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INTRODUCING A NEW ORTHOGONAL SPATIAL 
TRANSFORM FOR SIGNIFICANT DATA SELECTION 

Constantin Liviu CÎRSTOIU1 

O nouă transformare ortogonală este introdusă cu aplicaţii în special pentru 
tablouri de date. Pornind de la Polinoamele Legendre, s-a dedus o matrice 
ortogonală, definind noua transformare ce am numit-o „Transformata Legendre 
Discretă” (DLT). Pentru un proces Markov stochastic de primul ordin, s-a 
demonstart că (DLT) este asimptotic echivalentă la optimală Transformata 
Karhunen – Loève (KLT). 

Noi am simulat (DLT) pentru tipărirea datelor codificate şi am dedus că 
performanţele codificate obţinute, utilizând (DLT), sunt foarte legate la 
corespondenţa, la două dintre cele mai cunoscute transformări până acum 
(Transformata Cosinus Discretă în variantele lui Ahmed şi respectiv Kitajima). 

 
A new orthogonal transform is introduced, with applications especially for 

picture data compression and for feature selection in pattern recognition. Starting 
from the Legendre Polynomials, we deduced an orthogonal matrix defining the new 
transform, that we called the “Discrete Legendre Transform” (DLT). For a first 
order Markov stochastic process, we proved that the (DLT) is asymtotical equivalent 
to the optimal Karhunen – Loève Transform (KLT). 

We simulated our (DLT) for the picture data coding and deduced that the 
coding performances obtained using (DLT) are very close to those coresponding to 
two of the best suboptimal transforms known till know (the Discrete Cosine 
Transform in the variants of Ahmed and respectively Kitajima). 

 

1. Introduction 

 
A new orthogonal transform is introduced with applications especially for 

the picture data compressions and for the feature selection in the pattern 
recognition. Starting from the Legendre polynomials, we deduced an orthogonal 
matrix defining the new transform, that we called the ,,Discrete Legendre 
Transform’’, ( )DLT . For a first order Markov stochastic process, we proved that 
the  is asymptotical equivalent to the optimal Karhunen – Loève Transform DLT
( )KLT . We stimulated our ( )DLT  for picture data coding and deduced that the 
coding performances obtained using  are very close to those corresponding DLT
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to two of the best suboptimal transforms known tell now (the Discrete Cosine 
Transform in the variants of Ahmed and respectively Kitajima). 

2. On the orthogonal transforms for picture data compression and 
pattern recognition 

In recent years there has been an increasing interest concerning the using 
of the orthogonal transforms for their applications in: 

a) data compression (commonly called ,,transform coding’’) having the 
most attractive field, the ,,picture coding’’; 

b) pattern recognition (orthogonal transforms are used here to obtain a 
dimensionality reduction from the pattern space to the feature space). 

If X  represents a  signal vector  1" N "×
                           ( ) ( ) ( )( 0 1 1X ' x ,x ,...,x N= )− ,                                         (1) 

and T  a unitary  matrix, then the transformed vector is given by  N N×
Y T X= ⋅ ,                                                            (2)  

so that the signal energy is conserved:  

( ) ( )
1 1

0 0

N N2

i i

2x i y
− −

= =
=∑ ∑ i .                                            (3) 

The orthogonal transforms have the following important characteristics: 
1) in the transformed signal domain most of the energy is concentrated in 

relatively few samples (usually in the lower ,,generalized  frequency’’ samples) 
and only these samples are sufficient for any subsequent signal processing; 

2) the transform being orthogonal the computational effort to obtain the 
inverse matrix T T(1 ' T )1− −=  is avoided. 

To the purpose of picture data compression, we use the first " M  samples 
from  (those having the most important variances); thus we want to obtain a 
reproduction of the picture 

"
Y

X̂  with a small error (Fig.1). 
 

 
 
 
 
 
 

Fig.1. A picture data compression system with orthogonal transforms 
 

The following relations are true: 

  Sampler Orthogonal 
Transform 

Dimensionally 
Transform 

Trained classifier 

( )x t
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ˆX Xε = − ;                                                       (4)  

1ˆ ˆ ˆX T Y T ' Y−= = ;                                                     (5) 

( ) ( ) ( )( )0 1 1Y ' y , y ,..., y N= − ;                                        (6) 

( )( ( ) ( ) )0 1 1 0 0 0
N M

Ŷ ' y , y ,..., y M , , ,...,
−

= − 14243 .                                 (7) 

