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PHASE RETRIEVAL (DUAL) FRAMES: A NEW APPROACH

Fatemeh Shojaei1, Mohammad Janfada2, Ali Akbar Arefijamaal3

The phase retrieval problem involves recovering a signal from the magnitude
of its measurements, without knowledge of its phase. Motivated by recent investigations

in the field of phase retrieval and frame theory in Hilbert spaces, we provide a charac-

terization of the problem of phase retrieval frames in Euclidean space Rm. The study
focuses on the case where the signal and the measurements are both real-valued providing

a comprehensive overview of phase retrieval frames. We derive specific forms of phase

retrieval. Additionally, the general form of dual phase retrieval frames in Rm is ana-
lyzed and a complete description of phase retrieval dual frames is given. Furthermore,

we confirm the efficiency of reconstruction using phase retrieval frames by performing

numerical examples.
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1. Introduction

Frames are redundant sequence of vectors within a separable Hilbert space that pro-
vide many representations for every vector. This redundancy is what makes frames useful
for applications. In addition, frames play a significant role not only in theory, but also in
many type of applications such as noise reduction and suppression, signal processing [10],
coding and communications [12], sampling [8, 9], time-frequency analysis, voice recognition,
bio-imaging, system modelling [13] and so on. Actually, frame theory has been shown in
practice to be an effective field of research with applications.

Phase retrieval is the problem of recovering a signal f in a Hilbert space H, from
a set of intensity measurements absolute of the frame coefficients. The concept of phase
retrieval sequences in finite dimensional Hilbert spaces was first presented in [11] and then
it is reformulated in terms of frame theory by Balan, Casazza and Edidin [4] in 2006.

With this background and view of phase retrieval, the motivation behind this work is
to perform the reconstruction of each signal using the absolute value of the frame coefficients,
essentially providing a global identification of phase retrieval frames in finite dimensional
real Hilbert space based on their components. The concept of phase retrieval frames is
defined by using frame vectors and so could not be formulated as an operator form. In
view of this, the identifying of phase retrieval frames depends on the dimension of the
underlying Hilbert space and the number of frame elements, and it is not possible to provide
a unique formula for them. We will provide some concrete classifications for phase retrieval
frames and their duals. The paper also compares the reconstruction of a random signal
using the classical reconstruction formula with the phase retrieval reconstruction. This
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comparison could potentially provide insight into the efficiency and performance of different
signal reconstruction methods.

The structure of this paper is arranged in the following manner. In Section 2, we
will collect some necessary background from the basic concepts about phase retrieval frames
in Hilbert spaces. Section 3 is devoted some characterizations of phase retrieval frames
Φ = {φi}ni=1 in Rm when n = 2m − 1 based on the components of the frame elements.
Furthermore, we discover useful and precise ways to figure out the phase retrieval frames in
Rm. Section 4, characterizes the phase retrieval of dual frames and we describe a detailed
view on how to perform the phase retrieval of dual frames in Rm. Section 5, presents
some results about phase retrieval frames in Rm when n > 2m − 1, also gives several
examples to confirm our results. The last section provides, we analyzed a comparison of the
reconstruction of a random signal by using the classical frame reconstruction formula with
the phase retrieval reconstruction.

Throughout this paper, we assume that Hm is a m-dimensional real Hilbert space, H
is a separable Hilbert space and I a countable index set. For two Hilbert spaces H1 and H2

we denote the collection of all bounded linear operators between H1 and H2 by B(H1,H2)
and we apply B(H) for B(H,H). Also, we denote the range and kernel of T ∈ B(H) by
R(T ), N(T ), respectively, and {ei}mi=1 denotes the standard orthonormal basis in Rm.

2. Preliminaries

In this section, we present some concepts which will be used in the next sections.

2.1. Frame theory

A sequence Φ = {φi}i∈I in H is a frame for H if there exist constants 0 < AΦ ≤ BΦ

such that

AΦ∥f∥2 ≤
∑
i∈I

|⟨f, φi⟩|2 ≤ BΦ∥f∥2, (f ∈ H).

It is tight if AΦ = BΦ, and it is a Bessel sequence if at least the upper frame condition holds.
If {φi}i∈I is a Bessel sequence, the synthesis operator is the operator TΦ : ℓ2(I) −→ H

defined by TΦ{ci}i∈I :=
∑

i∈I ciφi. It is well known that TΦ is well-defined and bounded.

Its adjoint T ∗
Φ : H −→ ℓ2(I) of TΦ which is called the analysis operator, is given by T ∗

Φf =
{⟨f, φi⟩}i∈I . Finally, the frame operator is defined by

SΦ : H −→ H, SΦf := TΦT
∗
Φf =

∑
i∈I

⟨f, φi⟩φi.

