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FAST METHODS FOR IDENTIFICATION OF VIBRATION
DEFECTS

Dan STEFANOIU', Janetta CULITA?, Florin IONESCU”

Diagnoza de defecte este un domeniu care a atins maturitatea in ultimii 10
ani. Succesul monitorizarii unui sistem In functiune, in vederea detectarii de
comportamente anormale, depinde intr-o masurd covirsitoare de semnalele capabile
sa codifice informatia despre aceste defecte. Un astfel de semnal este, de exemplu,
vibratia emisda de sistemele mecanice. Exista mai multe tehnici de diagnoza a
sistemelor mecanice plecind de la vibratii. In acest articol, discutia este concentrata
numai asupra citorva tehnici rapide §i usor de implementat. Printre ele, cea bazata
pe analiza de anvelopd spectrald a stirnit un mare interes in industrie.

Fault diagnosis is a domain that has reached its maturity within the last
decade. The success of monitoring aiming to detect flaws during the functioning of
some system tremendously depends on the signals which are encoding the
information about possible defects. Such a signal is, for example, the vibration
produced by mechanical systems. Several techniques have been devised in order to
detect defects starting from vibrations. The paper focuses only on fast and easy to
implement such techniques, among of which the one based on spectral envelope
analysis is of the greatest interest in industry.

Keywords: time domain synchronous averaging, spectral envelope analysis.

1. Introduction

Acquiring vibrations in order to detect flaws of mechanical systems in
operation is not a new idea. Methods of mechanical fault detection and diagnosis
(fdd) have been devised even at the early stages of machinery history. Although
the methods were rather empirical and required a great deal of experience from
the human operator supervising the system, the defects could be detected in time.
Some of such methods are described in [1] and [2]. Some other methods are
targeting the automation of fault diagnosis, starting from the spectral
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representation of vibration and a set of associated statistical parameters, such as:
the root mean square (RMS) or the peak value.

For example, a very interesting approach based on statistics and pattern
recognition has been introduced in [3]. This is in fact an attempt of human
reasoning automating, which resulted in a quite efficient and simple fdd
algorithm, though with unavoidable limitations. A different approach is
introduced in [4], where one assumes the largely accepted idea that human
reasoning is also fuzzy. It follows that solutions to a problem could be issued even
from unclear, vague or ambiguous information, i.e. from information, which is
strongly affected by uncertainty. Usually, the operator selects the most plausible
diagnostic, according to the available data. Therefore, the operator’s experience is
crucial for diagnosis accuracy. Unfortunately, the operator has to cope not only
with external perturbations corrupting the data, but also with his/her own
subjectivism. In order to increase objectivity, the operator relies on simple
statistical assessments. The reasoning hidden behind data analysis could thus be
automated by performing a combination between spectral statistics and fuzzy
clustering (in entropy sense [3]). In this way, both subjectivism and perturbations
influence decrease.

However, the most efficient methods in early detection of defects are using
Signal Processing (SP) techniques [6]. Differently from many typical SP
applications, where the noise attenuation is a fundamental requirement, when
using vibrations for fdd, the noise is the most concerned part in the analysis. This
is due to the fact that not the natural oscillations of machinery could encode the
defective behavior, but the noise corrupting them. Moreover, the applications
revealed that the signal-to-noise ratio (SNR) is extremely small for vibrations
encoding information about defects. Therefore, the models of vibration used in
fdd are actually models of their noisy parts, encoding information about defect
types and severity [1].

The simple structure and large integration within mechanical systems
made bearings extremely interesting for fdd in automatic manner [7]. The various
bearings defects (as described in [8], [7] or [2]) are mainly encoded by the
medium or high sub-bands of vibration spectrum [9]. The effect is due to the
specific micro-shocks of defects, which are forcing the sensor to reach the
resonance state [1]. Unfortunately, the defect shocks are mixed in an unknown
manner with other parasite signals coming from the environment or produced by
interferences. Therefore, the detection techniques should be able both to denoise
the spectrum and to focus on the sub-bands where the defect seems to be encoded.

One of the most popular method to extract information about defects in
bearings (and geared coupling) is the (Spectral) Envelope Analysis (EA). This
method is described and employed in a case study within the last two sections (3
and 4) of this article. The next section is concerned with a method to perform
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smoothing of vibrations and spectra, by averaging. (Smooth spectra yield easier
detection of faults.) The article completes with a conclusion and a references list.