In a pattern recognition system (Fig.2), using an orthogonal transform for 
feature selection, only a subset of the all transformed samples are retained to be 
processed for pattern discrimination. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Picture 
Signal 
Source 

 
Sampler 

Orthogonal 
Transform 
Y TX=  

Dimensionality 
reduction by 

significative sample 
selection 

 
Storage or 
Transmission 

Inverse 
Transform  

1ˆ ˆX T Y−=  

Picture  
Display 

X

Y  Ŷ

Ŷ  X̂

Fig.2. A pattern recognition system with orthogonal transforms 
 
For a given class of signals having the same second – order statistics, the 

Karhunen – Loève Transform ( )KLT  is shown to be optimal with respect to the 
following performance measure: variance distribution, estimation using the mean 
square error and the rate distribution function. Although KLT  is optimal, it has 
dimensionality difficulties. First, KLT  is unique for a class of signals, therefore it 
has to be computed for that particular class. Second, even if a closed form 
analytical expression for KLT

(DFT

 is known, the transformation calculations do not, 
generally, have a fast algorithm available. Suboptimal transforms such as Discrete 
Fourier Transform , Walsh-Hadamand Transform ) ( )WHT , Cosine 
Discrete Transform ( , Haar Transform )CDT ( )HT , Slant Transform , 
Discrete Sine Transform 

( )ST
( )DST , which do not depend on the particular image 

class statistics, are used instead of KLT , with performances close to it. We 
introduce now a new orthogonal transform starting from the Legendre 
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Polynomials. In another paper we used these polynomials in a modulation system 
for multiple transmission of information, having an optimal character [2]. 

3. Legendre Polynomials and their properties. Introducing a new 
orthogonal transform based on the Legendre Polynomials 

Denoting by ( )jP x  the Legendre Polynomial of the ,,j’’ th degree, for 

[ ]x∈ − , we have:  

( ) ( ) ( )
( )

( )( )( )
( ) ( )

1 1 1 1
1 1

j j 2 j 4
j

3 5 ... 2j j j j j j 2 j 3
P x x x x ...

j! 2 2j 2 2j 2j 3
− −⎡ ⎤⋅ ⋅ ⋅ ⋅ − − − − −

= − +⎢ ⎥− − −⎣ ⎦
+

……
(8) 

Another general formula for representing the Legendre Polynomials is 
given in [2]:  

( ) ( ) [11 j
j j

xP x Q ,x
2
+⎛ ⎞= − ⋅ ∈ −⎜ ⎟

⎝ ⎠
] ,                            (9)  

where  

( ) ( )1
j

k k
j

k 0

j j k
Q u u

k k=

+⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ .                               (10) 

Legendre Polynomials are characterized by the following properties: 
1) differential equation  

( ) ( ) ( )11 1 02x y'' 2xy' j j y , y P x− − + + = =                        (11) 
2) they can be calculated by Rodrigues formula  

( )
( ) (1 1

j j j2
j j j

dP x x
2 j ! dx
−

=
⋅

)−                                     (12) 

3) they admit the integral representation  

( ) (1 1
j

2
j

0
P x x i x sin d

2

π ) .ϕ ϕ
π

= + −∫                             (13) 

4) they can be obtained via a generator function  

( )
0

1

1
j

j2 j
P x t .

2tx t

∞

=
=

− +
∑                                     (14) 

 
5) some particular values are following 
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( ) ( ) ( ) ( ) ( )
( ) ( )

( )
1

1
1 1 1 1 0 0 0

j
j

j j 2 j 2 j 22 j
2 j !

P ;P ;P ;P
2 j !

+
−

= − = − = = .     (15)      (15) 

  
  
  

  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  

  
  
  
  

x 

0 

1 

2 

-1 

-2 

( )jL x

-1   -0,8 -0,6  -0,4 -0,2   0   0,2  0,4   0,6   0,8    1  

L1 

L4 

L3 

L2 

( ) ( )1, 2,3, 4jL s j =  Fig.3. The polynomials Fig.3. The polynomials 

 
6) orthogonality and normalization  

( ) ( )
1

1

0

1
j k

, j k
P x P x dx 2 , j k

2 j−

≠⎧
⎪= ⎨ =⎪ +⎩

∫                                    (16) 

7) Polynomials roots 
All of the roots of the polynomial ( )jP x  are real and belong to the 

interval ( )1, 1− + . 
8) recurrence relations:  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 1

1 1

1 1

1 1
1 1

1 1 0

2 '
j j j

' ' ' '
j j j j j

j j j

x P x j P x xP x ;

P x P x xP x P x P x ;
j 2 j

j P x 2 j xP x jP x .

