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B(K)-LINEAR OPERATORS AND THEIR OPERATOR-VALUED
SPECTRUM

A. Askarizadeh!, M. A. Dehghan?, H. Afshin®

For separable Hilbert spaces H and K, the operator-valued spectrum of
an operator on the Hilbert C*-module B(H, K) is introduced. It is shown that
the newly defined spectrum contains the ordinary (scaler-valued) spectrum and
is a (not necessarily compact) closed subset of B(K). In case that H and K
are finite-dimensional, we establish a one-to-one correspondence between B(K)-
linear operators on B(H, K) and the ordinary linear operators on B(H), which
helps us to characterize the operator-valued spectrum of B(K)—linear operators
on B(H, K).

Keywords: Adjoint, Operator-valued spectrum, Hilbert C*-module, Operator-
valued eigenvalue, Dual space.

1. Introduction

The notion of the spectrum of an operator has been generalized by Ernest
[5]. He developed an analogue of the spectral theorem for all operators on separable
Hilbert spaces. Authors in [15] defined an n X n matrix spectrum. These spectral
generalizations of an operator were constructed by use of existence of representations
of C*-algebras generated by the operator and the identity operator. After that,
Hadwin in [7] introduced reducing operator spectra. These spectra are based on
geometric rather than algebraic considerations and the unifying feature of them is
their relation to the closure of the unitary equivalence class of an operator with
respect to different operator topologies [8].

A sequence of bounded linear operators between two Hilbert spaces is denoted
by Sun [17] as generalized frames or g-frames. To modify and determine g-frames
[1] we need to introduce a new generalization of spectrum of a B(K)-linear operator
S on the Hilbert C*—module B(H, K), where H and K are two separable Hilbert
spaces. In this regards, the definition of spectrum of S is based on the noninvert-
ibility of S — AI, where the spectrum A is an operator on K and [ is the identity
operator on B(H, K). This chracteristic of spectra hasn’t appeared in the previous
operator-valued spectra generalizations of operators. The aim of this paper is to
introduce the new type of operator-valued spectrum of module operators on Hilbert
C*-modules, B(H, K).
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The paper is organized as follows. We continue this introductory section with
a review of the basic definitions and notations of Hilbert C*-modules. In section
2, we introduce the notion of operator-valued spectrum and prove some properties
of it. The main results of the paper are included in Section 3, where we study the
module operators on B(H, K) and we find operator-valued spectrum of them, when
H and K are finite- dimensional.

Let us recall the definition of a Hilbert C*-module and the set of bounded linear
operators between two Hilbert spaces as a Hilbert C*-module. For more details, we
refer the interested reader to [11, 12, 14, 16, 18]. Also, the concept of module
operators on a Hilbert C*-module and their adjoint has appeared in [13, 14]. Let A
be a C*-algebra, M be a (left) A-module and A(azx) = a(Ax) for every A € C,a € A
and x € M. If there exists a mapping (.,.) : M x M — A with the following
properties

i) (x,z) >0 for every x € M,
ii) (z,z) =0 if and only if z =0,
iii) (z,y) = (y,x)" for every x,y € M,
iv) (ax,y) = a(x,y) foreverya € A and z,y € M,
v) (x+y,2) = (x,y) + (x,z) forevery x,y,z € M,
such that M is complete with respect to the norm ||z| = || (z, x) H%, then the pair
{M,(.,.)} is called a (left) Hilbert C*-module over A.

For two Hilbert spaces H and K, let B(H, K) be the set of all bounded linear
operators from H into K. The set B(H, K) is easily seen to be a Hilbert C*-module
over B(K), with B(K)-inner product (T, S) = T'S*, for all T, S € B(H, K) and the
linear operation on B(K) define by T'T = Ty oT forall Ty € B(K)and T € B(H, K).
The B(K)-module B(H, K) plays a crucial role in the study of frames and g-frames
[17]. Such frames have applications in pure [4, 9] and applied mathematics [3],
harmonic analysis [6], and even quantum communication [2].

Throughout this paper, we consider H and K as separable Hilbert spaces and
B(B(H, K)) as the set of all bounded B(K)-linear operators (module operators) on
B(H,K).

2. Operator-valued spectrum

For S'in B(B(H, K)), a subset of complex numbers that is called the spectrum
of S is defined by o(S) ={A € C: A\ —S is not invertible}, and the resolvent
set of S, p(9), is defined by the complement of ¢(S) in C.

