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COMPARATIVE THREE DIMENSIONAL FRACTURE
ANALYSES OF CRACKED PLATES

P.M.G.P. MOREIRA!, S. D. PASTRAMA?, P.M.S.T. de CASTRO’

In aceasti lucrare, se prezintd solutii tridimensionale pentru factorul de
intensitate a tensiunii in placi cu fisuri centrale, utilizand metoda elementelor finite.
Pentru comparatie, pe langa solutiile din literatura de specialitate, in articol se
obtin si rezultate prin analize bidimensionale atdt cu elemente finite cdt si cu
metoda duald a elementelor de frontierd. Sunt prezentate concluzii referitoare la
variatia factorului de intensitate a tensiunii pe grosimea pldcii precum gsi la
acuratetea analizei tridimensionale, functie de discretizarea utilizata.

In this paper, three dimensional stress intensity factor solutions are obtained
for a plate with a central crack using the Finite Element Method. For comparison of
the 3D solutions, further to reference solutions given by the literature, two
dimensional Finite Element analyses and 2D Dual Boundary Element Method
analyses were performed. Conclusions are drawn regarding the variation of the
Stress Intensity Factor along the thickness and the accuracy of the 3D analyses
depending on the mesh refinement.

Keywords: finite element method, dual boundary element method, stress intensity
factor

1. Introduction

In many structures, cracks may appear during manufacturing process or in
service. Such cracks may grow in time, due to either static or fatigue loading,
leading to the loss of strength in the structure. In order to avoid possible
catastrophic failures, the behaviour of the crack must be known. For this, the
knowledge of the crack size, service stress, material properties and stress intensity
factor (SIF) are required. Many researchers have drawn their attention to the
analytical, numerical or experimental methods of calculating the stress intensity
factor. For complex configurations, numerical methods are used, as the finite
element method (FEM) or the boundary element method (BEM). In the field of
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numerical investigations of cracked structures, the two-dimensional (2D) analyses
are usually adopted, since they are much simpler and less time consuming than the
three dimensional (3D) ones, and with a reasonable degree of accuracy in most
cases. However, the state of deformation near the crack tip is always 3D, as it was
shown since the early work of Kassar and Sih [0]. That is why, especially in the
last years that have brought an unprecedented development of computers, the 3D
analysis of cracked structures has been used extensively, in order to produce more
accurate numerical solutions for the stress and strain fields around the crack tip.

The plate-like structures having different types of cracks were analyzed by
many researchers. The first analysis of a plate of finite thickness containing a
through crack was made by Hartranft and Sih [0], [0] who obtained the stress
distribution close to the crack front and made an attempt to determine the stress
intensity factor distribution along the thickness. Further, other researchers have
drawn their attention to this problem, with focus on the crack tip singularity and
the stress behaviour in the boundary layers, at the intersection of the crack front
with the free surface of the plate, see for example [0], [0], [O].

Three dimensional analyses of thin cracked plates were also presented by
Nakamura and Parks [0] and Shivakumar and Raju [0], who performed refined 3D
finite element analyses in order to obtain stress distributions and stress intensity
factor values.

A recent detailed 3D analysis was presented by Kwon and Sun [0] who
investigated the stress field near the crack tip, the degree of plane strain and the
crack tip singularity. They suggested also a simple technique to determine 3D SIF
at the plate mid-plane from a 2D analysis.

In this paper, refined 3D finite element analyses are performed in order to
obtain the variation of the stress intensity factor along the thickness of a finite
plate having a through-the-thickness central crack. Three different thickness
values were used, in order to have both thin and thick plate behaviour.

The results were compared with values from the literature and also with
results obtained using both the 2D FEM and the dual boundary element method
(DBEM). The influence of the specimen geometry and mesh refinement on the
SIF values and also and the drop of the SIF values at the intersection of the crack
front with the free surface of the plate are discussed.

Conclusions are drawn regarding the accuracy of the 3D analysis and the
necessity of using such a time-consuming analysis instead of a simpler 2D one.

2. Numerical techniques

Two numerical methods are used in this paper in order to determine SIF:
the Finite Element Method and the Dual Boundary Element Method (DBEM).
The J integral technique is used both in FEM and DBEM analyses to obtain SIF
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solutions. In DBEM, results were also obtained using the singularity subtraction
technique (SST) [0], [0]. A brief description of these techniques is given further.

