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FAST METHODS FOR IDENTIFICATION OF VIBRATION 
DEFECTS 

Dan ŞTEFANOIU1, Janetta CULIŢĂ2, Florin IONESCU3 

Diagnoza de defecte este un domeniu care a atins maturitatea în ultimii 10 
ani. Succesul monitorizării unui sistem în funcţiune, în vederea detectării de 
comportamente anormale, depinde într-o măsură covîrşitoare de semnalele capabile 
să codifice informaţia despre aceste defecte. Un astfel de semnal este, de exemplu, 
vibraţia emisă de sistemele mecanice. Există mai multe tehnici de diagnoză a 
sistemelor mecanice plecînd de la vibraţii. In acest articol, discuţia este concentrată 
numai asupra cîtorva tehnici rapide şi uşor de implementat. Printre ele, cea bazată 
pe analiza de anvelopă spectrală a stîrnit un mare interes în industrie.  

Fault diagnosis is a domain that has reached its maturity within the last 
decade. The success of monitoring aiming to detect flaws during the functioning of 
some system tremendously depends on the signals which are encoding the 
information about possible defects. Such a signal is, for example, the vibration 
produced by mechanical systems. Several techniques have been devised in order to 
detect defects starting from vibrations. The paper focuses only on fast and easy to 
implement such techniques, among of which the one based on spectral envelope 
analysis is of the greatest interest in industry. 

Keywords: time domain synchronous averaging, spectral envelope analysis.  

1. Introduction 

Acquiring vibrations in order to detect flaws of mechanical systems in 
operation is not a new idea. Methods of mechanical fault detection and diagnosis 
(fdd) have been devised even at the early stages of machinery history. Although 
the methods were rather empirical and required a great deal of experience from 
the human operator supervising the system, the defects could be detected in time. 
Some of such methods are described in [1] and [2]. Some other methods are 
targeting the automation of fault diagnosis, starting from the spectral 

                                                           
1 Professor, Faculty of Automatic Control and Computer Science, affiliated to University 
POLITEHNICA of Bucharest, Romania, danny@indinf.pub.ro 
2 Lecturer, Faculty of Automatic Control and Computer Science, affiliated to University 
POLITEHNICA of Bucharest, Romania, jculita@yahoo.com 
3 Professor, University of Applied Sciences, Department of Mechatronics, Konstanz, Germany,  
ionescu@htwg-konstanz.de 

mailto:danny@indinf.pub.ro
mailto:jculita@yahoo.com
mailto:ionescu@htwg-konstanz.de


Dan Ştefanoiu, Janetta Culiţă, Florin Ionescu 34

representation of vibration and a set of associated statistical parameters, such as: 
the root mean square (RMS) or the peak value.  

For example, a very interesting approach based on statistics and pattern 
recognition has been introduced in [3]. This is in fact an attempt of human 
reasoning automating, which resulted in a quite efficient and simple fdd 
algorithm, though with unavoidable limitations. A different approach is 
introduced in [4], where one assumes the largely accepted idea that human 
reasoning is also fuzzy. It follows that solutions to a problem could be issued even 
from unclear, vague or ambiguous information, i.e. from information, which is 
strongly affected by uncertainty. Usually, the operator selects the most plausible 
diagnostic, according to the available data. Therefore, the operator’s experience is 
crucial for diagnosis accuracy. Unfortunately, the operator has to cope not only 
with external perturbations corrupting the data, but also with his/her own 
subjectivism. In order to increase objectivity, the operator relies on simple 
statistical assessments. The reasoning hidden behind data analysis could thus be 
automated by performing a combination between spectral statistics and fuzzy 
clustering (in entropy sense [3]). In this way, both subjectivism and perturbations 
influence decrease.  