2. Time domain averaging methods

The single point defect model described in [1] could also be employed to
perform fdd of bearings. The method yielding isolation of vibration components
that could emphasize the defects (and, eventually, their severity) is based on a
technique referred to as Time Domain Synchronous Averaging (TDSA)
(introduced in [10]). From SP point of view, this technique is quite simple and
founded on the concept of comb filter: a filter that let only some isolated
frequencies pass and cuts all the remaining ones [6]. The main idea of TDSA
technique is the following: averaging the signal by using its frames is equivalent
to filtering the signal by a comb filter. More specifically, let the averaged signal
be computed from frames of vibration signal y, like below:

av(t)z%ﬁy(tﬁtnT), VteR (1)

where N >2 is the number of averaging frames and 7 >0 is the time shift step
between frames. Then, the averaging operation (1) is equivalent to:

a,()=(cxy)t), VieR (2)

where ¢ is the impulse response of a comb filter, i.e. the average of a finite set of
unit impulses:

c(t)z%fé'o(z%nT), VteR. 3)

Also, in equation (2), ¢ plays the role of synchronization signal for vibration.
The Fourier Transform (FT) of comb filter (3) is then:

C(Q):le_/(zv—l)m/z Sir.l(NTQ/z)’ VOER. @)
N sin(7Q/2)

Its spectrum looks like in Fig. 1. The bigger the number of averaging frames (N ),

the sharper the main lobes of comb filter, the smaller the side lobes and, thus, the

more accurate the rays selection in FT of y at frequencies {k/ T } —

Recall now the McFadden-Smith single point defect model described in
[1] (with the same notations). Then the TDSA technique could be employed to
emphasize some components of raw vibration that encode possible defects. This
idea was developed in [11]. For example, since the shock pulses signal, denoted
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by p, is T, =1/v, -periodic, by averaging the vibration data with time shift

in in

T =1/v, #T,

in

the resulting signal is only concerned with loads and transmission
path (convolved by sensor impulse response, 4 ):
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Fig. 1. Spectrum of a comb filter
Ve =h*(g-x)  (in time) (5)
Y, =H(©=*Y) (in frequency) '

Thus, the shock pulses have been removed by the comb filter. If the
averaging is performed with time shift », /v, =1/(v, -v,,,) (i.e. with the period
between 2 successive strokes of rolling balls defect), then the resulting signal is p
(also convolved by sensor impulse response). This is due to the fact that p

constitutes the only vibration component with period 1/v,, =1/n,/(v, -v,,, ) and

thus with period n, /v, as well. The resulting average signals are able to reveal

single or multiple defects located on the inner race and even their relative spatial
positions (angles). The experiments have shown that the average with time shift

n, /v, =1/ (V, - me) is better than the other average. That is an expected result,

since the shock pulses p are actually produced by inner race defects.

In spite of its remarkable results, a several drawbacks make this method
difficult to handle. The number of practical tricks applied in order to decode the
information about defects is very large. It follows that, especially in case of
multiple defects, the whole rationale behind the method is very difficult to
reproduce in an automatic way. Also, the method may not work well for defects
located on other constructive parts than the inner race. The severity degree of
defect is not necessarily reflected by peak amplitudes within the final signals.
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3. Envelope analysis methods

The method that really exploits the sensors resonance in order to extract a
clear defect information has been introduced since 1966 [12], improved in 1973
[9] and patented in 1974 [13]. It is referred to as (Spectral) Envelope Analysis
(EA) (of vibration) and constitutes perhaps the most popular method to extract
defect information in bearings and gears.

Interference Band/high pass Envelope Low pass
cancelation filtering detection filtering v
T de

“Ir v, —\ﬁ

The main steps of EA are summarized in Fig. 2. Sometimes, the
interference signals could induce important distortions and should be canceled.
This can be realized either directly (if the interference frequencies are a priori
known) or automatically. An automatic procedure for interference detection and
canceling has been introduced in 1993 [14] and improved in 1996 [15], [16] by
D.L. Carter. The most important step of EA is band or high pass filtering, aiming
to remove the natural oscillations and to extract only the noisy high frequency
(HF) part from vibration. Two main problems have to be solved here: the filter
shape selection and its localization. Several solutions have been proposed so far
(see for example [8], [17], [18], [19], [20], [21]). An efficient solution is
introduced in [18] and [19]. The filter shape is suggested in Fig. 2, for a band pass
type. There is a central frequency (v,) and the low pass attenuation is by far more

Fig. 2. Main steps of Envelope Analysis Method.