2.1. The J-integral technique

The J integral is a contour integral, originally defined assuming non-linear
elastic behaviour, introduced by Eshelby [0] and Rice [0]. The J integral is widely
accepted as a fracture mechanics parameter for both linear and nonlinear material
response. It is related to the energy release associated with crack growth and it is a
measure of the intensity of deformation at a notch or crack tip, especially for
nonlinear materials. If the material response is linear, the J integral can be related
to the stress intensity factors. The finite element code ABAQUS [0] provides a
procedure for evaluation of the J integral based on the virtual crack
extension/domain integral methods. This parameter avoids the difficulties of the
characterization of the stress field near the crack tip using local parameters such
as the Crack Opening Displacement (COD), because its value is independent of
the chosen contour / surrounding the crack tip (Fig. 1).

o

Fig. 1. Contour for the determination of J integral.

The analytical definition of J integral is given by the relationship:

J=jw-dy—fa—“ds, (1)
- ox

where w is the strain energy density in points of the contour, T is the traction
vector, u is the displacement and ds the element of the contour 7

For calculation of the J integral in a 2D analysis using ABAQUS, the
domain is described through rings of elements around the crack mouth. Different
contours are created. The first contour consists of the elements linked directly to
the nodes of the crack tip. The following contour consists of a ring of elements in
contact with the first. Each subsequent contour is defined by the next ring of
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elements. Even with coarse meshes it is possible to obtain precise values of J
integral, [0].

The stress intensity factors K;, Kj; and Kj;; are used in linear elastic fracture
mechanics to characterize the local crack-tip stress and displacement fields. They
are related to the energy release rate (the J integral) through the equation:

J= L kT gk (2)
87

where K = [K;, K, Ky]” are the SIFs and B is called the pre-logarithmic energy
factor matrix. For homogeneous and isotropic materials, the above equation
becomes simpler as follows:

1

J = (K,z+K,2,)+EK,2H, (3)

| —

where E = E for plane stress and E = E /(1—v*) for plane strain, axial symmetry,

and three dimensions.

The SIF values obtained near the surface should be neglected due to
difficulties of J integral calculation near a free surface [0]. A solution to this issue
is to refine the mesh in this area. In the 3D analyses the SIF value obtained using
only nodes in the outside surface of the plate were not taken into account.

For 3D SIF, results are presented in two different ways. In a first study,
results for coordinates along the thickness are presented; each coordinate
represents a layer of nodes. In the second study, using the three results of SIF for
each element, and according to Fig. 2 and equation 4, an average value of SIF is
calculated as:

K,+4K, +K
Kaverage = 4 6B = (4)

R
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Fig. 2. Average stress intensity factor for an element.

When comparing a 3D analysis with a 2D one, attention should be given to
the type of problem that is analysed: plane strain or plane stress. When a thin plate
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is loaded parallel to the plane of the plate and the load is distributed uniformly
over the thickness, the stress components c,, 1, and ty, are assumed to be zero,
[0]. When the thickness of the body is very large, it is assumed that a plane strain
state is present. In this case, vy, Y,x and g, are zero.

2.2. The Singularity Subtraction Technique

The SST technique associated with the Dual Boundary Element Method
uses a particular solution of the BEM analysis, representing the singular field
around the crack tip of a semi-infinite crack. Such a singular field is defined using
the first term of the Williams series expansion.

One point in front of the crack tip is considered in this technique,
implemented in DBEM in the post-processing phase [0]. The normal and shear
stresses, denoted in Fig. 3 as t; = ¢ and t, = 1 respectively at an internal point at a
distance ¢ as close as possible to the crack tip, are determined from the boundary
element analysis.

The stress intensity factors K; and Kj; are obtained from the following
equations:

Fig. 3. Tractions at a point.