It is bounded, bijective as well as self-adjoint; these properties immediately lead to the
important frame decomposition

f = SΦS
−1
Φ f =

∑
i∈I

⟨f, S−1
Φ φi⟩φi, (f ∈ H). (1)

A Riesz basis for H is a sequence of the form {Uei}i∈I where {ei}i∈I is an orthonormal basis
for H and U : H −→ H is a bounded bijective operator. Every Riesz basis has a unique
bi-orthogonal sequence which is also a Riesz basis [6].

If Φ = {φi}i∈I is a frame on H with the frame operator SΦ, the sequence {S−1
Φ φi}i∈I

is also a frame which is called the canonical dual frame. Every Bessel sequence {ψi}i∈I

satisfying

f =
∑
i∈I

⟨f, ψi⟩φi, (f ∈ H), (2)

is called a dual frame of {φi}i∈I .



Phase Retrieval (dual) frames 21

Theorem 2.1. [1] Let Φ = {φi}i∈I be a frame. Then every dual frame of Φ is of the form
of Φd = {S−1

Φ φi + ui}i∈I where {ui}i∈I is a Bessel sequence such that∑
i∈I

⟨f, φi⟩ui = 0, (f ∈ H). (3)

The excess of Φ, which is denoted by E(Φ), represents the maximum quantity n of
elements Φ that can be removed from Φ while still preserving a frame. When two frames
are dual to each other, they possess the same excess [3]. A frame Φ with the excess can be
expressed as {φi}i∈I\{i1,...,in} ∪ {φi1 , ..., φin}, where Φ = {φi}i∈I\{i1,...,in} is a Riesz basis
for H and {φi1 , ..., φin} are redundant elements of Φ.

2.2. Phase retrieval frames

A sequence Φ = {φi}ni=1 ∈ Hm is called phase retrieval if for any x, y ∈ Hm with

|⟨x, φi⟩| = |⟨y, φi⟩|, (i = 1, 2, ..., n),

there exists θ ∈ R such that |θ| = 1 and x = θy, that is x = ±y [4]. The process
of phase retrieval in Rm is characterized by a principal result, known as the complement
property. This indicates that for all subsets I ⊂ {1, 2, .., n} either span{φi}i∈I = Hm or
span{φi}i∈Ic = Hm. Given a family Φ = {φi}ni=1 of vectors in Hm, the spark of Φ is defined
as the cardinality of the smallest linearly dependent subset of Φ. When spark(Φ) = m+ 1,
every subset of size m is linearly independent and in that case, Φ is said to be full spark.

Theorem 2.2. [2] A frame {φi}ni=1 in Rm yields phase retrieval if and only if it has the
complement property. In particular, a full spark frame with 2m − 1 vectors yields phase
retrieval. Moreover, if {φi}ni=1 yields phase retrieval in Rm, then n ≥ 2m− 1 and no set of
2m− 2 vectors yields phase retrieval.

2.3. Signal reconstruction without phase

Allow us to denote by Hm = Hm/ ∼ considered by recognizing two vectors which are
divers in a phase factor, i.e., x ∼ y whenever there exists a scaler θ with |θ| = 1 so that
y = θx. Obviously in a real Hilbert space we have Hm = Hm/{1,−1}. The mapping

αΦ : Hm −→ Rn, αΦ[x] = {|⟨x, φi⟩|}ni=1 (4)

can be defined on Hm where [x] = {y ∈ Hm : y ∼ x}. The injectivity of the non-linear
mapping αΦ leads to the phase retrieval property of Φ and vice versa. This means that we
can reconstruct any signal in Hm by using the modulus of its frame coefficients.

3. Phase retrieval frames Φ = {φi}ni=1 in Rm when n = 2m− 1

Let Φ = {φi}ni=1 be a frame in Rm. In [4], it is shown that 2m−1 vectors are sufficient
for Φ dose phase retrieval. In this section, we introduce a characterization of phase retrieval
frames Φ = {φi}2m−1

i=1 based on components of frame elements. Obviously, phase retrieval
property is preserved under invertible operators. On the other hand, every frame with the
finite excess contains a Riesz basis [3]. Accordingly, without loss of the generality we can
consider Φ as {ei}mi=1 ∪ {φi}m−1

i=1 where {ei}mi=1 is an orthonormal basis of Rm and we refer

to {φi}m−1
i=1 as the redundancy elements. We know that if a frame contains exactly 2m− 1

vectors, then it does phase retrieval if and only if it is full spark [2], therefore in this section,
we indeed identify all the full spark frames in Rm.

We begin with the following lemma to describe 1-excess phase retrieval frames in R2.

