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A NEW METHOD TO CALCULATE BENDING 
DEFORMATION OF INVOLUTE HELICAL GEAR 

Wei SUN1, Tao CHEN2, Xu ZHANG3 

The traditional method to calculate bending displacement of helical tooth is 
generally based on simplified tooth profile. Besides, the unbalance loading is not 
taken into account. To overcome this disadvantage, a new method to calculate 
bending deformation of helical tooth is introduced. First, gear section is divided into 
several copies along tooth width and each section’s moment of inertia is calculated. 
Second, the unbalance loading of helical gear is calculated and distributed. Based 
on these work, a general formula for bending displacement of involutes helical gear 
is presented. Last, accuracy of this study is proved by an example.  

Keywords: Tooth profile section; Moment of inertia; Load distribution; Bending 
deformation; Involutes helical gear. 

1. Introduction 

Helical gears are important transmission parts. Their bending deformation 
have always been one of the research focuses, and many scholars have done lots 
of work on it. The initial study is concerned on stress and deformation of gears [1, 
3]. With further researches, vibration caused by meshing gears began to be the hot 
topic: Cai takes the spacing error and the shaft run-out into account, and 
establishes a nonlinear tooth model [4]. For mesh stiffness varies with rectangular 
waveforms, Jian and Parker, deduced simple design formulas to control the 
instability regions by adjusting the contact ratios and mesh phasing [5].  

Generally, researches on bending deformation of loaded tooth mainly include 
analytical method, Finite Element Method (FEM) and experimental method [6, 7]. 
Typical experimental method is photoelasticity and laser speckle interferometry; 
results of the latter are compared to three analytical results in [8]. The reliable 
analytical methods are the energy method (also known as material mechanics 
method), which was raised by Weber [9], and the complex variable function 
method, which was developed by Aida and Terauchi [10, 12]. Traditional material 
mechanics method adopts the view of Lewis which regards tooth as an elastic 
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cantilever. On this basis, Ishikawa have deduced his algorithm and demonstrated 
that integrated elastic deformation of loaded tooth consist of tooth contact 
deformation, bending\shear\compression deformation of cantilever, and additional 
deformation of matrix [13, 14].  

There are mainly two shortcomings of analytical solutions based on the 
traditional method. First, a simplified tooth profile is used and reduces the 
accuracy of results. Second, average tooth stiffness is used to calculate 
deformation of helical tooth and the unbalance loading along tooth width is not 
considered. In the case that the required precision is not rigorous, the simplified 
tooth profile and the average tooth stiffness can reluctantly meet the engineering 
requirements. But with the trends of high efficiency, high power and high 
reliability, the traditional analytic method has some limitations when applied on 
gear modification, dynamic noise suppression, etc.  

However, researches on this topic and papers about this issue are relatively 
few. With the development of finite element technology and emulation technique, 
such calculations can be solved numerically [15, 18]. Thus, the analytical solution 
for the bending deformation of loaded tooth is rarely reported recently. But in 
most cases, the pre-processing and computing is very time-consuming, and it is 
hard to find a suitable analytical solution for comparison. So, a high-precision 
analytical solution on bending deformation of loaded tooth is still of great 
significant. 

This paper analyzes the problem that exists in the conventional method of 
calculating the tooth bending deformation. The gear section is divided into 
numbers of copies and the two most important factors which affect tooth bending 
deformation are considered: variable moment of inertia caused by changing tooth 
profile and variable distributed load caused by changing length of contact line. In 
addition, the unbalance loading of helical gear is taken into account. We hope to 
derive the general bending deformation formula of involutes helical gear on the 
basis of material mechanics method. At the same time, an example is used to 
prove the accuracy of this method. 

2 Elastic bending deformation of involutes helical gears 

When gear tooth is in working conditions, the varied thickness leads to a 
change in stiffness. In addition, the alternate number of teeth leads to a change in 
load distribution. Focusing on the two points, a new method to calculate bending 
deformation of helical gear is deduced by the cross-section method. But first of all, 
the inertia moment of the cross-section and the distributed load along contact line 
are required. 
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2.1 Deformation of cross section 

The gear tooth is divided into n copies along its spiral direction (the helix 
angle direction) as shown in Fig. 1. All sections are equal and tooth thickness 
varies from tooth root to tooth tip. Since moment of inertia is a geometric 
parameter, bending resistance of this irregular geometry is not exactly the same 
when the meshing radius varies. In order to quantify the bending deformation, any 
section is selected and orders that the original point of the coordinate system 
locates at its pitch circle. 

