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INTRODUCING A NEW ORTHOGONAL SPATIAL
TRANSFORM FOR SIGNIFICANT DATA SELECTION

Constantin Liviu CIRSTOIU'

O noud transformare ortogonala este introdusa cu aplicatii in special pentru
tablouri de date. Pornind de la Polinoamele Legendre, s-a dedus o matrice
ortogonald, definind noua transformare ce am numit-o ,, Transformata Legendre
Discreta” (DLT). Pentru un proces Markov stochastic de primul ordin, s-a
demonstart ca (DLT) este asimptotic echivalentd la optimald Transformata
Karhunen — Loéve (KLT).

Noi am simulat (DLT) pentru tiparirea datelor codificate si am dedus cd
performantele codificate obtinute, utilizand (DLT), sunt foarte legate la
corespondenta, la doud dintre cele mai cunoscute transformdri pdand acum
(Transformata Cosinus Discreta in variantele lui Ahmed i respectiv Kitajima).

A new orthogonal transform is introduced, with applications especially for
picture data compression and for feature selection in pattern recognition. Starting
from the Legendre Polynomials, we deduced an orthogonal matrix defining the new
transform, that we called the “Discrete Legendre Transform”™ (DLT). For a first
order Markov stochastic process, we proved that the (DLT) is asymtotical equivalent
to the optimal Karhunen — Loeve Transform (KLT).

We simulated our (DLT) for the picture data coding and deduced that the
coding performances obtained using (DLT) are very close to those coresponding to
two of the best suboptimal transforms known till know (the Discrete Cosine
Transform in the variants of Ahmed and respectively Kitajima).

1. Introduction

A new orthogonal transform is introduced with applications especially for
the picture data compressions and for the feature selection in the pattern
recognition. Starting from the Legendre polynomials, we deduced an orthogonal
matrix defining the new transform, that we called the ,,Discrete Legendre

Transform’’, (DLT ) . For a first order Markov stochastic process, we proved that

the DLT is asymptotical equivalent to the optimal Karhunen — Loéve Transform
(KLT ) We stimulated our (DLT ) for picture data coding and deduced that the

coding performances obtained using DLT are very close to those corresponding
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to two of the best suboptimal transforms known tell now (the Discrete Cosine
Transform in the variants of Ahmed and respectively Kitajima).

2. On the orthogonal transforms for picture data compression and
pattern recognition

In recent years there has been an increasing interest concerning the using
of the orthogonal transforms for their applications in:

a) data compression (commonly called ,,transform coding’’) having the
most attractive field, the ,,picture coding’’;

b) pattern recognition (orthogonal transforms are used here to obtain a
dimensionality reduction from the pattern space to the feature space).

If X representsa " Nx1" signal vector

X'=(x(0),x(1),...x(N-1)), (1)
and 7 aunitary N x N matrix, then the transformed vector is given by
Y=T-X, 2)

so that the signal energy is conserved:
N-1 5 N-1 P
2 ) = 2 @ 3
i=0 i=0

The orthogonal transforms have the following important characteristics:

1) in the transformed signal domain most of the energy is concentrated in
relatively few samples (usually in the lower ,,generalized frequency’” samples)
and only these samples are sufficient for any subsequent signal processing;

2) the transform being orthogonal the computational effort to obtain the

inverse matrix 7! (T "= T_l) is avoided.

To the purpose of picture data compression, we use the first " M " samples
from Y (those having the most important variances); thus we want to obtain a

reproduction of the picture X with a small error (Fig.1).

* (t) Sampler

> Orthogonal Dimensionally

Transform Transform

A 4
A 4

Trained classifier |

Fig.1. A picture data compression system with orthogonal transforms

The following relations are true:



Introducing a new orthogonal spatial transform for significant data selection 135

|l =[x - ]; @)

X=TY=T'7; (5)

Y’:(y(O),y(l),...,y(N—l)); (6)

Y'=(y(0).y(1).... (M -1),0,0....,0). @)
N-M

In a pattern recognition system (Fig.2), using an orthogonal transform for
feature selection, only a subset of the all transformed samples are retained to be
processed for pattern discrimination.