Lemma 3.1. Let Φ = {φi}3i=1 be a frame such that {φ1, φ2} is a Riesz basis for R2 and
φi = (xi, yi), 1 ⩽ i ⩽ 3. Then Φ is phase retrieval if and only if

(y2x3 − x2y3)(x1y3 − y1x3) ̸= 0.
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Proof. The matrix

A =
1

x1y2 − y1x2

[
y2 − x2
−y1 x1

]
is well-defined and invertible since {φ1, φ2} is linearly independent. In fact, A is the change
of basis matrix from {φ1, φ2} to {e1, e2}. On the other hand, phase retrieval property
is preserved under invertible operators, hence Φ is phase retrieval if and only if AΦ =
{e1, e2.Aφ3} is phase retrieval. Now, Theorem 2.2 easily follows that AΦ is phase retrieval
if and only if both components of Aφ3 = (y2x3 − x2y3, x1y3 − y1x3) are non-zero. □

As a consequence of Lemma 3.1,{{
Ae1, Ae2, αAe1 + βAe2

}
: αβ ̸= 0 A is a 2× 2 invertible matrix

}
,

is the set of all phase retrieval frames in R2. Similarly a concrete characterization of phase
retrieval frames in R3 is given in the following.

Proposition 3.1. Let Φ = {φi}5i=1 be a sequence in R3 such that β = {φi}3i=1 is a Riesz
basis. Then Φ does phase retrieval if and only if all components of [φ4]β , [φ5]β and [φ4]β ×
[φ5]β are non-zero, where [φ]β is the coordinate vector of φ with respect to the basis β.

Proof. The set β is a Riesz basis, so there exists an invertible operator U on R3 such that
Uφi = ei, i = 1, 2, 3. Using the fact that the phase retrieval property is preserved under in-
vertible operators follows that Φ does phase retrieval if and only if Ψ := {e1, e2, e3, Uφ4, Uφ5}
does phase retrieval. Note that if [φ4]β = (α, β, γ) and Uβ = {e1, e2, e3} then [Uφ4]Uβ =
(α, β, γ). Now if Ψ does phase retrieval, then

(i) span{e1, e2, Uφ4} = R3,
(ii) span{e1, Uφ4, Uφ5} = R3.

Theorem 2.2, (i) easily follows that the first component of Uφ4 is non-zero. Moreover, (ii)
implies that Uφ4 and Uφ5 are linearly independent and the first component of Uφ4 × Uφ5

is non-zero, otherwise Uφ4 × Uφ5 ∈ span{e1, Uφ4, Uφ5}⊥ = {0}, which is a contradiction.
The proof for other components are similar.

Conversely, let all components of [φ4]β , [φ5]β and [φ4]β × [φ5]β are non-zero. It is
enough to show that Φ has the complement property. For this, it is enough to prove that
the set {φ4, φ5, ei} is linearly independent. To this end, assume that

c1φ4 + c2φ5 + c3ei = 0, (5)

for some ci ∈ R, i = 1, 2, 3. Then ⟨φ4 × φ5, c1φ4 + c2φ5 + c3ei⟩ = c3⟨φ4 × φ5, ei⟩ = 0. The
fact that all components of [φ4]β × [φ5]β are non-zero, implies that c3 = 0. Moreover, φ4

and φ5 are linearly independent and so we have c1 = c2 = 0. Other cases to obtain the
complement property is easily follows from the fact that all components of [φ4]β , [φ5]β are
non-zero. □

Corollary 3.1. Let Φ = {ei}3i=1 ∪ {φi}2i=1 be a frame in R3. Then Φ does phase retrieval
if and only if all components of φ1, φ2 and φ1 × φ2 are non-zero.

Proposition 3.1, immediately leads to the following.

Corollary 3.2. Let a, b, c ∈ R \ {0}. Then {ei}3i=1 ∪{(a, b, c), (x, y, z)} for all (x, y, z) ∈ R3

does phase retrieval except on the axes and the planes x =
a

b
y, x =

a

c
z and y =

b

c
z.

We now continue to describe the general form of phase retrieval frames in R4.
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Theorem 3.1. A frame Φ = {ei}4i=1 ∪ {φi}3i=1 in R4 does phase retrieval if and only if the
following conditions are satisfied

(i) ⟨φi, ej⟩ ≠ 0 for all i = 1, 2, 3 and j = 1, 2, 3, 4.
(ii) {φi}3i=1 is linearly independent and ⟨ψ, ej⟩ ̸= 0, for all j = 1, 2, 3, 4 where ψ ∈

(span{φi}3i=1)
⊥.

(iii)
⟨ej , ψσ

1 ⟩
⟨el, ψσ

1 ⟩
̸= ⟨ej , ψσ

2 ⟩
⟨el, ψσ

2 ⟩
, for j, l ∈ {1, 2, 3, 4} when span{φi}⊥i∈σ = span{ψσ

1 , ψ
σ
2 } for every

σ ⊆ {1, 2, 3} with |σ| = 2.