We are going to extend the spectrum of S from complex numbers to operators.

Definition 2.1. Let S € B(B(H, K)) and set
pov(S) ={A € B(K): AI — S is invertible},

where [ is the identity operator on B(H, K). We define by p,,(S) the operator-
valued resolvent set of the bounded operator S, and the operator-valued spectrum of
S, oou(S), define by B(K)\ pon(S). An operator A € B(K) is said to be an operator-
valued eigenvalue for S if ST = AT for some nonzero T in B(H, K'), and the subspace
{T € B(H,K) : ST = AT} is called operator-valued eigenspace corresponding to A.

Proposition 2.2. Let S € B(B(H,K)). Then o,,(S) # 0.
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Proof. Let Ix be the identity operator on K and I be the identity operator on
B(H,K). Since IgI = I oI = I, we derive

M — S =AIgI)— S = (Mg)I — 8.
Therefore, if A € 0(S), then A € 04,(S) and 74, (S) # 0. O

Remark 2.3. o(S) is isometrically embeded in 0,,(S) by A — Alg. Therefore, we
consider o(S) as a subset of 04, (5). In the following we point out that o (.S) # 04y(.5).

Example 2.4. Let H and K be Hilbert spaces over a field F' such that dimH=dimK=2
. Then B(H,K) ~ M(F). Define S : Ms(F) — Ma(F), by

S<011 a2 )_(an 0>
as1  a22 ann 0 )’
1 0 )
0 0 ) If I My(F) — Mo(F) is

the identity operator, then AI — S is not invertible and hence A € 0,,(S) . On the
other hand A hasn’t form X for any X € o(S). Therefore a(S) # 0ou(S).

Theorem 2.5. Let S € B(B(H,K)). Then 0o,(S) is a closed subset of B(K).

Proof. Let A,Ag € B(K) and Ag be a limit point of 0,,(S) that is not in o,,(.9).
Since

and consider A € B(K) ~ Ms(F), by A =

S — AT = (8 —AgD)[I + (S —AoI)"H(S — AT — (S — AoI))]
= (S = Aol)[I = (A= Ag)(S — AoD) 7',

S — AI is invertible if ||(A — Ag)(S — AgI) 7Y < 1 or ||A — Ag| < This

I S
I(S—AoD)~H||"

means, if the distance between A and Ay is less than m, then A is not in
oov(S) and this is a contradiction because Ay is a limit point of 04, (S). Therefore
oov(9) is closed. O

Corollary 2.6. Let S € B(B(H,K)) and A € po(S). If d(A) is the distance
between A and 04,(S), then ||[(AI — S)7Y| > ﬁ.

It is well-known that o(95) is a compact set. In the following example we give
an operator for which 0,,(5) is not a compact subset of B(K).

Example 2.7. Let H and K be Hilbert spaces such that dimH =dimK =2. Then
B(H,K) ~ My(F). Define S : Ma(F) — My(F), by

S(an a12>:<a11 0)

a1 a2 a1 0 )7
n 0
00
is the identity operator, then Ap,I — S is not invertible, and hence A, € 0o,(S) for

each n € N. On the other hand ||A,|| — oo as n — oo. Therefore, 0,,(S) is not
compact.

and consider A, € B(K) ~ M(F), by A, = ) If I: My(F) — My(F)

It is well-known that the dual space of a Banach space X is the set of all
bounded linear functionals from X to C and is denoted by X*. Therefore, B(H, K)* =
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{fIf : B(H,K) — C is a bounded linear map}. The set of all operator-
valued functionals instead of scalar valued functionals is defined by Olsen [18]
for a Hilbert C*-module. In this way, the set of all bounded operator-valued
functionals on B(H, K), called B(K)-dual of B(H, K), is defined by B(H,K)* =
{f|f: B(H,K) — B(K) is a bounded B(K) — linear map}. Since B(K) is a W*-
algebra, B(H, K)* is a Hilbert C*-module [14].

By the following theorem, we shall associate with each S € B(B(H, K)) its
adjoint, an operator S* € B(B(H, K)*), and will see how certain properties of S are
reflected in the behavior of S*.

We write (X, F) for the value of the function F' at the point X.

Theorem 2.8. If S € B(B(H,K)), then there exists a unique element S* €
B(B(H,K)*) such that (SU,W) = (U, S*W)VU € B(H,K) and YW € B(H, K).