Picturi: X Orthogonal
Signa :: > Sampler Transform
Source :> Y =TX
v Dimensionality
Storage or reduction by Y
Transmission <‘,: significative sample <:—_'_
selection
% Inverse X Pict
Transform 1cture
e B Display
X=1Y

Fig.2. A pattern recognition system with orthogonal transforms

For a given class of signals having the same second — order statistics, the
Karhunen — Loéve Transform (KLT) is shown to be optimal with respect to the
following performance measure: variance distribution, estimation using the mean
square error and the rate distribution function. Although KLT is optimal, it has
dimensionality difficulties. First, KLT is unique for a class of signals, therefore it
has to be computed for that particular class. Second, even if a closed form
analytical expression for KLT is known, the transformation calculations do not,
generally, have a fast algorithm available. Suboptimal transforms such as Discrete
Fourier Transform (DFT), Walsh-Hadamand Transform (WHT), Cosine
Discrete Transform (CDT), Haar Transform (HT), Slant Transform (ST),
Discrete Sine Transform (DST), which do not depend on the particular image

class statistics, are used instead of KLT, with performances close to it. We
introduce now a new orthogonal transform starting from the Legendre
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Polynomials. In another paper we used these polynomials in a modulation system
for multiple transmission of information, having an optimal character [2].

3. Legendre Polynomials and their properties. Introducing a new
orthogonal transform based on the Legendre Polynomials

Denoting by P, (x) the Legendre Polynomial of the ,j’* th degree, for

xe[- ], wehave:
135250 5 G- o jG-)G-2(-3)
S B o= e == et I

Another general formula for representing the Legendre Polynomials is
given in [2]:

P, (x)=(-1). Q](x”jxe[— ] ©)

where

0, (u) = Z( l)k[kj(J;kJuk. (10)

Legendre Polynomials are characterlzed by the following properties:
1) differential equation

(1=x2) y=2xy"+ j(j+1)y =0,y = A (x) (11)
2) they can be calculated by Rodrigues formula
) a’ J
P(x)=" Y dl(_2) (12)
2/ - jldx’
3) they admit the integral representation
a J
f}(x)=2Lj(x+iV1—x2 sin(p) do. (13)
T
0

4) they can be obtained via a generator function

N ZP o "
X

5) some particular values are following
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. 1V (o
D=1, (D= () Py (=0, (0)= B g

271y

\
L] (X}

.

¥
Ny
oA

N

TN

N

-1 -0,8-0,6 -04-0,2 0 0,204 0,6 0,8 1
e —

Fig.3. The polynomials L, (s) (j =1, 2,3,4)

6) orthogonality and normalization

1 O,jik
[ PR ()dx=1 2 ik (16)
-1 2j+1

7) Polynomials roots

All of the roots of the polynomial Pj(x) are real and belong to the
interval (=7,+1).

8) recurrence relations:



138 Constantin Liviu Cirstoiu

(1-32) P} () =~ (j+ 1) [ Py (1) = xP; (0)];
Py =[P eb (0]= [P @-pL @] a7
(J+1) Pryy () =(2j+1)xP; (x) + jP;_; (x) = 0.

The first orthonormated Legendre Polynomials are represented in Fig.3.
From relation (17) it results:

p].(x)%[(z J=1)xP, ()= (j~1) P, ()], (18)

(j=2,n, By=1).
Denoting:

J
Pi(x)=Y" S(k.jx", (19)
k=0
From (18) and (19) one deduced:
5(0,0)=1;

S(0,1)=1;

S(O,j):—S(O,j_2)+M

S(k, /)= 25 (k-1 j—1)-S(k, j—2)- Sn=2n=1). 20)

n

S(n—tn)=28(n—2,n-1)- 312071,
n

S(n,n)=2S(n—1,n—1)—M.