Proof. Suppose that Φ is a phase retrieval frame, then span{ei}i∈σ ∪ {φi}3i=1 = R4 for
σ ⊆ {1, 2, 3, 4} with |σ| = 3, by using the complement property. Thus we conclude that
⟨φi, ej⟩ ̸= 0 for some 1 ≤ i ≤ 3, 1 ≤ j ≤ 4. Also, span{φ1, φ2, φ3, ei} = R4. This shows that
{φ1, φ2, φ3} is linearly independent. Furthermore, if ψ ∈ (span{φi}3i=1)

⊥ and ⟨ψ, ej⟩ = 0
for some 1 ≤ j ≤ n, then we get ψ ∈ span{ej , φ1, φ2, φ3}⊥ = {0}, which is a contradiction,
hence ⟨ψ, ej⟩ ̸= 0 for all 1 ≤ j ≤ 4. Finally, to obtain (iii), without loss of the generality,
assume that σ = {1, 2} and choose two vectors ψσ

1 , ψ
σ
2 orthogonal to φ1 and φ2. Now, if∣∣∣∣⟨ej , ψσ

1 ⟩ ⟨ej , ψσ
2 ⟩

⟨el, ψσ
1 ⟩ ⟨el, ψσ

2 ⟩

∣∣∣∣ = 0, then the linear system{
⟨ej , ψσ

1 ⟩α1 + ⟨ej , ψσ
2 ⟩α2 = 0,

⟨el, ψσ
1 ⟩α1 + ⟨el, ψσ

2 ⟩α2 = 0,

has a non-trivial solution (α1, α2) ̸= (0, 0). Put ξ = α1ej + α2el and assume that m,n /∈
{j, l}. Trivially ξ ̸= 0 and ξ ∈ {em, en, ψσ

1 , ψ
σ
2 }⊥ which is a contradiction. Conversely, let

conditions (i), (ii) and (iii) be satisfied, it is enough to show that Φ has the complement
property. Obviously by (i), we have span{e1, e2, e3, φi} = R4 for i = 1, 2, 3. Furthermore,
we have to show that {e1, e2, φ3, φ4} is linearly independent. Indeed, if

α1e1 + α2e2 + α3φ3 + α4φ4 = 0, (6)

for real scalars αi, 1 ≤ i ≤ 4 and span{ψσ
1 , ψ

σ
2 } = span{φ3, φ4}⊥, then

⟨e1, ψσ
1 ⟩α1 + ⟨e1, ψσ

2 ⟩α2 = 0,

⟨e2, ψσ
1 ⟩α2 + ⟨e2, ψσ

2 ⟩α2 = 0.

Using (iii) it follows that α1 = 0 = α2 also α3 = α4 = 0, by (ii). Thus it is enough to prove
that the set {φ1, φ2, φ3, ei} is linearly independent for each 1 ≤ i ≤ 4. Let

α1φ1 + α2φ2 + α3φ3 + α4ei = 0, (αi ∈ R). (7)

and choose a non-zero ψ ∈ (span{φi}3i=1)
⊥, then 0 = ⟨ψ, α1φ1 + α2φ2 + α3φ3 + α4ei⟩ =

α4⟨ψ, ei⟩. Using (ii) implies that α4 = 0. Moreover φ1, φ2 and φ3 are linearly independent
and so, α1 = α2 = α3 = 0 by (7). Other cases to get the complement property are
similar. □

As a consequence, we obtain the following interesting results for phase retrieval frame
in R4.

Corollary 3.3. Let {ui}4i=1 be an orthogonal basis in R4. Then Φ = {ei}4i=1 ∪{ui}3i=1 does
phase retrieval if and only if we have

(i) ⟨ej , ui⟩ ≠ 0 for all i = 1, 2, 3 and j = 1, 2, 3, 4.

(ii)
⟨ej , ui⟩
⟨el, ui⟩

̸= ⟨ej , u4⟩
⟨el, u4⟩

for all j, l ∈ {1, 2, 3, 4} and 1 ≤ i ≤ 3.

By an inductive approach, we are now ready to describe phase retrieval frames in Rm.
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Proposition 3.2. Let Φ = {ei}mi=1∪{φi}m−1
i=1 be a frame in Rm. Then Φ does phase retrieval

if and only if:

(i) ⟨φi, ej⟩ ≠ 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ m− 1.
(ii) {φ1, φ2, ..., φm−1} is linearly independent and ⟨ψ, ej⟩ ≠ 0 for 1 ≤ j ≤ m, where

(span{φi}m−1
i=1 )⊥ is generated by ψ.

(iii)
∣∣∣(⟨ejl , ψr⟩)1≤l≤m−k

1≤r≤m−k

∣∣∣ ̸= 0, where span{φi1 , ..., φik}⊥ = span{ψ1, ..., ψm−k} for all

{i1, ..., ik} ⊆ {1, ...,m− 1} and {j1, ..., jm−k} ⊆ {1, ...,m}.

4. Phase retrieval dual frames

In this section, we address the problem that, given a phase retrieval frame Φ in Rm

how we can characterize their phase retrieval dual frames. For a frame Φ, we denote by DΦ

the set of all its dual frames. Also we use PDΦ for the subset of all phase retrieval dual
frames. We first state the following lemma which is a very useful tool for obtaining the main
results of this section.