 
Fig. 1. Cross-sectional model of tooth cantilever 

 
Bending deformation of a loaded cantilever can be easy obtained by the 

deflection curve equation, [19]. Ssuch geometry of unit width (right of Fig. 1) can 
be regarded as a cantilever model and the following equation is used to calculate 
the bending deformation along x-axis: 
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where, C and D are integration constants; EIx is the bending stiffness of this 
cantilever. Mx is the bending moment in the selected section. When the meshing 
radius is rx, it can be written: 
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where, rsF is the radius of dangerous cross sections sF [14]. One takes an 
infinitesimal unit along the direction of tooth thickness as shown in the right of 
Fig. 1. The moment of inertia is as follows: 
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sx is the tooth thickness of meshing radius rx , and according to the 
meshing gear principle, one can write: 
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where, αt is transverse pressure angle of the pitch cercle. Comparing to the gear 
tooth, stiffness of the gear matrix is much greater, deformation of the dangerous 
cross sections u can be regarded as zero, and so does its angle of rotation θ. On 
this bases, we define the boundary conditions as follows: 
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Hence, we can work out the integral constants: C=D=0. So, deflection 
curve equation of this tooth section can be expressed as: 
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where, ra is the radius of tooth tip and E is the Young modulus. By using Eq. (6), 
the deformation along the x-axis can be solved point by point.  But before this, 
there is still another problem to take into account: the tooth load and its 
distribution along contact line. 

2.2 Load distribution along the contact line 

Besides the bending stiffness, another key reason related to tooth bending 
deformation is distributed load along contact line. Profile of a helical tooth is 
showed in Fig. 2; βb is the base spiral angle and KK is the instantaneous meshing 
line. The plane of action w is rolling around the base cylinder.  
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Fig. 2. Profile of helical tooth 



A new method to calculate bending deformation of involute helical gear                        21 

Suppose that meshing status of the starting moment is double tooth 
meshing. rx is the radius of meshing point K. When point K is moving along 
meshing line NN1 the moved distance can be measured as follows:  

 2 2
x x bd r r= −                                               (7) 

For obtaining the distribution of tooth load, the engagement status and the 
length of contact line Lx are acquired. A complete meshing cycle is shown in Fig. 
3, where, tm is the time that gear rotated a distance of base circle pitch pbt. 
 

 
Fig. 3. Cycle of meshing tooth 

 
It is easy to determine that: 
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where, n0 is the rotating speed of gear, z is the number of teeth, εα is the face 
contact ratio. So, the threshold between single tooth meshing and double tooth 
meshing can be established: when 0<t<(εα-1)tm or tm<t<εαtm, status of meshing is 
double tooth engagement, and when (εα-1) tm <t< tm, status of meshing is single 
tooth engagement. 

Projection of tooth profile on the acting plane w is shown in Fig. 4. 
Symbols b and AE represent tooth width and mesh width, respectively. Solid line 
and dotted line represent two meshing moments separately [20]. Distribution of 
contact line on the tooth profile is decided by the transverse contact ratioεα, face 
contact ratio εβ and base spiral angle βb. Different combinations of these three 
factors decide the changing velocity and distributed load along the contact line. 
Thus, the rule for load distribution is established: take the proportion of 
instantaneous contact line length in average contact line length as the reference of 
load distribution.  
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b= Pba0
b

 
Fig. 4. Contact line of helical tooth 

 
The average length of contact line can be obtained according to Eq. (9) [21, 

22]. 
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The instantaneous length of contact line Lx can be calculated according to 
the geometric relationship in Fig. 4: 

1)  When 0<t<(εα-1)tm, the meshing status is double tooth engagement and 
length of contact line is: 
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2)  When (εα-1)tm<t<tm, the meshing status is single tooth engagement. There 
are three cases: If the contact point has not reached the tooth tip, Eq. (10) 
is still available. If the contact point has already reached the tooth tip, the 
length of contact line will tend to stabilize and the average length L can 
measure the contact line length in this region. In the late period of single 
tooth engagement, the contact line length will shorten according to Eq. 
(11). 
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3)  When tm<t<εαtm, the meshing status is double tooth engagement again, the 
length of contact line continues to shrink according to Eq. (11) and 
withdraws from meshing gradually. 