However, the most efficient methods in early detection of defects are using 
Signal Processing (SP) techniques [6]. Differently from many typical SP 
applications, where the noise attenuation is a fundamental requirement, when 
using vibrations for fdd, the noise is the most concerned part in the analysis. This 
is due to the fact that not the natural oscillations of machinery could encode the 
defective behavior, but the noise corrupting them. Moreover, the applications 
revealed that the signal-to-noise ratio (SNR) is extremely small for vibrations 
encoding information about defects. Therefore, the models of vibration used in 
fdd are actually models of their noisy parts, encoding information about defect 
types and severity [1].  

The simple structure and large integration within mechanical systems 
made bearings extremely interesting for fdd in automatic manner [7]. The various 
bearings defects (as described in [8], [7] or [2]) are mainly encoded by the 
medium or high sub-bands of vibration spectrum [9]. The effect is due to the 
specific micro-shocks of defects, which are forcing the sensor to reach the 
resonance state [1]. Unfortunately, the defect shocks are mixed in an unknown 
manner with other parasite signals coming from the environment or produced by 
interferences. Therefore, the detection techniques should be able both to denoise 
the spectrum and to focus on the sub-bands where the defect seems to be encoded.  

One of the most popular method to extract information about defects in 
bearings (and geared coupling) is the (Spectral) Envelope Analysis (EA). This 
method is described and employed in a case study within the last two sections (3 
and 4) of this article. The next section is concerned with a method to perform 
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smoothing of vibrations and spectra, by averaging. (Smooth spectra yield easier 
detection of faults.) The article completes with a conclusion and a references list.  

2. Time domain averaging methods 

The single point defect model described in [1] could also be employed to 
perform fdd of bearings. The method yielding isolation of vibration components 
that could emphasize the defects (and, eventually, their severity) is based on a 
technique referred to as Time Domain Synchronous Averaging (TDSA) 
(introduced in [10]). From SP point of view, this technique is quite simple and 
founded on the concept of comb filter: a filter that let only some isolated 
frequencies pass and cuts all the remaining ones [6]. The main idea of TDSA 
technique is the following: averaging the signal by using its frames is equivalent 
to filtering the signal by a comb filter. More specifically, let the averaged signal 
be computed from frames of vibration signal y , like below:  
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where  is the number of averaging frames and  is the time shift step 
between frames. Then, the averaging operation (1) is equivalent to:  
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where  is the impulse response of a comb filter, i.e. the average of a finite set of 
unit impulses:  
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Also, in equation (2),  plays the role of synchronization signal for vibration.  c
The Fourier Transform (FT) of comb filter (3) is then:  
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Its spectrum looks like in Fig. 1. The bigger the number of averaging frames ( ), 
the sharper the main lobes of comb filter, the smaller the side lobes and, thus, the 
more accurate the rays selection in FT of 

N

y  at frequencies { }/
k

k T
∈Z

. 
Recall now the McFadden-Smith single point defect model described in 

[1] (with the same notations). Then the TDSA technique could be employed to 
emphasize some components of raw vibration that encode possible defects. This 
idea was developed in [11]. For example, since the shock pulses signal, denoted 
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by p , is 1/in inT = ν -periodic, by averaging the vibration data with time shift 
1/rT = r inT≠ν , the resulting signal is only concerned with loads and transmission 

path (convolved by sensor impulse response, ):  h

 
Fig. 1. Spectrum of a comb filter 
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Thus, the shock pulses have been removed by the comb filter. If the 
averaging is performed with time shift ( )/ 1/b in r coutn = −ν ν ν  (i.e. with the period 
between 2 successive strokes of rolling balls defect), then the resulting signal is p  
(also convolved by sensor impulse response). This is due to the fact that p  
constitutes the only vibration component with period  and 
thus with period 

( )1/ /b r coutn= −ν ν ν1/ in

/b inn ν  as well. The resulting average signals are able to reveal 
single or multiple defects located on the inner race and even their relative spatial 
positions (angles). The experiments have shown that the average with time shift 

 is better than the other average. That is an expected result, 
since the shock pulses 

(/ 1/b in rn =ν ν )cout−ν
p  are actually produced by inner race defects.  