Lemma 4.1. Let Φ = {φi}2m−1
i=1 be a frame in Rm. Then

DΦ =

{{
S−1
Φ φi + ui

}m

i=1

∪
{
S−1
Φ φm+j + vj

}m−1

j=1

; {vj}m−1
j=1 ∈ Rm, ui = −

m−1∑
j=1

⟨S−1
Φ φi, φm+j⟩vj

}
,

where Φ0 = {φi}mi=1 is a Riesz basis.

Proof. Applying Theorem 2.1 shows that every dual frame Φd of Φ has the form

Φd =

{
S−1
Φ φi + ui

}m

i=1

∪
{
S−1
Φ φm+j + vj

}m−1

j=1

,

where {ui}mi=1 ∪ {vj}m−1
j=1 is a Bessel sequence and for every f ∈ H we have

m∑
i=1

⟨f, ui⟩φi +

m−1∑
j=1

⟨f, vj⟩φm+j = 0.

Hence,

m∑
i=1

⟨f, ui +
m−1∑
j=1

⟨S−1
Φ0
φi, φm+j⟩vj⟩φi =

m∑
i=1

⟨f, ui⟩φi +
m∑
i=1

m−1∑
j=1

⟨f, vj⟩⟨φm+j , S
−1
Φ0
φi⟩φi

=

m∑
i=1

⟨f, ui⟩φi +

m−1∑
j=1

⟨f, vj⟩φm+j = 0.

So, ui = −
∑m−1

j=1 ⟨S−1
Φ0
φi, φm+j⟩vj , for all j = 1, 2, · · · ,m. □

Motivated by Lemma 4.1, we are now ready to characterize phase retrieval dual
frames. The following important and applied result, will later play a key role in our main
results. For simplicity, we consider Φ of the form Φ = {ei}mi=1 ∪ {φi}m−1

i=1 .

Theorem 4.1. Let Φ = {ei}mi=1 ∪ {φi}m−1
i=1 be a frame in Rm. If {vj}m−1

j=1 ⊆ Rm such that

{ei −
∑m−1

j=1 ⟨ei, φj⟩SΦvj}mj=1 is a Riesz basis and the vector {ηi}m−1
i=1 = {A(φj + SΦvj)}m−1

j=1

satisfies Proposition 3.2 where A is the matrix of change basis {ei+ui}mi=1 to {ei}mi=1. Then

Φd =

{
S−1
Φ ei −

m−1∑
j=1

⟨ei, φj⟩vj
}
∪
{
S−1
Φ φj + vj

}m−1

j=1

∈ PDΦ.
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Proof. Consider that Φ = {ei}mi=1 ∪ {φi}m−1
i=1 is a frame in Rm and Φd ∈ DΦ. Applying

Lemma 4.1 for following holds Φd = {S−1
Φ ei+ui}mi=1∪{S−1

Φ φj +vj}m−1
j=1 , where {vj}

m−1
j=1 are

arbitrary and ui = −
∑m−1

j=1 ⟨ei, φj⟩vj for all 1 ≤ i, j ≤ m. On the other hand, the matrix

of change basis {ei + ui}mi=1 to {ei}mi=1, denoted by A, is invertible by the assumption.
In fact A−1 = Im×m + (⟨uj , ei⟩)1≤i,j≤m. Thus ASΦΦ

d = {ei}mi=1 ∪ {A(φj + SΦvj)}m−1
j=1 ,

using Proposition 3.2 implies that Φd ∈ PDΦ if {ηi}m−1
i=1 satisfies (3). This completes the

proof. □

The next theorem provides a natural and intrinsic characterization of general form
of phase retrieval dual frames on R2. Note that, by Lemma 4.1, there is an one to one
correspondence between dual frames Φ = {e1, e2, ae1 + be2} as following

DΦ =
{
Φd

u := {S−1
Φ e1 − au, S−1

Φ e2 − bu, S−1
Φ (a, b) + u};u ∈ R2

}
.

Proposition 4.1. Let Φ = {e1, e2, ae1+be2} be a phase retrieval frame in R2 and u = (x, y).
Then the following are equivalent

(i) Φd
u does phase retrieval.

(ii) 
ax+ by ̸= 1

1 + a2 + b2
,

(ab2)x2 + (b3 + b− a2b)xy + (−1− a2)x+ aby + (−a− ab2)y2 ̸= a2,

(−a2b− b)x2 + (−ab2 + a3 + a)xy + a2by2 + (−1− b2)y − abx ̸= b.

(8)

(iii) (x′, y′) := SΦu satisfies 
1− ax′ ̸= by′,

b+ (1 + a2) ̸= abx′,

a+ (1 + b2)x′ ̸= aby′.