K] :t[VZﬂ'I"

(5)
K]I =t11\/27zr

In equations (5), the stress o is taken as o, (a numerical approximation of
the stress at an internal point P placed at a distance ¢ ahead of the crack tip, Fig.
4). Also, one must use a value of the distance » for which that stress should exist.
Notice that ¢ and » can have independent values, since they represent different
approximations. The calibration of » was carried out taking into account several
reference cases with known values of SIFs. In a previous work by Matos et al. [0],
the values which give good results for a large variety of tested cases, were
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adopted as €= 0, 0075 /, and » = 0,0011 /,, where /, is the length of the boundary
element closest to the crack tip.

Gi

Fig. 4. Stress o, in a point P at a distance & of the crack tip.

3. The studied structure

The structure considered for the present analysis is a center cracked finite
plate, subjected to a remote uniform stress ¢. Several geometric configurations for
this study are defined according to Fig. 5. Note that the origin of the system of
axes lies at the middle thickness plane.
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Fig. 5. Plate with a central crack.

The considered values of the ratios A/b, ¢/b and t/c are listed in Table 1,
together with the reference solutions used for comparison.
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Table 1
The studied geometries of the plate
h/b c/b t/c Reference value
0.5 3D FEM; 2D FEM and DBEM,; literature
0.5 0.5 0'12 > 2D FEM and DBEM,; literature

4. Results and discussions

According to Tada et al [0] the nondimensional 2D SIF K/(G\/% )for the
center cracked plate with h/b = 0.5 and ¢/b = 0.5 is 1.9145. First, 2D analyses
were performed, using both FEM and DBEM. For the 2D DBEM analysis, SIFs
were obtained using the J integral technique and the SST..

The finite element analysis was performed using 6840 eight noded plane
CPES8 elements, while for the DBEM analysis the mesh contained only 60
elements (Fig. 6).

Fig. 6. Deformed and undeformed mesh for the 2D DBEM analysis

The results obtained with these techniques are listed in Table 2.

Table 2
2D results, FEM 2D and DBEM
Tada [0] FEM 2D (J integral) DBEM (J integral) DBEM (SST)
Solution | Difference [%] | Solution | Diference [%] | Solution | Diference [%]
1.9145 | 1.9651 2.64 1.9884 3.86 1.9480 1.75

Then, a 3D FEM analysis was performed, for each of the three values of
the ratio #/c, presenting the results in two different ways (nodal and element SIF),
as mentioned in paragraph 1.1.
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In order to calculate SIF for the 3D analysis, a mesh with 19440 elements
and another one with 67200 elements were used in all cases. Only half of the plate
was modelled. In the first mesh, 6 elements were placed along the thickness while
in the second mesh 16 elements were used along the thickness. The plate was
modelled with 20 nodes brick isoparametric elements (C3D20).

4.1. The case t/c =0.5

In Fig. 7 is presented a detail of the less refined mesh showing the stress
distribution in the load direction when a remote stress of 100 units is applied.

Fig. 7. Mesh detail for the 3D analysis: plot of the stress &, (19440 elements, #/c = 0.5).

Table 3 and Table 4 show the values of the nodal non-dimensional K
along the thickness for the two different meshes used.

Studying the differences between the 3D FEM and the results from [0],
one can see that in this case the use of a more refined mesh is useless; the errors
are practically the same.

Fig. 8 shows the values of non-dimensional K along the thickness for the
different meshes used, together with the reference 3D solutions found in Raju and
Newman [0] and Atluri and Kathiresan [0] and the 2D results from this study.

Table 3
Non-dimensional 3D SIF along the thickness for the mesh with 19440 elements (t/c = 0.5)
Node layer z/t K/(c Jre ) Tada [0] Difference [%]
1 0,5000 1,8297 -4,4317
2 0,4167 2,0059 4,7751
3 0,3333 2,0613 7,6665
4 0,2500 2,0700 1,9145 8,1230
5 0,1667 2,0817 8,7317
6 0,0833 2,0831 8,8078
7 0,0000 2,0846 8,8839
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Table 4
Non-dimensional 3D FEM SIF along the thickness for the 67200 elements mesh (t/c = 0.5)
Node layer z/t Kl(c~7xc) Tada [0] Difference [%]
1 0,5000 1,7189 -10,2145
2 0,4688 1,9316 0,8945
3 0,4375 1,9986 4,3946
4 0,4063 2,0205 5,5360
5 0,3750 2,0423 6,6773
6 0,3438 2,0511 7,1339
7 0,3125 2,0613 7,6665
8 0,2813 2,0671 7,9708
10 0,2500 2,0729 1,9145 8,2752
11 0,2188 2,0758 8,4274
12 0,1875 2,0788 8,5795
13 0,1563 2,0802 8,6556
14 0,1250 2,0831 8,8078
15 0,0938 2,0831 8,8078
16 0,0625 2,0846 8,8839
17 0,0313 2,0846 8,8839
18 0,0000 2,0846 8,8839
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Fig. 8. Non-dimensional K along thickness (¢#/c = 0.5).

