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ANEW METHOD TO CALCULATE BENDING
DEFORMATION OF INVOLUTE HELICAL GEAR

Wei SUN!, Tao CHEN?, Xu ZHANG?®

The traditional method to calculate bending displacement of helical tooth is
generally based on simplified tooth profile. Besides, the unbalance loading is not
taken into account. To overcome this disadvantage, a new method to calculate
bending deformation of helical tooth is introduced. First, gear section is divided into
several copies along tooth width and each section’s moment of inertia is calculated.
Second, the unbalance loading of helical gear is calculated and distributed. Based
on these work, a general formula for bending displacement of involutes helical gear
is presented. Last, accuracy of this study is proved by an example.

Keywords: Tooth profile section; Moment of inertia; Load distribution; Bending
deformation; Involutes helical gear.

1. Introduction

Helical gears are important transmission parts. Their bending deformation
have always been one of the research focuses, and many scholars have done lots
of work on it. The initial study is concerned on stress and deformation of gears [1,
3]. With further researches, vibration caused by meshing gears began to be the hot
topic: Cai takes the spacing error and the shaft run-out into account, and
establishes a nonlinear tooth model [4]. For mesh stiffness varies with rectangular
waveforms, Jian and Parker, deduced simple design formulas to control the
instability regions by adjusting the contact ratios and mesh phasing [5].

Generally, researches on bending deformation of loaded tooth mainly include
analytical method, Finite Element Method (FEM) and experimental method [6, 7].
Typical experimental method is photoelasticity and laser speckle interferometry;
results of the latter are compared to three analytical results in [8]. The reliable
analytical methods are the energy method (also known as material mechanics
method), which was raised by Weber [9], and the complex variable function
method, which was developed by Aida and Terauchi [10, 12]. Traditional material
mechanics method adopts the view of Lewis which regards tooth as an elastic
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cantilever. On this basis, Ishikawa have deduced his algorithm and demonstrated
that integrated elastic deformation of loaded tooth consist of tooth contact
deformation, bending\shear\compression deformation of cantilever, and additional
deformation of matrix [13, 14].

There are mainly two shortcomings of analytical solutions based on the
traditional method. First, a simplified tooth profile is used and reduces the
accuracy of results. Second, average tooth stiffness is used to calculate
deformation of helical tooth and the unbalance loading along tooth width is not
considered. In the case that the required precision is not rigorous, the simplified
tooth profile and the average tooth stiffness can reluctantly meet the engineering
requirements. But with the trends of high efficiency, high power and high
reliability, the traditional analytic method has some limitations when applied on
gear modification, dynamic noise suppression, etc.

However, researches on this topic and papers about this issue are relatively
few. With the development of finite element technology and emulation technique,
such calculations can be solved numerically [15, 18]. Thus, the analytical solution
for the bending deformation of loaded tooth is rarely reported recently. But in
most cases, the pre-processing and computing is very time-consuming, and it is
hard to find a suitable analytical solution for comparison. So, a high-precision
analytical solution on bending deformation of loaded tooth is still of great
significant.

This paper analyzes the problem that exists in the conventional method of
calculating the tooth bending deformation. The gear section is divided into
numbers of copies and the two most important factors which affect tooth bending
deformation are considered: variable moment of inertia caused by changing tooth
profile and variable distributed load caused by changing length of contact line. In
addition, the unbalance loading of helical gear is taken into account. We hope to
derive the general bending deformation formula of involutes helical gear on the
basis of material mechanics method. At the same time, an example is used to
prove the accuracy of this method.

2 Elastic bending deformation of involutes helical gears

When gear tooth is in working conditions, the varied thickness leads to a
change in stiffness. In addition, the alternate number of teeth leads to a change in
load distribution. Focusing on the two points, a new method to calculate bending
deformation of helical gear is deduced by the cross-section method. But first of all,
the inertia moment of the cross-section and the distributed load along contact line
are required.
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2.1 Deformation of cross section

The gear tooth is divided into 7 copies along its spiral direction (the helix
angle direction) as shown in Fig. 1. All sections are equal and tooth thickness
varies from tooth root to tooth tip. Since moment of inertia is a geometric
parameter, bending resistance of this irregular geometry is not exactly the same
when the meshing radius varies. In order to quantify the bending deformation, any
section is selected and orders that the original point of the coordinate system
locates at its pitch circle.