(9)

Proof. (i) ⇐⇒ (ii) Since Φ is phase retrieval frame we get ab ̸= 0 by Lemma 3.1. An easy
computations shows that

S−1
Φ =

1

a2 + b2 + 1

[
1 + b2 − ab
−ab 1 + a2

]
.

Then {S−1
Φ e1 − a(x, y), S−1

Φ e2 − b(x, y)} is linearly independent if and only if∣∣∣∣∣∣
1+b2

1
a2+b2+1

− ax −ab
a2+b2+1 − ay

−ab
a2+b2+1 − bx 1+a2

1
a2+b2+1

− by

∣∣∣∣∣∣ ̸= 0.

Or equivalently, ax+ by ̸= 1

1 + a2 + b2
. Furthermore, a dual frame of Φ is given by

Φd
u = {S−1

Φ e1 − au, S−1
Φ e2 − bu, S−1

Φ φ+ u},
where u = (x, y) ∈ R2. So

SΦΦ
d
u =

{(
1− ax− a3x− a2by,−a2bx− ay − ab2y

)
,(

− bx− ba2x− b2ay, 1− ab2x− by − b3y
)
,(

a+ x(1 + a2) + aby, b+ abx+ y(1 + b2
)}
.

The matrix

A =
1

a3x+ ax+ ab2x+ b3y + a2by + by − 1

[
1− ab2x− b(1 + b2)y b(1 + a2)x+ ab2y
a2bx+ a(1 + b2)y 1− a(1 + a2)x− a2by

]
,
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is the change of basis matrix from{(
1− ax− a3x− a2by,−a2bx− ay − ab2y

)
,
(
− bx− ba2x− b2ay, 1− ab2x− by − b3y

)}
to {e1, e2}. Thus

A−1SΦΦ
d
u =

{
e1, e2,

1

(a3 + a+ ab2)x+ (b3 + a2b+ b)y − 1
×(

(ab2)x2 + (b3 + b− a2b)xy − (1 + a2)x+ aby − (a+ ab2)y2 − a2,

− (a2b+ b)x2 + (−ab2 + a3 + a)xy + a2by2 − (1 + b2)y − abx− b
)}
.

Therefore, Φd
u is phase retrieval dual frame on R2 if and only if (8) is satisfied by the assertion

after Lemma 3.1.
(i) ⇐⇒ (iii) Phase retrieval property is preserved under invertible operators. Hence

Φd
u does phase retrieval if and only if Φ† =

{
e1 − aSΦu, e2 − bSΦu, (a, b) +SΦu

}
does phase

retrieval. Due to Lemma 3.1, Φ† =
{
(1−ax′, ay′), (−bx′, 1−by′), (a−x′, b−y′)

}
does phase

retrieval if and only if (9) holds. □

5. Phase retrieval frames Φ = {φi}ni=1 in Rm when n > 2m− 1

Let Φ = {φi}ni=1 be a frame in Rm. Due to Theorem 2.2, n ≥ 2m− 1. In Section 3,
we found a concrete form of phase retrieval frames Φ = {φi}2m−1

i=1 based on some conditions
for the components of φi’ s. In this section, we continue to describe phase retrieval frames
Φ = {φi}ni=1 when n > 2m− 1. The next lemma describes this fact for m = 2.

Lemma 5.1. Let Φ = {φi}ni=1 be a frame for R2 such that {φ1, φ2} is a Riesz basis for R2

and 0 ̸= φi = (xi, yi), 1 ≤ i ≤ n. Then Φ does phase retrieval if and only if

(xiy2 − x2yi)(x1yi − xiy1) ̸= 0, (10)

for some 3 ≤ i ≤ n.

Proof. Assume that (10) holds for some i, then by Lemma 3.1, {φ1, φ2, φi} does phase
retrieval and so Φ is also phase retrieval.

Conversely, in contrary assume that

(xiy2 − x2yi)(x1yi − xiy1) = 0, (3 ≤ i ≤ n) (11)

Let {φi}ni=1 does phase retrieval, then {Aφi}ni=1 is also phase retrieval, where

A =
1

x1y2 − y1x2

[
y2 − x2
−y1 x1

]
.

Actually A is the change of basis matrix from {φ1, φ2} to {e1, e2}.
Take σ = {1 ≤ i ≤ n; xiy2 − x2yi = 0}. Using (11) we obtain

σc = {1 ≤ i ≤ n; x1yi − xiy1 = 0},
since φi ̸= 0, for 1 ≤ i ≤ n. On the other hand neither span{Aφi}i∈σ = R2 nor
span{Aφi}i∈σc = R2. Hence, Φ does not phase retrieval. This is contrary to the assump-
tion. □

As a demonstration of Theorem 2.2, we immediately obtain the following characteri-
zation for phase retrieval frames on R3.