+

+ +

+ −

⎫⎡ ⎤− = − + −⎣ ⎦ ⎪
⎪⎡ ⎤ ⎡= − = − ⎬⎣ ⎦ ⎣+ + ⎪
⎪+ − + + = ⎭

1− ⎤
⎦    (17) 

 
The first orthonormated Legendre Polynomials are represented in Fig.3. 
From relation (17) it results:  

( ) ( ) ( ) ( ) ( )1
1 1 1j jP x 2 j xP x j P x
j −⎡ ⎤= − − −⎣ ⎦j 2− ,                   (18) 

( )0 1j 2,...,n, P .= =  
Denoting:  

( ) ( )
0

j
k

j
k

P x S k , j x
=

= ∑ ,                                     (19) 

From (18) and (19) one deduced: 
( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 1
0 1 1

0 0

11 1

11 1

1 11 1

S , ;
S , ;

S 0, j 2
S , j S , j 2

j
S n 2,nS k , j 2S k , j S k , j 2 ;

n
S n 2,nS n ,n 2S n 2,n ;

n
S n ,nS n,n 2S n ,n .

n

⎧ =
⎪

=⎪
⎪ −
⎪ = − − +
⎪
⎪⎪ − −⎨ = − − − − −
⎪
⎪ − −⎪ − = − − −
⎪
⎪ − −⎪ = − − −
⎪⎩

            (20) 

To introduce a new orthogonal transform based on the Legendre 
Polynomials we firstly deduced a recurrence relation for orthonormated Legendre 
Polynomials (Fig.3):  

( ) ( )1
j

2 jL x P x
2
+

= j .                                         (21) 

From (18) and (21) it results:  
 

( ) ( ) ( ) ( ) ( )1
1 1 1

1 1j j
2 2 2L x 2 j x L x j L x

2 j j 2 j 2 j 3− −
⎡ ⎤

= − − −⎢ ⎥+ − −⎣ ⎦
j 2 .   (22) 
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Hence:  

( ) ( ) ( ) ( )1
1 1 1 1

1 1j j
2 j x 2 j j 2 j

j 2L x L x
j 2 j j 2 j− −
− + − +

= −
− −

L x ,           (23) 

0
1j 2,...,n,L .
2

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
Denoting: 

1
1j

2 j 2 ja
j 2 j

1 ,− +
=

−
                                             (24)  

and  
1

j
j 2 jC 1 ,

j 2 j 3
− +

=
−

                                              (25)  

One yields  ( )jL x
( ) ( ) ( )1j j j j jL x a xL x C L x− −= − 1 ,                                    (26) 

11 0( j ,...,N;L ).−= =  
 
Relation (26) can be written in the following matrix form:  
 
( )
( )
( )

( )
( )

( )
( )
( )

( )
( )

0 0

1 11

1

1 1

0 0 0 0
0 1 0 0

0 0 0 0

0 0 0 0 1
0 0 0 0

1

2 2

2 23 3

N 2 N 2N

N NN N

L x L x1 / a
L x L xc / a / a
L x L xc / a

x

L x L x/ a
L x L xc / a

− −−

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟

= +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

M MM M M M M

L

L

L

L

L

 

( )( )

0
0
0

0
1

N NL x a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

+ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M
.                                                                                            (27) 
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Relation (27) can also be written as  

( ) ( ) ( )1
N

N
NxL x TL x L x E .

a
⎛ ⎞= + ⎜ ⎟
⎝ ⎠

                                        (28) 

The significance of the matrices ( )L x
NE

 and T  in relation (28) results 
evidently from its correspondence with (27):  is the vector  

( )
1

0 0 1N
N

E ,..., , '
−

=14243  

Assume: 
( ) ( )0 0 1kL x , k , ,...,N 1= = −

k

                                    (29) 
denoting: 

( ) k
kL x L ,=                                                     (30) 

Then relation (28) becomes:  
k

kx L TL= .                                                     (31) 

We deduced that kx  and  represent the characteristic roots and 
respectively the characteristic vectors of the matrix T . We shall prove that T  is a 
symmetric matrix. 

kL

From (24), (25) and (27) yields  

( )( )

( )( )

1

1

1 1
1

1

1 1
1

j

j j

2

2

N

N N

c j ;
a a2 j 2 j 3

c ;
a 3
c N .
a a 2N 3 2N

−

−

⎫−
= = ⎪

− − ⎪
⎪⎪= ⎬
⎪
⎪−

= = ⎪
− − ⎪⎭

                              (32) 