Fig. 1. Cross-sectional model of tooth cantilever

Bending deformation of a loaded cantilever can be easy obtained by the
deflection curve equation, [19]. Ssuch geometry of unit width (right of Fig. 1) can
be regarded as a cantilever model and the following equation is used to calculate
the bending deformation along x-axis:

u:ﬂ(gl; dx]dx+Cx+D (1)

where, C and D are integration constants; Ely is the bending stiffness of this
cantilever. M, is the bending moment in the selected section. When the meshing
radius is ry, it can be written:

M, =-F.(I-x)
{z @)

where, 7 is the radius of dangerous cross sections sg [14]. One takes an
infinitesimal unit along the direction of tooth thickness as shown in the right of
Fig. 1. The moment of inertia is as follows:

I = jL y 2dL,

where, dL =dy
Thus: (2 3)

I = Ly Zde = _S.J_./zy:dy =isx3

sy 18 the tooth thickness of meshing radius », , and according to the
meshing gear principle, one can write:
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r . .
s =s==2r (inva, —invar,) “4)
r
where, ¢, is transverse pressure angle of the pitch cercle. Comparing to the gear
tooth, stiffness of the gear matrix is much greater, deformation of the dangerous
cross sections u can be regarded as zero, and so does its angle of rotation 4. On
this bases, we define the boundary conditions as follows:

re=r,. = 0

1 )

re=r, — UsF =0

u

u

Hence, we can work out the integral constants: C=D=0. So, deflection
curve equation of this tooth section can be expressed as:

12 ¢ ¢ F.(I-x)
uxzfj.U—3xdx]dx velr, ©)

SX

where, 7, is the radius of tooth tip and E is the Young modulus. By using Eq. (6),
the deformation along the x-axis can be solved point by point. But before this,
there is still another problem to take into account: the tooth load and its
distribution along contact line.

2.2 Load distribution along the contact line

Besides the bending stiffness, another key reason related to tooth bending
deformation is distributed load along contact line. Profile of a helical tooth is
showed in Fig. 2; £ is the base spiral angle and KK is the instantaneous meshing
line. The plane of action w is rolling around the base cylinder.

Fig. 2. Profile of helical tooth
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Suppose that meshing status of the starting moment is double tooth
meshing. 7y is the radius of meshing point K. When point K is moving along
meshing line NN, the moved distance can be measured as follows:

d, = r’-n’ (7)

For obtaining the distribution of tooth load, the engagement status and the
length of contact line L, are acquired. A complete meshing cycle is shown in Fig.
3, where, #,, is the time that gear rotated a distance of base circle pitch p,.

Im

1At _ t=(1-A)ty, N =ty

A B C D
Fig. 3. Cycle of meshing tooth

It is easy to determine that:

60
f, =—

nyz
F, =mmcosa, (8)
A=¢,-1

where, ny is the rotating speed of gear, z is the number of teeth, &, is the face
contact ratio. So, the threshold between single tooth meshing and double tooth
meshing can be established: when 0<t<(gy-1)ty, or t,<t<&ytm, status of meshing is
double tooth engagement, and when (&,-1) #n <t< ty, status of meshing is single
tooth engagement.

Projection of tooth profile on the acting plane w is shown in Fig. 4.
Symbols b and AE represent tooth width and mesh width, respectively. Solid line
and dotted line represent two meshing moments separately [20]. Distribution of
contact line on the tooth profile is decided by the transverse contact ratiog,, face
contact ratio g and base spiral angle /. Different combinations of these three
factors decide the changing velocity and distributed load along the contact line.
Thus, the rule for load distribution is established: take the proportion of
instantaneous contact line length in average contact line length as the reference of
load distribution.
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O AE:ganf ga

B -
0 b=¢&gPp, &p
Fig. 4. Contact line of helical tooth

The average length of contact line can be obtained according to Eq. (9) [21,
22].
g,b
cos B, )

B, = atan(tan fxcos¢,)

L=

The instantaneous length of contact line Ly can be calculated according to
the geometric relationship in Fig. 4:
1) When 0<t<(g,-1)t,, the meshing status is double tooth engagement and
length of contact line is:

2 2
( rers, )ga
L= "7

' sin f3, (10)

2) When (&,-1)t,<t<t,, the meshing status is single tooth engagement. There
are three cases: If the contact point has not reached the tooth tip, Eq. (10)

is still available. If the contact point has already reached the tooth tip, the
length of contact line will tend to stabilize and the average length L can
measure the contact line length in this region. In the late period of single
tooth engagement, the contact line length will shorten according to Eq.