In spite of its remarkable results, a several drawbacks make this method 
difficult to handle. The number of practical tricks applied in order to decode the 
information about defects is very large. It follows that, especially in case of 
multiple defects, the whole rationale behind the method is very difficult to 
reproduce in an automatic way. Also, the method may not work well for defects 
located on other constructive parts than the inner race. The severity degree of 
defect is not necessarily reflected by peak amplitudes within the final signals.  
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3. Envelope analysis methods 

The method that really exploits the sensors resonance in order to extract a 
clear defect information has been introduced since 1966 [12], improved in 1973 
[9] and patented in 1974 [13]. It is referred to as (Spectral) Envelope Analysis 
(EA) (of vibration) and constitutes perhaps the most popular method to extract 
defect information in bearings and gears.  
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Envelope 
detection 

Low pass 
filtering 

vd

 
Fig. 2. Main steps of Envelope Analysis Method. 

 
The main steps of EA are summarized in Fig. 2. Sometimes, the 

interference signals could induce important distortions and should be canceled. 
This can be realized either directly (if the interference frequencies are a priori 
known) or automatically. An automatic procedure for interference detection and 
canceling has been introduced in 1993 [14] and improved in 1996 [15], [16] by 
D.L. Carter. The most important step of EA is band or high pass filtering, aiming 
to remove the natural oscillations and to extract only the noisy high frequency 
(HF) part from vibration. Two main problems have to be solved here: the filter 
shape selection and its localization. Several solutions have been proposed so far 
(see for example [8], [17], [18], [19], [20], [21]). An efficient solution is 
introduced in [18] and [19]. The filter shape is suggested in Fig. 2, for a band pass 
type. There is a central frequency ( cν ) and the low pass attenuation is by far more 
severe than the high pass attenuation around the center. To induce this effect, the 
1/3–octave filter design is employed, but another design techniques (even more 
efficient) could be used as well (see [22] or [6]). The name of this technique 
becomes from the band pass localization around cν : 1/3 to the left and 2/3 to the 
right. In general, the bandwidth is 25% to 50% of cν .  

The placement of cν  could be performed either manually (when some 
more information about vibration is available) or automatically. By automatic 
procedure, cν  is placed in the middle of the flattest spectral zone of vibration with 
lowest energy (where natural oscillation frequencies are seemingly missing). 
Usually,  and, in many papers, . Differently from this 
recent point of view, in [22], the central frequency is selected around one of the 
resonance peaks revealed by vibration spectrum (15 or 20 kHz) and its bandwidth 
is quite sharp (2 kHz). The high pass filters are similarly designed. 

[c ∈ 2,10] kHzν 5kHzc ≅ν
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Unfortunately, to the best of our knowledge, there are no viable criteria to 
adaptively design the filters, depending on vibration data. There are only some 
hints, as pointed for example in [18]: filter the signal such that the spectrum of the 
noisy (random) component become dominant (i.e. attenuate the basic or induced 
harmonic components); select the central frequency according to vibration 
spectrum, at a frequency around of which the fewest large harmonic rays exist; 
select the filter bandwidth up to 50% (or even 100 %, for high central frequency) 
of central frequency. Usually, the filters parameters (type, cν  and bandwidth) are 
varied until the defect component is the best emphasized next.  

One might believe that, by filtering, the information about defects is 
entirely lost, which is not true, since the sensor saved it within the resonance 
signal. Actually, this information can be recovered from the envelope of filtered 
signal . Therefore, a peak follower extracts next the signal  from . Since 

 is basically a low frequency (LF) signal, the final low pass filter focuses on the 
LF zone. Usually the filter cut-off frequency is between 0.8 and 2 kHz. The 
filtered  (i.e. ) provides good indications about defect presence, its type and 
severity. If the machinery is defect free,  looks practically like a low energy 
white noise and its spectrum is quasi constant, like in Fig. 3(a). On the contrary, if 
machinery defects exist, distinctive peaks appear within  spectrum. The peaks 
placement encode the defect type, whereas their relative height to the average 
background spectrum (

dv

v

dev dv

dev

de dev

dev

dev

deλ ) encodes the severity degree (see Fig. 3(b)). 
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Fig. 3. Envelope vibration spectra. 