To introduce a new orthogonal transform based on the Legendre
Polynomials we firstly deduced a recurrence relation for orthonormated Legendre
Polynomials (Fig.3):

L (0= 2L2p (0. Q1)

From (18) and (21) it results:

2 1 . 2 . 2
V21 (x) :;{(ZJ —1)x,/2j_1Lj—1 () =(J —I)Jm%‘—z (x)}- (22)
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Hence:
2j-1)x [2j+1 Jj—=1 [2j+1
L= ETES VN iy EVAS VSO
j X j 2j_1]1x j 2]._1]2 (23)
1
j=2,...nLy=——=|.
(’ ’ ﬁ]
Denoting:
_2j-1 ﬂ (24)
i N2l
and
c; =221 |27 25)
j \2j-3

One yields L (x)

Lj(x)=aijj_1(x)—Cij_1(X), (26)

(j=L..,N;L_;=0).

Relation (26) can be written in the following matrix form:
Lo(x) 0 ]/Cl] 0 0 0 Lo(x)
Ll(x) 6’2/612 0 1/611 0 0 LI(X)
L2 (X) 0 c3 /a3 0 0 0 L2 (x)

X . = . . . . . . +
LN—Z (x) 0 0 0 0 l/aN_l LN—Z (x)
LN—l (X) 0 0 0 CN /aN 0 LN—I (x)

0
0
0
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Relation (27) can also be written as
<L (x) = TL(X){LJLN (1) Ey. 28)
ay
The significance of the matrices L(x) and T in relation (28) results
evidently from its correspondence with (27): Ey is the vector

Eyn=(0,..,0,1)

N-1
Assume:
L(x;)=0,(k=0,1,.,N-1) (29)
denoting:
L(x;)=1IF, (30)
Then relation (28) becomes:
x LF =TIF, 31)

We deduced that x; and IF represent the characteristic roots and

respectively the characteristic vectors of the matrix 7. We shall prove that T is a
symmetric matrix.
From (24), (25) and (27) yields

<j_ j-1 _ 1
aj (2j-1)(2j-3) 41
(&3] 1
— = 32
PN .
ey 1 N-1
ay ay-1 J(2N-3)2N-1)
Therefore, T' is a symmetric matrix. We obtain:
1
0O — 0 - 0
J3
1 2
0 = .. 0
V3 Ji5
T = 0 2 0 0 (33)
Jis
0 0 0 - N-1
JON=-3)(2N-1)
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The matrix 7 is a real symmetric matrix having distinct characteristic
roots given by
Py (x5)=0,(k=01,.,N~-1), (34)
xp €(=1,1),1>xp >x >...>xy_1 >—1.
But the eigenvectors of a symmetric matrix that correspond to distinct
eigenvalues are orthogonal among themselves; hence

w = (1 N,

), (35)

where:
Ly = (Lo (xg ) Ly (%% ) oo L1 (x4 ) (K =0,1,..,N =1), (36)
represents an orthogonal matrix. From (35) and (36) we obtain

Ly(xo)  Lo(x)  Lo(xn-1)
No Ny Ny-
Li(x)  Li(w)  Lxya)
¥ = Ny N Ny_1 (37)
Ly-1(x) Lya(w)  Ly-1(xv-1)
No Ny Nn-

where:

(38)

M2
/ﬁ\
N
N+
f—
:o
><
=~
N~—"
N——
)

N =[Le] =/ Z L7 (x)
=0 i=0

(k=01,..N =1Ly (x;)=0).

4. Asymptotical properties of the Discrete Legendre Transform

We call the new transform, characterized by the matrix ¥, the Discrete

Legendre Transform (DLT).

Theorem. DLT is asymptotically equivalent to the Karhunen Loeve
Transform for a first order Markov random process.

Proof. If relation (31) is satisfied, then for any real constants a,b we
deduce that the following relation is also true:

(aEy +bT)IF = (a+bx; ) IF. (39)



142

Constantin Liviu Cirstoiu

Denote:

choose:

a+bx; =y,

a=(1+p?)/(1-p?);

b=(-2p)/(1-p?),
(0< p<1),and denote

T =aE N +0T, (E v being the unit matrix)

one yields

ka = a)kLk.

(40)

(41)

(42)

(43)

From relation (43) we deduce that IF represent the eigenvectors of the

matrix 7 where:

~h
Il

l-p

Since the column vectors ‘[’(i) and ¥ (/) are orthonormal, where:

It implies:

_2p

J3

0

~2(N-1)p/J(2N-3)(2N -1)

(1+p2)

5,,(5,,(0),S,,(l)"__ﬁ,,(zv—l)),

YTV = diag (@, @,....0p_; )

By considering a zero-mean random process:

X=|.