Therefore, T  is a symmetric matrix. We obtain:  

( )( )

10 0

1 0 0
1

0 0
1

10 0 0 0
1

3
2

3 5
2T
5

N
2N 3 2N

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟− −⎝ ⎠

M M M M M

L L

L L

L L

L

0

0              (33) 



Introducing a new orthogonal spatial transform for significant data selection            141 

The matrix T  is a real symmetric matrix having distinct characteristic 
roots given by  

( ) ( )
( ) 0 1 1

0 0 1 1

1 1 1 1
N k

k N

P x , k , ,...,N ;

x , , x x ... x −

⎧ = = −⎪
⎨

∈ − > > > > > −⎪⎩ .
                          (34) 

But the eigenvectors of a symmetric matrix that correspond to distinct 
eigenvalues are orthogonal among themselves; hence  

( )0 0 1 1 1 1N NL / L ,L / L ,...,L / L ,Ψ − −=                           (35)  
where: 

( ) ( ) ( )( ) ( )0 1 1 0 1 1k k k N kL L x ,L x ,...,L x , k , ,...,N ,−= = −                 (36)  
represents an orthogonal matrix. From (35) and (36) we obtain  
 

                         

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0 10 1

0 1 1

0 11

0 1 1

1 0 1 11 1

0 1 1

N

N

1 N1

N

N NN

N

L x L xL x
N N N

L x L xL x
N N N

L x L xL x
N N N

1

N

Ψ

−

−

−

−

− −−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M M M

L

L

L

L −

      (37)  

where:  

( ) ( )
1 1

0 0

1
2N N

2
k k i k i k

i i

2iN L L x P x
2

− −

= =

⎛ ⎞+
= = = ⎜

⎝ ⎠
∑ ∑ ,⎟                (38) 

( )( )0 1 1 0N kk , ,...,N ;L x .= − =  
 

4. Asymptotical properties of the Discrete Legendre Transform 

We call the new transform, characterized by the matrix Ψ , the Discrete 
Legendre Transform ( ) . DLT

Theorem.  is asymptotically equivalent to the Karhunen Loeve 
Transform for a first order Markov random process. 

DLT

Proof. If relation (31) is satisfied, then for any real constants a,  we 
deduce that the following relation is also true:  

b

 

( ) (k
NaE bT L a bx L .+ = + ) k

k                                      (39) 
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Denote:  
k ka bx ,ω+ =                                                    (40)  

choose:  
( ) ( )
( ) ( )
1 1

1

2 2

2

a /

b 2 / ,

ρ ρ

ρ ρ

⎧ = + −⎪
⎨
⎪ = − −⎩

;
                                             (41)  

( )0 ,ρ 1≤ < and denote  

NT aE bT= +% % , N( E%  being the unit matrix)                                   (42) 
one yields  

k
kTL L .ω=% k                                                               (43) 

From relation (43) we deduce that  represent the eigenvectors of the 
matrix T  where: 

kL
%

( ) ( )( )

( )

1 0

1 0
1

0 01

1 1

0 0 1

2

2

2

2

2
3

2
3

T 2
3

2 N 2N 3 2N

ρρ

ρ ρ

ρ
ρ

ρ

ρ

⎛ ⎞+ −⎜ ⎟
⎜ ⎟
⎜ ⎟− +⎜ ⎟
⎜ ⎟

= ⎜ ⎟−− ⎜ ⎟
⎜ ⎟
⎜ ⎟− − − −
⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

M� M

L

L

%
L

L

L

 .   (44)  

Since the column vectors ( )iΨ  and ( )jΨ  are orthonormal, where: 
 

( ) ( ) ( )( 0 1 1N, ,..., ,)Ψ Ψ Ψ Ψ −                                              (45)  
It implies:  

( )0 1 1N' T diag , ,..., .Ψ Ψ ω ω ω −=%                                          (46) 
By considering a zero-mean random process:  

0

1

1N

x
x

X

x −

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

M
⎟
⎟

                                                      (47) 

We transform X  into Y  so that:  
Y 'Ψ= X                                                                       (48) 
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Assuming X  is a first order Markov process, then its covariance matrix 
has the form [3]: 

( )

1

1

1

1

1

2 N

N 2i j
X

N N 2 N 3

.