 
For example, if peaks are 1% above deλ , de defect is incipient. For 5%, the 

defect evolution reached its maturity, whereas for 10% and more, the defect is 
severe. Interestingly, the peaks are located at frequencies strongly related to 
natural frequencies produced by defective parts of mechanical system (a bearing 
or a gear). This result has already been devised by using the theoretical 
McFadden-Smith model. The direct correspondence between peaks location and 
defect types is described in the end of section (for bearings).  
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Nowadays, the EA technique is adopted by many manufacturers, 
especially for its simplicity and low cost implementation. Moreover, a quasi 
universal defect detector has been constructed and commercialized by VAST Inc. 
(Russia) in collaboration with VibroTeK Inc. (USA) (www.vibrotek.com): 
Diagnostic Rolling Element Analysis Module (DREAM) [8], [23]. DREAM is 
incorporated since early 90’s inside both American and Russian industries and is 
practically considered the standard tool in fdd of rolling mechanisms. One of the 
first defect detectors produced by the companies mentioned above is DC-11 [24], 
[25], which could be connected to a PC or notebook, like in Fig. 4, to the left.  

 

         
Fig. 4. DC-11 (left) and FAG-2000 (right) defect detectors 

 
Another countries such as United Kingdom, Canada or Denmark also 

adopted DREAM or DREAM-like techniques for their industries [24]. In 
Germany, some leading bearing manufacturers integrated the EA within their 
detectors as well. For example, the modern and light detector in Fig. 4, to the 
right, is made at German FAG Company (www.fag.de) [26], [27]. (In front of both 
detectors, sensors (accelerometers) have been pictured.)  

Note that EA is not dedicated only to bearings fdd (although bearings 
constitute its traditional application field). In general, it could be applied wherever 
is necessary to perform diagnosis of a rotating machinery. For example, gears or 
geared coupling could also be tested by means of EA [28]. 

Although widely employed (mainly through DREAM module), EA has 
some drawbacks. An important one is revealed for multiple machinery defects, 
when the peaks are extremely mixed. This limitation is probably due to the 
classical Fourier approach. The frequency content of vibration is not constant, but 
time varying. (Time-frequency techniques have been considered instead, as 
described in [29], with very good results.) Another caveat of EA is that the 
selection of filters aimed to isolate the defect encoding frequency band is quasi-
empirically performed, albeit the method is extremely sensitive to these filters. 
Also, EA is sensitive to envelope construction method (i.e. to peak follower 
quality). A large number of data acquisition and pre-processing tricks are 
necessary for defect isolation and recognition. Since EA is not using a 

http://www.vibrotek.com/
http://www.fag.de/NASApp/Access
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mathematical model of vibration, long learning stages are necessary before the 
diagnosis be accurate. For example, in [18], the authors claimed that, before 
designing the DREAM module, tests on 1000 machines and more than 100,000 
bearings were necessary.  

And yet, EA is very useful in early detection of faults, when, usually, only 
single point defects start to develop. Also, the simple technique to estimate 
severity degrees with good accuracy by using the envelope spectrum is an 
extremely practical feature. In most practical cases, this parameter is extremely 
important for an efficient maintenance of rotating elements. Some applications of 
EA are described for example in: [30] (fdd for slow rotating bearings), [31] (fdd 
for transportation applications using vibro-acoustic signals) or [32] (where the 
lubrication layer plays an important role in fdd).  

When integrated in several bearing testers, DREAM is able to detect and 
identify up to 12 different defect types, as listed next [8]:  

1. Revolution around outer (frozen) race: d rν ν= .  
2.Radial tension of bearing: 2d rν ν= .  
3.Slip of race in the mounting seat: { } *d r k

kν ν
∈

∈ N  (when the spectral 
power is approximately constant or decays slowly).  