XN-1
We transform X into Y so that:
Y=¥'X

. (44)

(45)

(46)

(47)

(48)
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Assuming X is a first order Markov process, then its covariance matrix
has the form [3]:

2 N-1
1 p p oo p
N-2

sp=(p )| £ e 49)

PNl pN=2 N=3

According to a known rule [3] from (48) and (49) we can obtain the
covariance matrix of Y :

Ty =¥ I (50)
and its inverse:
(Zy)=¥ " (Zx) (51)
or:
(Zy) =y (52)

But for a zero mean order random process [7]:

1 —p 0 0
1 . -p 1+p2 :
(ZX)_ :1 3 0 -p e 0 0 (53)
P . )
: 1+p2 -p
0 0 -p 1

We observe that:

2(N-1)
m | -1 _
Nll—n;loo( v \/(ZN—S)(ZN—I)] > Y

and the set corresponding to the two extreme diagonals in (2 X )_1

2 2(N-1)
ay =4| -1+—=|p,...,| 1+ 55
N {( ﬁjp ( \/(2N—3)(2N—1)]p} )
has the elements satisfying the relation:

2(N-1)

IR -1 J
(1+\/ﬁjp‘>"'>‘( “en-non ) 0

>

(%)




144 Constantin Liviu Cirstoiu

With a good approximation we can neglect the elements from (55), starting
with the second

2
ay :{(—1+ij,0,...,0}, (57)
3
where the first neglected element is:
4
-1+ =0.03p. 58
( s Jp P (58)

Since, usually p = (O, 9+0,95), it is clear that with a good approximation:

2 2
- l+—=1lp 0 0
g [ ﬁj”
2
1+ |p 0 00
Aol 1 ( \/Ej
(2x) :T+1_pz 0 0 0 o | &
0 0 -0 0
0 0 0 —p?

If we compare our transform with the Symmetric Cosine Transform
(scT) of Kitajima [7], deduce ours is better because the residuum:

2
[(—H—ﬁ)pzo.l@oj <((—1+\/§)pz0.41p)SCT (60)
DLT
Denoting:

(Zy) ' -T-o, (61)
one yields from (61): (Zx )_1 =Y (T+®)¥. (62)

and from (46):

1. ,

(Zx)  =diag(wy.o,...on_|)+¥ Y. (63)

One can observe that the elements ¢ij of the matrix ¥ have the form:

/i+1

@szi%lLf(xj> JNZ_I(@ Joete)

i=0
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so that:
lim ¥ = lim ¥'=0, (65)
N—>w N—>w
Therefore:
. -1 .
lim (Zy)  =diag(wy,@,...0N_1), (66)
N—>
and hence:
lim ZY :diag(a)o,a)l,...,a)N_l), (67)
N—>wx

and the asymptotical equivalence between the Discrete Legendre Transform and
the Karhunen — Loéve Transform is proved.

5. Evaluating the performances of the DLT for picture data
compression

We wanted to evaluate the performances obtained by using the Discrete
Legendre Transform for picture data compression, comparing them with those
obtained using other already known transforms.

We used a 64x64 pixel and 32 amplitude level image (Lincoln) given in
the Appendix of the book of Gonzales and Wintz [1]. This picture corresponds to
a data matrix:

L X2 o X164
MX =| : : (68)
X641 X64,2 ° X64,64
We made a zonal coding such that the picture corresponding to the data
matrix MX 1is divided into 512 vectors having each of them 8 pixels (8 vectors on
each row).

Assume the eight pixel vector MV has a covariance matrix SIGN
(denoted by 2’y in relation (49)):

1 p o p
SIGN = Xy =(p\z—f\)= . | (69)
o pb o
and consider a transformation:
RY =FI-MV, (70)

where FI is a transformation matrix, MV 1is the transformed vector.
According to (50) and (69) we obtain
SY =FI-SIGN - FIT (71)
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where FIT signifies the transpose of FI. If we extract the elements of the
principal diagonal of SY

D=(dy,...dg), (72)
and recorder the above elements of D into the row vector:

A=(dj i), (73)
such that:

‘di]‘Z...Z‘diX‘. (74)

(The row vectors D and A have the same elements but in a different order).
Denote:

]P:(ig,...,i]) (75)
To each of the 256 vectors MV we apply firstly relation (70) and secondly
consider the element of RY having the indices {i8,i7,i6,i5} (see (75)) to be zero.

