results confirm that using the phase retrieval method is more effective in
reconstructing signals. This is especially evident when considering that the phase retrieval
method can reconstruct the signal based solely on the magnitudes of the frame coefficients.
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