4.Wear of inner race: { } *d k
k rν ν

∈
∈ N  (when the spectral power decreases 

towards HF).  
5.Spalls or cracks on inner race: { } *d in k

k
∈

∈ν ν N . 

6.Wear of outer race: d outν ν= .  
7.Spalls or cracks on outer race: { } *d out k

k
∈

∈ν ν N
.  

8.Misalignment of outer race: 2d outν ν= .  
9.Spalls, cracks or chops on rolling elements: { } *d b k

kν ν
∈

∈ N .  
10.Wear of rolling elements and/or cage: coutd νν =  or coutrd ννν −= .  
11.Multiple defects on rolling surfaces (without specifications about 

location and nature of defects): t+d in ou=ν ν ν  or d r out+=ν ν ν  or 

( )( )1d r cout bn∈ − +ν ν ν , but d out r−≠ν ν ν  and ( )( )1cout bnd r − −ν≠ν ν .  
12. Lubrication defects: increase of spectral power at all levels. 

The list put into correspondence the defect type and the abnormal rays in 
envelope spectrum (see Fig. 3(b)), located at frequencies dν , which are related to 
natural frequencies. Usually, the outer race is frozen and the inner race is rotating.  

The DREAM performances are completed by its statistical behavior. Thus, 
the probability of identification for defects varies as follows: more than 90% for 
spalls/cracks/chops on balls or on inner/outer races; more than 80% for wear of 
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balls or outer race and for lubrication defects; more than 70% for misalignment of 
outer race and wear of multiple surfaces; below 70% for the remaining defect 
types above (some of them with small probabilities). 

The actual stage of fdd for rotating machinery has been analyzed in some 
papers 

4. Simulation results 

A case study completes the article. Two rolling bearings with identical 
geomet

 
Fig. 10. EA of a defect free bearing 

like [24] or [33], but all of them are emphasizing only EA as the most 
efficient method. There are however some other promising non conventional 
methods, as revealed not only by [3] (using statistics and pattern recognition), but 
also, for example, by [34], [35], [36], [37] or [38] (in general based on fuzzy or 
neuro-fuzzy approaches).  

ry were tested by means of the platform described in [4]. One of them is 
defect free (but after several days of running under a light load), whereas the other 
one has a medium severity chop on the inner race (with estimated severity degree 
of about 3.5 on the scale of 10 levels). A vibration segment of about 1.3 s 
(sampled at 25.6 kHz) and its full band spectrum (0-12.8 kHz), in dB, are depicted 
in Fig. 5 and 6, to the left. To the right, the corresponding LF sub-band of 
envelope spectrum (at linear scale) is illustrated.  
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Fig. 11. EA of a bearing with a chop on inner race 

 
In case of defect free bearing (Fig. 5), vibration data are approximately 

harmonic, with energy concentrated in LF sub-band. The spectrum proves a fast 
decay towards HF sub-band and the envelope spectrum looks like the white noise 
spectrum. On the contrary, for the defective bearing (Fig. 6), the vibration data are 
irregular. The harmonic behavior seems to be sunk into a noisy signal. The 
spectrum reveals several peaks due to sensor resonance, replicated towards the LF 
and MF sub-bands. A peak located at about 8 kHz could clearly be distinguished. 
This behavior is better emphasized by the envelope spectrum, where peaks located 
at multiples of 325 Hzinν ≅  are exponentially decaying. The first peak is about 
3.5 times higher than the average of defect free envelope spectrum, which gives 
an estimation of defect severity degree. 

5. Conclusion 

Without any doubt, the research concerning fdd by means of vibrations has 
advanced beyond the methods described above. However, adoption by big 
companies from all around the world of modern (and often sophisticated fdd 
methods) is postponed for future. On the contrary, in spite their limitations, 
methods like EA reveal that science can become economically attractive by 
proposing coherent technologies, which are easy to implement.  
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