Proof. Let S € B(B(H,K)), U € B(H,K) and W € B(H,K)! Define S* :
B(H,K) — B(H,K)!, W ~ W o S. Since S and W are bounded and B(K)-
linear, S*W € B(H,K)!. Also (U,S*W) = (S*W)(U) = (W o S)(U) = W(SU) =
(SU,W) . Obviously S* is unique. It remains to show that S* is B(K)-linear. Let
A € B(K), then we have

(U, S*(AW)) = (SU,AW) = (AW)(SU) = Ao (W(SU)) = Ao ((S*W)(U))
= (AS"W))(U) = (U, A(S"W)) .
Therefore, S*(AW) = A(S*W) and S* is B(K)-linear. O

Note. We are going to show that the operator-valued spectrum of an operator
in B(B(H, K)) and its adjoint in B(B(H, K)!) are the same. First, we state some
facts about B(K)-duals and adjointable elements of B(B(H, K)).

Lemma 2.9.

a) B(H,K) is a Hilbert C*-module on which B(H, K)* separates points.

b) B(H,K) can be imbeded in B(H, K)* as a closed subset, where B(H, K )
is the B(K)-dual space of B(H, K ).

c) (SR)*=R*S* for all S,R € B(B(H,K)).

d) (AI)*=AI*, where I is the identity map on B(H,K) and A € B(K).

e) If V and W are two subspaces of B(H,K) with V. C W, then W+ C V1,
where V+ = {f € B(H,K)*: f(u) =0 Yu e V}.

f) S** is an extension of S on B(H, K)#.
Proof. (a) Let 0 # Ty € B(H, K). Define S : B(H, K) — B(K) by ST = TTj. It
is clear that, S € B(H, K)* and STy # 0.
(b) Define the function F : B(H,K) — B(H,K)¥ by F(T)f = f(T), where
T € B(H,K), f € B(H, K)!. By applying (a) F is one to one.

(c) Let S,R € B(B(H,K)), T € B(H,K) and V € B(H, K)!. The relations,
(T,R*S*V) = ((SR)T, V) = (T, (SR)*V), implies that (SR)*=R*S*.
(d) Let U,V € B(H, K)!. We have
(U,(AI)*V)y = (A)U, V) =V (AIU) = AV(IU) =
MU, V) = AU, T°V) = A(F'V)(U) = (AT)(V)(U) = (U, (AT)V).
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Then (AI)* = AI*.
(e) and (f) are obvious. O

Theorem 2.10. Let S € B(B(H,K)). Then
Oov(S) = 06u(5™)

Proof. Let A ¢ 0,,(S) and put W = Al — S. Since W! exists in B(B(H, K)),
Theorem 2.8 implies that (W ~1)* exists in B(B(H,K)#). Using lemma 2.9, we
conclude that I* = (WW~1)* = (W=1*W* and W* = AI*—S*. Therefore AI*—S*
is invertible and A ¢ 04, (5¥).

On the other hand, let A ¢ 0,,(S*) and put again W = AI —S. We show that
W is invertible. Since W* is invertible by what has already been proved, (W**)~!
exists in B(B(H, K)™). As we have seen in lemma 2.9, W is the restriction of
W** on B(H,K) and hence it is one to one. It only remains to show that W is
onto. Since W** is invertible, it is a homeomorphism operator on B(B(H, K)*) and
hence W(B(H, K)) is closed. Now let W(B(H,K)) & B(H,K). Lemma 2.9 and
the closeness of W(B(H, K)) implies that

0=B(H,K)* S W(B(H,K))*.
Therefore there is T € W (B(H, K))* such that T # 0. Then for each U € B(H, K)
0= (T,WU) = (W*T,U).

This means W*T' = 0, that is cotradicting the assumption that W* is one to one.
Therefore AI — S is invertible and A ¢ 0,,(S), which the proof is completed. O

3. Characterization of B(B(H, K)) and operator eigenvalued

In this section we find an orthogonal generator for the Hilbert B(K)-module
B(H, K) and we characterize the B(K)-linear Schmidt operators on B(H, K). Af-
terwards, operator-valued eigenvalues and operator-valued eigenvectors of members
B(B(H,K)) in finite dimensional case will be studied. Throughout this section
suppose that I is a countable set.

In the following proposition, we show that the cardinal of generators of B(H, K)
is the same with the cardinal of generators of H.