(11).
( I"az - I"xz )Ea
L=~
* sin f3, D
3) When t,<t<g,t,, the meshing status is double tooth engagement again, the
length of contact line continues to shrink according to Eq. (11) and
withdraws from meshing gradually.
Then, the tangential load F; can be distributed based on the length of
instantaneous contact line as follows:
L.F,
F, = I (12)
F. is the total load acting on the selected contact line. In addition, the
unbalance loading along contact line must be considered. Supposing that f> is



A new method to calculate bending deformation of involute helical gear 23

greater than f; and distance between f, and f; is 4/. If one unfolds the contact line
of tooth profile, a straight line is obtained. We can define line load f; according to
a trapezoid. There is:

Al(f, -
e R (13)
The line load f; and f; can be structured by the following equation.
(i),
2 Ix
fr—h :kfzﬁﬂth (14)

z5 =4/cosf

where, f is the helical angle, z4 is the helical angle factor and ke (1.05~1.2).
Then, the line load £, can be solved according to Eq. (14):
/- F,{l ke Byeos 2ﬂL(LX —2Al)

X

(15)

When the force F; is given, the unbalanced load on the contact line is
related to the length of the contact line, helical angle, and helical angle factor. The
distance 4/ is decided by the position of meshing point.

2.3 Elastic bending deformation of helical tooth

After calculating the cross section moment of inertia and quantifying the
distributed load along contact line, the tooth displacement of the selected section
can be deduced. And then, we can further deduce the deformation formula of a
certain every tooth section. Aditional displacement is calculated here for the
reason that it is closely related to aditional modification and other engineering
parameters.

Contact line

Fig. 5. Mesh track of helical tooth

Consider the middle tooth as object which is shown in Fig. 5. The load
position of each section is different and load changes continuously due to the
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unbalance loading of helical gear. Consider section No. 5 for example (k=5); load
radius of this section is as follows, where 7 is the number of sections.
ri’:rl.—k—bltanﬂ k=5 (16)
n —
The equation for displacement of section No. 5 is calculated according to
Eq. (6) and its aditional deformation is calculated as:

12 ¢ ¢ £.(0-) ,
u, :EI[Ide X X=r (17)

u, =u, +(r, —r/)tan 0, ~u, +(r, Y

max

Radius 7; in Eq. (17) will be substituted by (ri+4r) when gears rotate with a
small angle A#. Transformation between A# and Ar can be achieved from
transverse profile as follows:

A6 = arccos —2— —arccos - (18)

ntA, 4

Displacement along contact line can be obtained by connecting series of
discrete data. We can predict that this trend is nonlinear and varies with the
meshing point.

3 Example and comparison

3.1 Example

Without loss of generality, one considers a pair of ordinary helical gear for
example. The major parameters are listed in Table 1. The surface hardness is
680HB and addendum modification is needed. Therefore, aditional deformation is
needed to be calculated according to this study. Only pinion is selected as the
object.

Table 1
Parameters of gear tooth
Parameters Value Parameters Value
Tooth number z;=21 7z,=86 Normal pressure angle «,=20°
Normal module m,=8mm Tooth width b=160mm
Face contact ratio g=1.105 aditional coefficient h*=1.0
Power 750KW Helical angle p=8°
Modification coefficient x;=0.47 x,=0.51

The tooth section is divided into several copies along the tooth width. By
determining the load location and load magnitude, the aditional displacement is
solved point by point using the method presented in this paper. The number of
sections can be increased if a higher precision is needed. This model is calculated
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using MATLAB because integral function as Eq. (17) cannot be solved by an
analytical algorithm. Three meshing points 7, are selected in each engagement
status separately. Results (partial and full engagement) are listed in Table 2 and
Table 3 separately.

Table 2
Addendum deformation of partial engagement
/107 mm
n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18
4.7258 5.6170 6.4782 7.3094 8.1105 8.8870 9.6340 10.352
Vi:88
n=19 n=20 n=21
11.041 11.695 12.322
=90 n=14 n=15 n=16 n=17 n=18 n=19 n=20 n=21
' 42619 5.1049 59179 6.7009 7.4537 8.1764 8.8745 9.5427
=92 n=16 n=17 n=18 n=19 n=20 n=21
! 2.8952 3.7206 4.5155 5.2802 6.0148 6.7193
Table 3
Addendum deformation of full engagement
/10mm

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9

2269 22851 23012 23173 23335 23497 23659 23821 2.3983

n=10 n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18
=90 24145 24308 24471 24634 24797 24961 25124 2.5288 2.5452

n=19 n=20 n=21

2.5616 2.5781 2.5945

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9

22711 2.2872 23033 23195 23356 23518 2368 23842 2.4005

n=10 n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18
r=92 24168 2433 24493 24657 2482 24983 25147 2.5311 2.5475

n=19 n=20 n=21

2.564  2.5804 2.5969

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9

22732 22893 23054 23216 23378 2354 23702 2.3864 2.4027

n=10 n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18
=94 2419 24353 24516 24679 24842 25006 2517 2.5334 2.5498

n=19 n=20 n=21

2.5663 2.5828 2.5992

3.2 Comparison of results

The same tooth pair is selected as in Tab. 1. Aditional bending
displacement, are calculated separately using the method proposed here, the
Ishikawa algorithm, and FEM for the purpose of verifying the correctness and
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accuracy of the new method. The tooth cross section is considered as a
combination of rectangle and trapeze in the Ishikawa algorithm, and the
dangerous section is decided by the method of 30° tangent. Specific process refers

to literature [13, 14].