Then, the tangential load Ft can be distributed based on the length of 
instantaneous contact line as follows: 

x t
tx

L F
F

L
=                                                                                                 (12) 

Ftx is the total load acting on the selected contact line. In addition, the 
unbalance loading along contact line must be considered. Supposing that f2 is 
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greater than f1 and distance between fx and f1 is Δl. If one unfolds the contact line 
of tooth profile, a straight line is obtained. We can define line load fx according to 
a trapezoid. There is: 
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= +                                                                                    (13) 

The line load f1 and f2 can be structured by the following equation. 
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where, β is the helical angle, zβ is the helical angle factor and kf∈  (1.05~1.2). 
Then, the line load fx can be solved according to Eq. (14): 
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When the force Ft is given, the unbalanced load on the contact line is 
related to the length of the contact line, helical angle, and helical angle factor. The 
distance Δl is decided by the position of meshing point.  

2.3 Elastic bending deformation of helical tooth 

After calculating the cross section moment of inertia and quantifying the 
distributed load along contact line, the tooth displacement of the selected section 
can be deduced. And then, we can further deduce the deformation formula of a 
certain every tooth section. Aditional displacement is calculated here for the 
reason that it is closely related to aditional modification and other engineering 
parameters. 

 
Fig. 5. Mesh track of helical tooth 

 
Consider the middle tooth as object which is shown in Fig. 5. The load 

position of each section is different and load changes continuously due to the 
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unbalance loading of helical gear. Consider section No. 5 for example (k=5); load 
radius of this section is as follows, where n is the number of sections. 
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                                                               (16) 

The equation for displacement of section No. 5 is calculated according to 
Eq. (6) and its aditional deformation is calculated as: 
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Radius ri in Eq. (17) will be substituted by (ri+Δr) when gears rotate with a 
small angle Δθ. Transformation between Δθ and Δr can be achieved from 
transverse profile as follows: 
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                                                              (18) 

Displacement along contact line can be obtained by connecting series of 
discrete data. We can predict that this trend is nonlinear and varies with the 
meshing point. 

3 Example and comparison 

3.1 Example 

Without loss of generality, one considers a pair of ordinary helical gear for 
example. The major parameters are listed in Table 1. The surface hardness is 
680HB and addendum modification is needed. Therefore, aditional deformation is 
needed to be calculated according to this study. Only pinion is selected as the 
object. 

Table 1 
Parameters of gear tooth 

Parameters Value Parameters Value 
Tooth number z1=21  z2=86 Normal pressure angle αn=20° 
Normal module mn=8mm Tooth width b=160mm 
Face contact ratio εβ=1.105 aditional coefficient h∗=1.0 
Power 750KW Helical angle β=8° 
Modification coefficient x1=0.47                            x2=0.51 

    
The tooth section is divided into several copies along the tooth width. By 

determining the load location and load magnitude, the aditional displacement is 
solved point by point using the method presented in this paper. The number of 
sections can be increased if a higher precision is needed. This model is calculated 
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using MATLAB because integral function as Eq. (17) cannot be solved by an 
analytical algorithm. Three meshing points rx are selected in each engagement 
status separately. Results (partial and full engagement) are listed in Table 2 and 
Table 3 separately.  

Table 2 
Addendum deformation of partial engagement 

                                                                                                                                                   / 10-3mm 

ri=88 

n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18 
4.7258 5.6170 6.4782 7.3094 8.1105 8.8870 9.6340 10.352 
n=19 n=20 n=21      
11.041 11.695 12.322      

ri=90 n=14 n=15 n=16 n=17 n=18 n=19 n=20 n=21 
4.2619 5.1049 5.9179 6.7009 7.4537 8.1764 8.8745 9.5427 

ri=92 n=16 n=17 n=18 n=19 n=20 n=21   
2.8952 3.7206 4.5155 5.2802 6.0148 6.7193   

 
 

Table 3 
Addendum deformation of full engagement 

                                                                                                                                                            / 10-2mm 

ri=90 

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 
2.269 2.2851 2.3012 2.3173 2.3335 2.3497 2.3659 2.3821 2.3983 
n=10 n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18 
2.4145 2.4308 2.4471 2.4634 2.4797 2.4961 2.5124 2.5288 2.5452 
n=19 n=20 n=21       
2.5616 2.5781 2.5945       

ri=92 

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 
2.2711 2.2872 2.3033 2.3195 2.3356 2.3518 2.368 2.3842 2.4005 
n=10 n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18 
2.4168 2.433 2.4493 2.4657 2.482 2.4983 2.5147 2.5311 2.5475 
n=19 n=20 n=21       
2.564 2.5804 2.5969       

ri=94 

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 
2.2732 2.2893 2.3054 2.3216 2.3378 2.354 2.3702 2.3864 2.4027 
n=10 n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18 
2.419 2.4353 2.4516 2.4679 2.4842 2.5006 2.517 2.5334 2.5498 
n=19 n=20 n=21  
2.5663 2.5828 2.5992       