Proposition 3.1. Let {e; : i € I} be an orthonormal basis for H and u be an
element of K such that ||u| = 1. Define T; : H — K by x — (x,e;) u. Then

1) Ty € B(H,K) and ||Ty|| =1,

2) Tey = {y,u) ex

3) (T3, Tj) =0,

4) T =3 (T, T;)T; for all T € B(H, K), where the summation converges
i strong operator topology.

Proof. For all z € H and y € K, we have (Tyz,y) = ((z, ex) u,y) = (z, ex) (u,y) =
(%, (y,u) er). This means that T}y = (y,u) ex, and by an easy computation similar
to the one above, parts 1 and 3 follow.

For T'€ B(H,K) and i € I, define A; € B(K) by A; = TT;* = (T,T;). Then
Nz = (z,u)Te; and (3, (T, 1) Ti)er = D> jcr AiTier = D oier Nidiru = Apu =
(u,u) Tey, = Tey. This means that ), ; A;/T; converges to T in strong operator
topology and the proof is completed. ]
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Definition 3.2. Let {e; : i € I}, {I; : i € I} and u be as in the proposition
above. We say S € B(B(H,K)) is Hilbert C*-Schmidt operator if >, ;> ;;
| {(ST;)er, u) |? < oo.

By the following theorem we characterize all Hilbert C*-Schmidt operators in
B(B(H, K)) with respect to Hilbert Schmidt operators in B(H).

Theorem 3.3. Let S be an operator on B(H,K). Then S is B(K)-linear and
Hilbert C*-Schmidt operator if and only if there is a unique Hilbert Schmidt operator
P € B(H) such that ST =TP, for allT € B(H).

Proof. Suppose that {e; : i € I'}, {T; : i € I} and u be as in the proposition above.
Let P € B(H) be a Hilbert Schmidt operator and ST = TP, for all T' € B(H, K).
Then S(AT) = (AT)P = A(TP) = A(ST), for all A € B(K), and hence S is
B(K)-linear. On the other hand

YD HSTaw) P = Y3 H(TPenu) P =303 [(Peeq) u,u) [

iel lel icl lel il lel
= > > [(Peye) P =) |Peil® = ||PlIE.,
i€l lel lel

and hence S is a Hilbert C*-Schmidt operator. Conversely, let S be B(K)-linear.
Define P € B(H) such that Pe; =) ((STk)e;, u) ex, I € I. Now for every [ € I and
T € B(H, K),

STe; = SO MTier =Y Me(STh)ey
kel kel

= > ((STwenu)Tex =T > ((STy)er,u) e, = T(Pey) = (TP)ey.
The above statements show that P € B(H), ST = TP and P is Hilbert Schmidt. [

Note that when H and K are finite dimensional, the case we consider in the
rest of the section, all operators in B(B(H, K)) are Hilbert C*-Schmidt. Now we
find a relation between a subset of the vector spectrum of an operator in B(B(H, K))
and the spectrum of its corresponding operator in B(H).

Proposition 3.4. Let S € B(B(H,K)) and P € B(H) be the corresponding opera-
tor. Then A € o(P) if and only if M € 04,(S), where I is the identity operator
on K.

Proof. Let A € o(P), V) be the eigenspace corresponding to A\ and T" be the or-
thogonal projection on V. Since V) # 0, T is nonzero. Due to the fact that V)
and Vit are invariant under P, x € V) implies TAz = TPz and = € V)\l implies
TAx =TPx =0. Then ((Mg)I —5)T)(x) = (MgT)x — (ST)r =T x —TPx =0
for all x € H. Therefore A € 0,,(S) and the proof is completed.

Conversely let A = Mg € 04,(5). Definition of 0, (S) in the finite dimensional
case implies that there exists a nonzero T' € B(H, K) such that ST = AT. By
applying Theorem 3.3, we have ST = TP and hence

0= (AIT — TP)(z) = T(\Iyz — Px) = T\ — P)(z) Va € H.
Now if My — P is invertible, then {(AM g — P)(z) : * € H} = H and this means that

T = 0. This is a contradiction to assumption that T is nonzero. Therefore A\l — P
is not invertible and the proof is completed. ]
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Recall that in the finite dimensional case all operators in B(B(H, K)) are
Hilbert C*-Schmidt and hence Theorem 3.3 and Proposition 3.4 are satisfied for all
S € B(B(H,K)).