The 3D FEM model was established and meshed before calculating as
showed in Fig. 6. Nonlinear contact pairs are created, rotational freedom of driven
gear is bounded, and rotating torque is applied to driving gear. The middle tooth is
selected as object. Tangential deformation of aditional node is extracted as tooth
addendum deformation. Inaccuracy will be existed spans from contact area to
non-contact area along tooth width in state of partial engagement, but the error is

tiny according to St-Venant principle [23].

Fig. 6. Tooth finite element model and deformation plot

Both in the full engagement and partial engagement, results of the three
methods are plotted in Figs. 7 and 8 separately, aditional displacement along tooth

width shown in the graphs.
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Fig. 7. Results of three methods in full engagement status
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Fig. 8. Results of three methods in partial engagement status

Results of Fig. 7 and Fig. 8 indicate that: Bending deformation calculated
by Ishikawa method is greater than results calculated by FEM and this study due
to simplified tooth profile and average stiffness; At the same time, nonlinearity
trend of FEM result is more obvious due to influences of node singularity, loading
mode, and so on. Compared to Ishikawa method, results of FEM and this study
are in good agreement. If the results of FEM are considered as baseline, the
standard deviation of Ishikawa method and this study can be calculated according
to data of Fig. 7 and Fig. 8. When in full engagement status:

5F(T71) = Z (uT,- Uy )2 =0.7051x1072
o (20)
5F(T—F) = Z(MT, _upl_ )2 =0.25547 x 10_2
i=1
and when in partial engagement status:
Opoy =4 20y —u,)* =1.3858x10°7
g (21)
Opyy p = | 20ty —ug)* =0.4307x107
i=1

where: ur- aditional displacement calculated by this study;

ur—aditional displacement calculated by FEM;

u—aditional displacement calculated by Ishikawa method;
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We can see that, when results of FEM are considered as baseline, standard
deviation of this study’ results is much smaller than the one calculated for
Ishikawa method in both conditions. It is easy to draw a conclusion that accuracy
of this study is better than traditional analytical solution.

In addition, compare to partial engagement, load on contact line is well-
distributed in full engagement because of the long contact line and small
unbalance loading. We can calculate the average gradient in both conditions.
When in full engagement status:

b, M e 2674524755 s 0
L 160
b, o ;umin _ 2.59691;02.2711 —22036x107 @2
ko = Unma = Unmin _ 2.5661-2.1890 = 2356910~
L 160
and when in partial engagement status:
by o Mo i 14242208902 oo
L 80
P Zumm _ 1.23228—00.4726 9495107 23
k= Uy ~ Ui _ 1.3222-0.2726 —13.1x10°
L 80

where: k—Average gradient calculated by this study;
kr—Average gradient calculated by FEM;

ki—Average gradient calculated by Ishikawa method;

Average gradient in full engagement status smaller than in partial
engagement status, respectively, in three under the three results. Thus, the curve in
full engagement status changes mildler; by contrast, the curve in partial
engagement status changes more abruptly.

4, Conclusions

A new method to calculate elastic bending deformation of helical tooth is
introduced using cross sectional moment of inertia and distributed load. The
moment of inertia in the real profile section is calculated; the unbalance loading is
considered along the tooth profile and the tooth load is distributed at each
meshing moment. Based on these studies, general formula of helical tooth elastic
deformation is derived. In addition, aditional bending deformation with the
method proposed in this study, Ishikawa algorithm, and FEM are calculated and
compared. Standard deviation is used to verify the accuracy of this study. Here are
the major conclusions of this paper:
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(1) Continuously varied moment of inertia due to changing tooth
thickness during engagement is the major reason for non-uniform
tooth stiffness.

(2) Distribution and changing rate of contact line on the tooth profile
are largely affected by transverse contact ratiog,, face contact ratio
&p and base spiral angle £.

(3) The unbalanced loading of helical tooth is related to the length of
the contact line, helical angle and helical angle factor, and the
unbalanced load lead to a faster load changes in the contact line.

(4) Curve changes milder due to the long contact line and small
unbalance loading in full engagement status. The average gradient
is notable small under this condition.

(5) The accuracy of this study is better than the traditional analytical
solution, and it can provide valuable data for aditional
modification.
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