Table 5 presents values of the non-dimensional K in each element along
the thickness at a crack tip for the 19440 elements mesh, calculated using equation
(4). Layers 1 and 6 contain elements that lie on the surfaces; since the external
nodes layer is averaged with the other two subsequent layers of nodes, the SIF
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were not disregarded. SIFs obtained using the 3D FEM analyses are compared
with Tada and DBEM SST results.

Table 5
3D FEM K/(c v/nc ) for the 19440 elements mesh (t/c = 0.5)
Element FEM 3D Tada [0] DBEM SST
layer Ref. value Difference [%] solution Difference [%]
1 1,9858 3,723 -0,132
2 2,0705 8,148 4,129
3 2,0831 8,808 4,764
4 2,0831 1.9145 8,808 1.9884 4,764
5 2,0705 8,148 4,129
6 1,9858 3,723 -0,132

From the table above, it can be concluded that DBEM results show a good
agreement with FEM 3D results.

4.2 The case t/c = 0.25

Table 6 and Table 7 show the values of non-dimensional K along the
thickness for the different meshes used in this case.

Again, one can in this case the use of a more refined mesh is useless; the
errors are practically the same.

Fig. 9 shows the values of non-dimensional K along the thickness for the
different meshes used, DBEM J integral and SST analysis, and FEM 2D analysis.

Table 6
Non-dimensional 3D FEM SIF along thickness for the 19440 elements mesh (t/c = 0.25)
Node layer z/t K/(c Jre ) Tada [0] Difference [%]
1 0,5000 1,8122 -5,3448
2 0,4167 2,0074 4,8512
3 0,3333 2,0642 7,8187
4 0,2500 2,0744 1.9145 8,3513
5 0,1667 2,0875 9,0361
6 0,0833 2,0890 9,1122
7 0,0000 2,0919 9,2644
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Table 7

Non-dimensional 3D FEM SIF along thickness for the 67200 elements mesh (t/c = 0.25)

z/t

Fig. 9. Non-dimensional K along the thickness (#/c = 0.25).

Node layer z/t K/(G\/E ) Tada [0] | Diference [%]
1 0,5 1,6884 -11,8124
2 0,468751 1,9316 0,8945
3 0,4375 1,9957 4,2425
4 0,406251 2,0219 5,6121
5 0,375 2,0453 6,8295
6 0,343751 2,0540 7,2860
7 0,3125 2,0642 7,8187
8 0,281251 2,0715 8,1991
10 0,25 2,0773 1.9145 8,5035
11 0,218751 2,0802 8,6556
12 0,1875 2,0846 38,8839
13 0,156251 2,0860 38,9600
14 0,125 2,0890 9,1122
15 0,093751 2,0904 9,1883
16 0,0625 2,0904 9,1883
17 0,031251 2,0919 9,2644
18 0 2,0919 9,2644
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Table 8 presents values of non-dimensional K in each element along the
thickness at the crack tip for the mesh with 19440 elements. Again, DBEM results
show a good agreement with FEM 3D results.