Lemma 3.5. Let S € B(B(H,K)), A€ B(K),dimH =n anddimK =m. If1,I,
and I, are identity operators on B(H,K),H and K, respectively and E = {E; ;}
is the standard basis for B(H, K), then the matriz representation of AI — S with
respect to E has the form

Al -Slp=A®1I,—I,®B"
where B € B(H) is the corresponding operator to S, i.e. ST = TB for all T €
B(H, K).

The notation ® is the canonical tensor product in matrix theory and FE; ; is a
m x n matrix such that (E; ;) =6y for 1<k <mand 1 <1< n.

Proof. Since S is B(K)-linear, it is easy to see that the matrix representation for S
respect to the standard basis F is of the form

Bt ... .0
Bt . . . :
(3.0.1) 5
0 Bt .
Bt
and by a routine computation
Al -Slp=A®1I, I, ® B
O

Theorem 3.6. Let dimH =n, dimK =m, S € B(B(H,K)) and B € B(H) be the
corresponding operator to S. Then

A € 04p(S) < o(A)Na(B) # 0.

Proof. By Lemma 3.4 we have, [\l — S|lp =A® I, — I, @ B.. Iff o(A) = {\;: i=
1,..,mtand o(B) ={p;: j=1,...,n},then c(A®L,— I, @B) ={\i—p;: i=
1,...,m,7 =1,...,n} (including algebraic multiplicities in all three cases) and thus,
det(S — AI) =1I; j(A; — p;) [10]. This means det(S — AI) = 0 if and only if for some
i,J, Ai = pj. Thus A € 0(S) if and only if o(A) No(B) # 0. O

Now, let A be an operator-valued eigenvalue for S. We are going to deter-
mine the operator-valued eigenspace corresponding to A. If T" is an operator-valued
eigenvector for S corresponding to A, then ST — AT =0 or BT — AT = 0. There-
fore the problem of finding operator-valued eigenvectors for S corresponding to A
is equivalent to solving the matrix equation BT — AT = 0. This subject is studied
in [10]. In what follows, we mention some results of [10] without proof that we use
to determine the operator-valued eigenvectors.

Remark 3.7. i) Let J,(0) € M, and J4(0) € M, be singular blocks. Then T' € M, ,
is a solution of J,.(0)T" — T'Js(0) = 0 if and only if

T=(0 U),UeM,0€ M, if r<s,or
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(3.0.2) T— (g) U eM,06€ My, if r>s,
where
ap ap a2
apg aig
ap a1
0 apg aj
ap

is, in either case, an arbitrary upper Toeplitz matrix with u; ; = a;—;. The dimension
of the nullspace of the linear transformation 7' — J,.(0)T — T'Js(0) is min{r, s}.

ii) Let S € B(B(H,K)), A € 055(S), \i € o(A) fori =1,2,...,pand u; € o(B)
for j = 1,2,...,q. Then T is an operator-valued eigenvector for S corresponding to
A if and only if

T11 Coe qu
(3.0.4) T =
T . . . Ty
where T;; € Mp,m;,t = 1,2,..,p,j = 1,2,...,q is a solution of the equation

In; (M) Xij — Xi jJm,; (p5) = 0. The dimension of the eigenspace corresponding to A
is Zz Zj tiJ‘ where tiJ' =0 if )\1 75 Hj and tiJ == min{ni,mj} if )\z = Hj-

Example 3.8. Let dimH = 4,dimK =3, S € B(B(H,K)) and

1100
0100
B_0021
0 00 2

be the matriz corresponding to S. The eigenvalues of B are puy = 1, ue = 2 with
multiplicity 2 . By Theorem 3.6

-1 00
A=10 1 1
0 01
is an operator valued eigenvalue of S. The eigenvalues of A are \y = —1, o0 =1

The Jordan forms of B and A are, respectively,

1100
0100
TB=10 0 2 1
000 2
-1 0 0
JA=10 1 1].
0 0 1
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Now, with notation of Remark 3.7: n1 =1,n0 =2, m1 = 2,mo = 2 and

11
Ty = <0 1)
2 1
s = (3 )
Jny = (—1)

1 1
(3 1).

Therefore T is an operator valued eigenvector of S corresponding to A if and only if
T is as follows :

Tin=(0 0) , Tia=(0 0) , T21=<%0 Z;) ; T22=<8 8)

0 0 00
(3.0.5) T:@“ ?2 >: a a 0 0],
21 22 0 a 0 0

where ag and a1 are arbitrary. By Remark 3.7, the dimension of the eigenspace
corresponding to A is 2.
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