severe than the high pass attenuation around the center. To induce this effect, the
1/3-octave filter design is employed, but another design techniques (even more
efficient) could be used as well (see [22] or [6]). The name of this technique
becomes from the band pass localization around v,: 1/3 to the left and 2/3 to the

right. In general, the bandwidth is 25% to 50% of v, .
The placement of v, could be performed either manually (when some

more information about vibration is available) or automatically. By automatic
procedure, v, is placed in the middle of the flattest spectral zone of vibration with
lowest energy (where natural oscillation frequencies are seemingly missing).
Usually, v, €[2,10] kHz and, in many papers, v, =5kHz. Differently from this

recent point of view, in [22], the central frequency is selected around one of the
resonance peaks revealed by vibration spectrum (15 or 20 kHz) and its bandwidth
is quite sharp (2 kHz). The high pass filters are similarly designed.
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Unfortunately, to the best of our knowledge, there are no viable criteria to
adaptively design the filters, depending on vibration data. There are only some
hints, as pointed for example in [18]: filter the signal such that the spectrum of the
noisy (random) component become dominant (i.e. attenuate the basic or induced
harmonic components); select the central frequency according to vibration
spectrum, at a frequency around of which the fewest large harmonic rays exist;
select the filter bandwidth up to 50% (or even 100 %, for high central frequency)
of central frequency. Usually, the filters parameters (type, v, and bandwidth) are
varied until the defect component is the best emphasized next.

One might believe that, by filtering, the information about defects is
entirely lost, which is not true, since the sensor saved it within the resonance
signal. Actually, this information can be recovered from the envelope of filtered
signal v,. Therefore, a peak follower extracts next the signal v, from v,. Since

v,, 1s basically a low frequency (LF) signal, the final low pass filter focuses on the
LF zone. Usually the filter cut-off frequency is between 0.8 and 2 kHz. The
filtered v,, (i.e. v,, ) provides good indications about defect presence, its type and
severity. If the machinery is defect free, v, looks practically like a low energy
white noise and its spectrum is quasi constant, like in Fig. 3(a). On the contrary, if
machinery defects exist, distinctive peaks appear within v, spectrum. The peaks
placement encode the defect type, whereas their relative height to the average
background spectrum (4, ) encodes the severity degree (see Fig. 3(b)).

(a) Defect free (b) Defect exists
Vde Vde
) [y
= =
2. vl 7, i

v < 1kHz v < 1kHz

Fig. 3. Envelope vibration spectra.

For example, if peaks are 1% above 4, , de defect is incipient. For 5%, the

defect evolution reached its maturity, whereas for 10% and more, the defect is
severe. Interestingly, the peaks are located at frequencies strongly related to
natural frequencies produced by defective parts of mechanical system (a bearing
or a gear). This result has already been devised by using the theoretical
McFadden-Smith model. The direct correspondence between peaks location and
defect types is described in the end of section (for bearings).
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Nowadays, the EA technique is adopted by many manufacturers,
especially for its simplicity and low cost implementation. Moreover, a quasi
universal defect detector has been constructed and commercialized by VAST Inc.
(Russia) in collaboration with VibroTeK Inc. (USA) (www.vibrotek.com):
Diagnostic Rolling Element Analysis Module (DREAM) [8], [23]. DREAM is
incorporated since early 90’s inside both American and Russian industries and is
practically considered the standard tool in fdd of rolling mechanisms. One of the
first defect detectors produced by the companies mentioned above is DC-11 [24],
[25], which could be connected to a PC or notebook, like in Fig. 4, to the left.

- 3
Fig. 4. DC-11 (left) and FAG-2000 (right) defect detectors

Another countries such as United Kingdom, Canada or Denmark also
adopted DREAM or DREAM-like techniques for their industries [24]. In
Germany, some leading bearing manufacturers integrated the EA within their
detectors as well. For example, the modern and light detector in Fig. 4, to the
right, is made at German FAG Company (www.fag.de) [26], [27]. (In front of both
detectors, sensors (accelerometers) have been pictured.)

Note that EA is not dedicated only to bearings fdd (although bearings
constitute its traditional application field). In general, it could be applied wherever
is necessary to perform diagnosis of a rotating machinery. For example, gears or
geared coupling could also be tested by means of EA [28].

Although widely employed (mainly through DREAM module), EA has
some drawbacks. An important one is revealed for multiple machinery defects,
when the peaks are extremely mixed. This limitation is probably due to the
classical Fourier approach. The frequency content of vibration is not constant, but
time varying. (Time-frequency techniques have been considered instead, as
described in [29], with very good results.) Another caveat of EA is that the
selection of filters aimed to isolate the defect encoding frequency band is quasi-
empirically performed, albeit the method is extremely sensitive to these filters.
Also, EA is sensitive to envelope construction method (i.e. to peak follower
quality). A large number of data acquisition and pre-processing tricks are
necessary for defect isolation and recognition. Since EA is not using a
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mathematical model of vibration, long learning stages are necessary before the
diagnosis be accurate. For example, in [18], the authors claimed that, before
designing the DREAM module, tests on 1000 machines and more than 100,000
bearings were necessary.