Proposition 5.1. Let Φ = {ei}3i=1∪{φi}3i=1 be a frame in R3. Then Φ does phase retrieval
if and only if the following holds

(i) For all 1 ≤ l ≤ 3 there exist distinct i, j, k such that ⟨φi, el⟩ ≠ 0 or ⟨φj × φk, el⟩ ≠ 0.
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(ii) The vectors {φi}3i=1 are linearly independent or for all 1 ≤ l ≤ 3 there exist distinct
1 ≤ j, k ≤ 3 such that ⟨φj × φk, el⟩ ≠ 0.

Proof. Assume that Φ dose phase retrieval and 1 ≤ l ≤ 3. Using Theorem 2.2 for distinct
i, j, k ∈ {1, 2, 3} where l ̸= j, k we have span{ej, ek, φi} = R3 or span{el, φj, φk} = R3 for
i, j, k ∈ {1, 2, 3} , or equivalently, ⟨φi, el⟩ ̸= 0 or ⟨φj × φk, el⟩ ̸= 0. This proves (i). To
show (ii), assume that {φi}3i=1 is not linearly independent then span{el, φ1, φ2, φ3} = R3

for every l ∈ {1, 2, 3}. By using Theorem 2.2 this easily follows that span{el, φj, φk} = R3

for some 1 ≤ j ̸= k ≤ 3. In particular ⟨φj × φk, el⟩ ≠ 0. Conversely, let conditions
(i) and (ii) be satisfied. It is enough to show that Φ has the complement property. By
(i), span{ej, ek, φi} = R3 or span{el, φj, φk} = R3 is fulfilled. Other cases to obtain the
complement property is easily obtained by condition (ii). □

The advantage of using Proposition 5.1 lies in the fact that, if a frame with five
elements in R3 does not phase retrieval, then by adding an appropriate member, we may
obtain a phase retrieval frame. The following example illustrates this point well.

Example 5.1. Let Φ = {ei}3i=1 ∪ {φi}3i=1 be a frame in R3 where φ1 = (a, b, c), φ2 =
αφ1, φ3 = (x, y, z) and abc ̸= 0. Then Φ dose phase retrieval if and only if

(i) xyz ̸= 0,

(ii) x ̸= a

b
y, x ̸= a

c
z, y ̸= b

c
z.

Proof. Assume that Φ dose phase retrieval frame in R3. Clearly, by the assumption ⟨φ1 ×
φ2, el⟩ = 0 for all l = 1, 2, 3. Using (i) of Proposition 5.1 we conclude that xyz ̸= 0.
Furthermore, according to (ii) of Proposition 5.1 and the fact that ⟨φ1 × φ2, el⟩ = 0 we
have ⟨φ1 × φ3, el⟩ ̸= 0 or ⟨φ2 × φ3, el⟩ ≠ 0 for all l = 1, 2, 3. So, since φ1 and φ2 are
linearly independent. It is sufficient to ⟨φ1 × φ2, el⟩ ≠ 0 for all l = 1, 2, 3. That means

x ̸= a

b
y, x ̸= a

c
z, y ̸= b

c
z. Conversely, if conditions (i) and (ii) are satisfied. It is enough

to show that Φ has the complement property. Obviously, span{ej, ek, φi} = R3 by (i).
Moreover, span{ej, ek, φ1, φ3} = span{ej, ek, φ2, φ3} = R3, by (ii) for every 1 ≤ j, k ≤ 3.
Finally, span{ej, ek, φ1, φ2} = R3 because of the assumption abc ̸= 0. □

6. Numerical Results: Application and Analysis

Let Φ = {φi}ni=1 be a frame for Hm. It is easy to show that Φ = {φi}ni=1 is a
phase retrievable frame for Hm if and only if αΦ is given by (4) is injective. Thus we can
reconstruct every vector in Hm from the magnitude of its frame coefficients as follows

βΦαΦ[x] = [x], (x ∈ Hm), (12)

where βΦ is a left inverse of αΦ. Finding a general form of βΦ is highlighted in the next.

6.1. Reconstruction by 2D phase retrieval frames

Consider a phase retrieval frame Φ = {e1, e2, (α, β)} in R2, then

αΦ : R2 −→ R3, αΦ[(x1, x2)] = {|x1|, |x2|, |αx1 + βx2|}.
It is not difficult to see that βΦ : αΦ −→ H is given by

βΦ(a, b, c) =

{
[(a, b)], c = |αa+ βb|,
[(a,−b)], c = |αa− βb|,

where a = |x1|, b = |x2|, c = |αx1 + βx2|. Applying this approach, for phase retrieval frame
Φ = {(1, 0), (0, 1), (1, 1)} in R2 we obtain

[(x1, x2)] = βΦ

(
|x1|, |x2|, |x1 + x2|

)
, (13)
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where

βΦ(|x1|, |x2|, |x1 + x2|) =

[(|x1|, |x2|)], |x1 + x2| =
∣∣∣|x1|+ |x2|

∣∣∣,
[(|x1|,−|x2|)], |x1 + x2| =

∣∣∣|x1| − |x2|
∣∣∣.