Table 8
3D FEM K/(c v/z¢c ) for the 19440 elements mesh (t/c = 0.25)
Element FEM 3D Tada [0] DBEM SST
layer ref value Difference [%] solution Difference [%]
1 1,9843 3,646 -0,206
2 2,0749 8,377 4,349
3 2,0892 9,125 5,069
4 2,0892 19145 9,125 1.9884 5,069
5 2,0749 8,377 4,349
6 1,9843 3,646 -0,206

4.3 The case t/c=1

In Table 9 and Table 10, the values of non-dimensional K along the
thickness for the different meshes used are listed. Fig. 10 shows the values of non-
dimensional K along the thickness for the different meshes used, DBEM J integral
and SST analysis and FEM 2D analysis.
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Fig. 10. Non-dimensional K along the thickness (t/c = 1).
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Table 9
Non-dimensional 3D FEM SIF along thickness for the 19440 elements mesh (t/c = 1)
Node layer z/t K/(c Jre ) Tada [0] Difference [%]
1 0,5000 1,8500 -3,3665
2 0,4167 2,0074 4,8512
3 0,3333 2,0554 7,3621
4 0,2500 2,0554 1.9145 7,3621
5 0,1667 2,0627 7,7426
6 0,0833 2,0613 7,6665
7 0,0000 2,0613 7,6665
Table 10
Non-dimensional 3D FEM SIF along thickness for the 67200 elements mesh (t/c = 1)
Node layer z/t K/(g\/E ) Tada [0] Diference [%]
1 0,5 1,7510 -8,5406
2 0,468751 1,9404 1,3511
3 0,4375 2,0074 4,8512
4 0,406251 2,0219 5,6121
5 0,375 2,0394 6,5251
6 0,343751 2,0467 6,9056
7 0,3125 2,0525 7,2099
8 0,281251 2,0554 7,3621
10 0,25 2,0584 1.9145 7,5143
11 0,218751 2,0598 7,5904
12 0,1875 2,0613 7,6665
13 0,156251 2,0613 7,6665
14 0,125 2,0613 7,6665
15 0,093751 2,0627 7,7426
16 0,0625 2,0627 7,7426
17 0,031251 2,0627 7,7426
18 0 2,0627 7,7426

Table 11 presents values of non-dimensional K in each element along the
thickness at a crack tip for the 19440 elements mesh.
In this case also, DBEM results show a good agreement with FEM 3D

results.

4.4 Comparison of results

A comparison between the 3D SIF results obtained for the several plate
thickness and the 2D reference results is presented in Fig. 11. From this figure, a
similar trend followed by the 3D SIF can be noticed both in this analysis and in
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the 3D reference values from the literature: the stress intensity factor has a slow
variation at the middle of the plate but decreases dramatically near the free
surface.

Table 11
3D FEM K/(c v/7c ) for the 19440 elements mesh (t/c = 1)
Element FEM 3D Tada [0] DBEM SST
layer ref value Diference [%] solution Diference [%]
1 1,9892 3,90 0,04
2 2,0567 7,43 3,43
3 2,0615 7,68 3,68
n 2.0615 1.9145 7.68 1.9884 3.68
5 2,0567 7,43 3,43
6 1,9892 3,90 0,04
2,0 1
_ 181
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Fig. 11. Non-dimensional K for each studied plate thickness.
5. Conclusions

In this paper, FEM and DBEM analyses were used in order to obtain SIF
solutions for a cracked finite plate, with the J integral and Singularity Subtraction
techniques. To convert the J integral into SIF values in a 2D analysis, the
expressions J = K;/E for plane stress and J = K;*- (I — V/)/E for plane strain are
used. Nevertheless, it should be noticed that the J solution is not the same in a
plane stress and plane strain analysis. So, at the end it results the SIF for a plane
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stress analysis is equal to the SIF for a plane strain analysis. In a 2D numerical
simulation, despite carrying out a plane strain analysis or a plane stress analysis,
leading to different strain and stress results, K; solutions are independent of the
type of analysis.

In a 3D analysis, SIF has different values through the thickness. So, a 2D
SIF analysis is only an approximation of the exact solution since there is no
difference on plane stress or plane strain SIF solutions for LEFM.

Values of SIF obtained in Raju and Newman [0] and Atluri and Kathiresan
[0] are lower than those obtained in the 3D FEM analyses. A parametric study
was carried out in order to assess the influence of mesh refinement in the final
solution. It was found that a good agreement between the present 3D analysis and
the solution in [0] is obtained even when using coarse meshes. Nevertheless it
should be reminded that the 3D references solutions were obtained with FEM
meshes created in the middle 70’s when computational resources were quite low.

When comparing reference SIF solutions (literature or 2D FEM or DBEM)
with 3D FEM SIFs, the best agreement was found when using the SIF value in the
external layer of elements.
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