And yet, EA is very useful in early detection of faults, when, usually, only
single point defects start to develop. Also, the simple technique to estimate
severity degrees with good accuracy by using the envelope spectrum is an
extremely practical feature. In most practical cases, this parameter is extremely
important for an efficient maintenance of rotating elements. Some applications of
EA are described for example in: [30] (fdd for slow rotating bearings), [31] (fdd
for transportation applications using vibro-acoustic signals) or [32] (where the
lubrication layer plays an important role in fdd).

When integrated in several bearing testers, DREAM is able to detect and
identify up to 12 different defect types, as listed next [8]:

1.Revolution around outer (frozen) race: v, =v, .
2.Radial tension of bearing: v, =2v, .
3.Slip of race in the mounting seat: v, € { kv,,} o (When the spectral

power is approximately constant or decays slowly).
4.Wear of inner race: v, € { kv,.} oy (When the spectral power decreases

towards HF).

5.Spalls or cracks on inner race: v, € {kv,,}, .-

6.Wear of outer race: v, =v

out *

7.Spalls or cracks on outer race: v, € {kv,,} .-

8.Misalignment of outer race: v, =2v,_ .

9.Spalls, cracks or chops on rolling elements: v, € { kv, }, ..

10.Wear of rolling elements and/or cage: v, =v,,, Of v, =V, =V, -

11.Multiple defects on rolling surfaces (without specifications about
location and nature of defects): v,=v, +v, , or v,=v +v _ or

vpoe(v, =vo,)(n,+1),but v, #v, —v and v, (v, —v,, )(n, -1).
12.Lubrication defects: increase of spectral power at all levels.
The list put into correspondence the defect type and the abnormal rays in
envelope spectrum (see Fig. 3(b)), located at frequencies v, , which are related to

natural frequencies. Usually, the outer race is frozen and the inner race is rotating.
The DREAM performances are completed by its statistical behavior. Thus,

the probability of identification for defects varies as follows: more than 90% for

spalls/cracks/chops on balls or on inner/outer races; more than 80% for wear of
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balls or outer race and for lubrication defects; more than 70% for misalignment of
outer race and wear of multiple surfaces; below 70% for the remaining defect
types above (some of them with small probabilities).

The actual stage of fdd for rotating machinery has been analyzed in some
papers like [24] or [33], but all of them are emphasizing only EA as the most
efficient method. There are however some other promising non conventional
methods, as revealed not only by [3] (using statistics and pattern recognition), but
also, for example, by [34], [35], [36], [37] or [38] (in general based on fuzzy or
neuro-fuzzy approaches).

4. Simulation results

A case study completes the article. Two rolling bearings with identical
geometry were tested by means of the platform described in [4]. One of them is
defect free (but after several days of running under a light load), whereas the other
one has a medium severity chop on the inner race (with estimated severity degree
of about 3.5 on the scale of 10 levels). A vibration segment of about 1.3 s
(sampled at 25.6 kHz) and its full band spectrum (0-12.8 kHz), in dB, are depicted
in Fig.5 and 6, to the left. To the right, the corresponding LF sub-band of
envelope spectrum (at linear scale) is illustrated.

Vibration segment (defect free) Envelope spectrum (defect free)
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Vibration segment for a defect located on inner race Low frequency envelope spectrum (inner race defect)
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Fig. 11. EA of a bearing with a chop on inner race

In case of defect free bearing (Fig. 5), vibration data are approximately
harmonic, with energy concentrated in LF sub-band. The spectrum proves a fast
decay towards HF sub-band and the envelope spectrum looks like the white noise
spectrum. On the contrary, for the defective bearing (Fig. 6), the vibration data are
irregular. The harmonic behavior seems to be sunk into a noisy signal. The
spectrum reveals several peaks due to sensor resonance, replicated towards the LF
and MF sub-bands. A peak located at about 8 kHz could clearly be distinguished.
This behavior is better emphasized by the envelope spectrum, where peaks located
at multiples of v, =325 Hz are exponentially decaying. The first peak is about

3.5 times higher than the average of defect free envelope spectrum, which gives
an estimation of defect severity degree.

5. Conclusion

Without any doubt, the research concerning fdd by means of vibrations has
advanced beyond the methods described above. However, adoption by big
companies from all around the world of modern (and often sophisticated fdd
methods) is postponed for future. On the contrary, in spite their limitations,
methods like EA reveal that science can become economically attractive by
proposing coherent technologies, which are easy to implement.
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