Take x = (4, 1). To examine the effectiveness of (13) and (1) we remove the third sentence
in both of them. This means that

βΦαΦ(|4|, |1|, 0) = ±[(4,−1)],

2∑
i=1

⟨x, S−1
Φ φi⟩φi = (

7

3
,−2

3
),

are approximations for x. Obviously, (4) may be deals to adaptable results.

6.2. Reconstruction by 3D phase retrieval frames

Suppose that Φ = {e1, e2, e3, (α1, α2, α3), (β1, β2, β3)} does phase retrieval in R3, then

αΦ : H −→ R5, αΦ[(x1, x2, x3)] = {|x1|, |x2|, |x3|, |α1x1+α2x2+α3x3|, |β1x1+β2x2+β3x3|}.

Straightforward calculation indicates

βΦ(a, b, c, d, e) =


[(a, b, c)], d = |α1a+ α2b+ α3c|, e = |β1a+ β2b+ β3c|,
[(a,−b,−c)], d = |α1a− α2b− α3c|, e = |β1a− β2b− β3c|,
[(−a, b,−c)], d = | − α1a+ α2b− α3c|, e = | − β1a+ β2b− β3c|,
[(−a,−b, c)], d = | − α1a− α2b+ α3c|, e = | − β1a− β2b+ β3c|,

(14)

where

a = |x1|, b = |x2|, c = |x3|, d = |α1x1 + α2x2 + α3x3|, e = |β1x1 + β2x2 + β3x3|.

We want to compare the classical reconstruction formula (1) and the phase retrieval recon-
struction (12). To serve this purpose, consider the phase retrieval frame

Φ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 2, 1), (1, 1, 2)},

obtained by Proposition 3.1. With the canonical dual{
(
5

6
,−1

4
,−1

4
), (−1

4
,
3

8
,−1

8
), (−1

4
,−1

8
,
3

8
), (

1

12
,
3

8
,−1

8
), (

1

12
,−1

8
,
3

8
)

}
.

We are going to reconstruct a vector x = (x1, x2, x3) in R3 by using the frame coefficients and
their magnitude. Consider a random signal (a vector with the length 60) on the interval [0, 1]
and divide it in to sub vectors with the length 3. Then each sub vector can be reconstructed
by (1) and (12) after removing the fourth or the fifth frame coefficient in each process. Mean
squared error (MSE) is defined as mean or average of the square of the difference between
actual and estimated values. For example, if {ŷj}nj=1 is an estimate of {yj}nj=1, then its
MSE is calculated as

MSE =
1

N

N∑
j=1

(ŷj − yj)
2.

In signal processing, a lower MSE value indicates a closer match between the estimated
signal and the true signal, implying better accuracy or fidelity of the estimation method.

Finally, we collect the average mean square error (MSE) of every sub vector and
compute the MSE for both approximations on [0, 1]. We summarize the results for some
random signals in the Table 1. It is worth wide to mention that in phase retrieval recon-
struction by (12) after assuming |⟨x, φi⟩| = 0, i = 4 or i = 5 for a sub vector x it may
(|x1|, |x2|, |x3|, |⟨x, φ4⟩|, 0) or (|x1|, |x2|, |x3|, 0, |⟨x, φ5⟩|) be outside of R(αΦ) and so we can
not calculate βΦ for them from (14). In practice, we achieve this, by finding an element in
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the R(αΦ) in which has minimum distance to βΦ(|x1|, |x2|, |x3|, |⟨x, φ4⟩|, 0). Then we con-
sider βΦ on this element instead of βΦ(|x1|, |x2|, |x3|, |⟨x, φ4⟩|, 0). A similar argument can
be applied for the element βΦ(|x1|, |x2|, |x3|, 0, |⟨x, φ5⟩|).

MSE
Signals Classical reconstruction Phase retrieval reconstruction
Signal 1 0.0043 0.0036
Signal 2 0.0084 0.0056
Signal 3 0.0144 0.0179
Signal 4 0.0098 0.0060
Signal 5 0.0142 0.0030

MSE
Signals Classical reconstruction Phase retrieval reconstruction
Signal 1 0.0104 0.0103
Signal 2 0.0059 0.0037
Signal 3 0.0014 0.0038
Signal 4 0.0052 0.0012
Signal 5 0.0163 0.0071

Table 1. The table up (down) displays the MSE of estimates
for different random signals by the classical reconstruction for-
mula (1) and phase retrieval reconstruction (12) when Φ =
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 2, 1), (1, 1, 2)} under removing the fourth
(fifth) coefficient.

Overall, our results confirm that using the phase retrieval method is more effective in
reconstructing signals. This is especially evident when considering that the phase retrieval
method can reconstruct the signal based solely on the magnitudes of the frame coefficients.
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