We denoted by RYN the truncated vectors obtained in this way. We applied then
the Inverse Discrete Legendre Transform to the vectors RYN, thus obtaining the
reconstituted picture vectors called
VN = FIT -RYN . (76)
The reconstructed vectors are put in a new 64 x 64 picture data matrix
denoted by RXN .

XyooX2 o Xeg
RXN =| : : (77)
X641 X642 X64,64
The 64 x 64 error matrix, REPS , may be computed as a difference:
11 .2 " G164
REPS =|MX — RXN|=| : : C, (78)
€641 €64,2 °° €64,64

where:
gi,j = ‘xi,j —)el‘,j‘,l',j = 1,,64
To evaluate the performances of a picture coding algorithm, we used the

following total parameters:
(1) The error norm
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M =006 ZZ “ij (7)

(2) The signal to noise ratlo
2 2
szlozg(zzxi,jj /(zzj (30)
i j i j
(3) The error histogram:

the number of errors ¢;; /k <¢; ; <k+1 fork=1,2,3,4 ,5}
H (k)= (81)

{the number of errors &jj /& 2 >6 }

6. Conclusions

Within this paper we introduces a new orthogonal transform called the
Discrete Legendre Transform (D7), starting from the Legendre Polynomials.

We proved that the performances obtained using on (p7L) for picture

coding are very close to those corresponding to the best suboptimal orthogonal
transform known (the Discrete Cosine Transform in variants of Ahmed and
respectively Kitajima).

REFERENCES

[1] R.C. Gonzales, P. Wintz, ,,Digital Image Processing’’, Reading — MA, Addison Wesley, 1997

[2] I Vaduva, Introduction to Probability Theory and Statistics (Lecture Notes)’’, University of
Bucharest, Computing Centre, 1980

[3] N. Ahmed, K.R. Rao, “Orthogonal Transform for Digital Signal Processing”, Spinger Verlag,
Berlin Heidelberg, New York, 1976

[4] H.C. Andrews, “,Mathematical Techniques in Pattern Recognition”, Wiley, Interscience, New
York, 1976

[5] A. Rosenfelt, A.C. Kak, “Digital Picture Processing”, Academic Press, New York, 1976.

[6] S. Guias, “Information Theory with Applications”, Mc. Graw — Hill, New York, 1977.

[7] H. Kitajima, “A Symmetric Cosine Transform”, IEEE Trans on Comp vol. C — 29, April, 1980

[8] A.K. Jain, “A Fast Karhunen — Loé¢ve Transform for a Class of Random Processes”, IEEE
Trans on Commun, vol. COM-24, Sept.,1976

[9] N.Ahmed, T. Natarajan, K.R. Rao, “Discrete Cosine Transform”, IEEE Trans on Computer,
vol. COM-24, Springer Verlang, New York, Ian.,1974.

[10] B.P. Demidovici, 1.A. Maron, “Comutational Mathematics”, Mir Publishers, Moscow, 1976

[11] A. Nikiforov, V. Ouvarov, “Elements de la théorie des fonctions speciales”, Mir Publishers,
Moscow, 1976

[12] J.V. Candy, “Signal Processing: A Modern Approach”, New York, Mc. Grew — Hill, 1988

[13] S. Ciochina, ,Prelucrarea numericd a semnalelor. Algoritmi rapizi”, Litografia UPB,
Bucuresti 1997



148 Constantin Liviu Cirstoiu

[14] N. Dumitriu, ,,Prelucrarea numerica a semnalelor.Filtre digitale”, UPB, Bucuresti, 1997
[15] Ad. Mateescu, S. Ciochind, N. Dumitriu, AL Serbanescu, L. Stanciu, ,,Prelucrarea numerica a
semnalelor”, Editura Tehnica, Bucuresti, 1997.