 

3.2 Comparison of results 

The same tooth pair is selected as in Tab. 1. Aditional bending 
displacement, are calculated separately using the method proposed here, the 
Ishikawa algorithm, and FEM for the purpose of verifying the correctness and 
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accuracy of the new method. The tooth cross section is considered as a 
combination of rectangle and trapeze in the Ishikawa algorithm, and the 
dangerous section is decided by the method of 30° tangent. Specific process refers 
to literature [13, 14].  

The 3D FEM model was established and meshed before calculating as 
showed in Fig. 6. Nonlinear contact pairs are created, rotational freedom of driven 
gear is bounded, and rotating torque is applied to driving gear. The middle tooth is 
selected as object. Tangential deformation of aditional node is extracted as tooth 
addendum deformation. Inaccuracy will be existed spans from contact area to 
non-contact area along tooth width in state of partial engagement, but the error is 
tiny according to St-Venant principle [23].  
 

 
Fig. 6. Tooth finite element model and deformation plot 

 
Both in the full engagement and partial engagement, results of the three 

methods are plotted in Figs. 7 and 8 separately, aditional displacement along tooth 
width shown in the graphs.  

 
Fig. 7. Results of three methods in full engagement status 

aditional displacem
ent 
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Fig. 8. Results of three methods in partial engagement status 

 
Results of Fig. 7 and Fig. 8 indicate that: Bending deformation calculated 

by Ishikawa method is greater than results calculated by FEM and this study due 
to simplified tooth profile and average stiffness; At the same time, nonlinearity 
trend of FEM result is more obvious due to influences of node singularity, loading 
mode, and so on. Compared to Ishikawa method, results of FEM and this study 
are in good agreement. If the results of FEM are considered as baseline, the 
standard deviation of Ishikawa method and this study can be calculated according 
to data of Fig. 7 and Fig. 8. When in full engagement status: 
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and when in partial engagement status: 
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where:              uT- aditional displacement calculated by this study; 
             uF—aditional displacement calculated by FEM; 

             uI—aditional displacement calculated by Ishikawa method; 

aditional displacem
ent 
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We can see that, when results of FEM are considered as baseline, standard 
deviation of this study’ results is much smaller than the one calculated for 
Ishikawa method in both conditions. It is easy to draw a conclusion that accuracy 
of this study is better than traditional analytical solution. 

In addition, compare to partial engagement, load on contact line is well-
distributed in full engagement because of the long contact line and small 
unbalance loading. We can calculate the average gradient in both conditions. 
When in full engagement status: 
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and when in partial engagement status: 
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where: kT—Average gradient calculated by this study; 

             kF—Average gradient calculated by FEM; 

             kI—Average gradient calculated by Ishikawa method; 
Average gradient in full engagement status smaller than in partial 

engagement status, respectively, in three under the three results. Thus, the curve in 
full engagement status changes mildler; by contrast, the curve in partial 
engagement status changes more abruptly. 

4. Conclusions 

A new method to calculate elastic bending deformation of helical tooth is 
introduced using cross sectional moment of inertia and distributed load. The 
moment of inertia in the real profile section is calculated; the unbalance loading is 
considered along the tooth profile and the tooth load is distributed at each 
meshing moment. Based on these studies, general formula of helical tooth elastic 
deformation is derived. In addition, aditional bending deformation with the 
method proposed in this study, Ishikawa algorithm, and FEM are calculated and 
compared. Standard deviation is used to verify the accuracy of this study. Here are 
the major conclusions of this paper: 
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(1) Continuously varied moment of inertia due to changing tooth 
thickness during engagement is the major reason for non-uniform 
tooth stiffness. 

(2) Distribution and changing rate of contact line on the tooth profile 
are largely affected by transverse contact ratioεα, face contact ratio 
εβ and base spiral angle βb. 

(3) The unbalanced loading of helical tooth is related to the length of 
the contact line, helical angle and helical angle factor, and the 
unbalanced load lead to a faster load changes in the contact line.  

(4) Curve changes milder due to the long contact line and small 
unbalance loading in full engagement status. The average gradient 
is notable small under this condition. 

(5) The accuracy of this study is better than the traditional analytical 
solution, and it can provide valuable data for aditional 
modification. 
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