ρ ρ ρ

ρ ρ ρΣ ρ

ρ ρ ρ

−

−
−

− − −

⎛ ⎞
⎜ ⎟
⎜ ⎟

= = ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M M M M

L

L

L

               (49) 

According to a known rule [3] from (48) and (49) we can obtain the 
covariance matrix of Y :  

Y X'Σ Ψ Σ Ψ=                                                             (50)  
and its inverse:  

( ) ( ) ( ) 111
Y X 'Σ Ψ Σ Ψ ,−−−=                                                   (51)  

or:  

( ) 1 1
Y 'Σ Ψ Σ− −= X .Ψ                                                          (52) 

But for a zero mean order random process [7]:  
 

( ) 1

1 0

1
1 0 0

1
1

0 0 1

2

X 2
2

ρ

ρ ρ
Σ ρ

ρ

0

0

ρ ρ
ρ

−

−⎛ ⎞
⎜ ⎟
− +⎜ ⎟
⎜ ⎟= −⎜ ⎟− ⎜ ⎟+ −
⎜ ⎟⎜ ⎟−⎝ ⎠

M M

M M

L

L

L

L

                       (53) 

We observe that: 
( )

( )( )
11 0

1N

2 Nlim ,
2N 3 2N→∞

⎛ ⎞−− + =⎜
− −⎝ ⎠

⎟                                   (54)  

and the set corresponding to the two extreme diagonals in ( ) 1
XΣ −  

( )
( )( )

111
1N

22 Na ,...,
3 2N 3 2N

ρ ρ
⎧ ⎫⎛ ⎞−⎛ ⎞⎪ ⎪− +− += ⎨ ⎬⎜ ⎟⎜ ⎟ − −⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

                  (55)  

has the elements satisfying the relation:  
 

( )
( )( )

111 1
1

22 4 N... .
3 3 5 2N 3 2N

ρ ρ ρ
⎛ ⎞−⎛ ⎞ ⎛ ⎞ − +− + − +> > > ⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    (56) 

 



144                                                     Constantin Liviu Cîrstoiu 

With a good approximation we can neglect the elements from (55), starting 
with the second  

1 0 0N
2

a ,
3

ρ ,..., ,
⎧ ⎫⎛ ⎞− += ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

                                   (57) 

where the first neglected element is:  

1 0 0
4

. 3 .
3 5

ρ ρ⎛ ⎞− + ≅⎜ ⎟⋅⎝ ⎠
                                        (58) 

Since, usually , it is clear that with a good approximation:  (0,9 0,95ρ ≈ ÷ )

  ( ) 1

1 0 0

1 0 0
1

0 0 01

0 0 0

0 0 0

2

X 2

2

2
3

2
3ˆ T

ρ ρ

ρ

Σ
ρ

0

0

0

ρ

−

⎛ ⎞⎛ ⎞− +−⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟⎛ ⎞− +⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟= + ⎜ ⎟− ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

M M M

L

L

%
L

L

L

M

     (59) 

If we compare our transform with the Symmetric Cosine Transform 
( )SCT  of Kitajima [7], deduce ours is better because the residuum: 

( )(1 0 1 0 11 SCT
DLT

2
. 5 .423

ρ ρ ρ ρ
⎛ ⎞⎛ ⎞− + ≈ < ≈− +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

)

,

                   (60)  

Denoting:  

( ) 1
X T ΦΣ − − =%                                                  (61)  

one yields from (61):           .( ) ( )1
X ' TΨ ΨΣ Φ

− = +                                         (62)  
and from (46): 
 

( ) ( )1
0 1 1NX diag ' ., ,..., Ψ ΦΨω ω ωΣ −

−= +                          (63) 
One can observe that the elements ijΦ  of the matrix Ψ  have the form:  

( )

( )

( )

( )
1 1

0 0

1

1

jiji
ij N N

2 2
j ji i

i i

i xPxL 2 ,
2ix xL P

2

Φ
− −

= =

+

= =
+⎛ ⎞

⎜ ⎟
⎝ ⎠∑ ∑

                    (64)  
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so that:  
0

N N
lim lim ' ,Ψ Ψ
→∞ →∞

= =                                             (65)  

Therefore:  

( ) (1
0 1 1NY

N
lim diag ,, ,...,ω ω ωΣ −

−
→∞

= )                            (66)  

and hence:  
( )0 1 1Y

N
lim diag ,, ,...,Σ ω ω ω −
→∞

= N

⎟
⎟

                               (67)  

and the asymptotical equivalence between the Discrete Legendre Transform and 
the Karhunen – Loève Transform is proved. 

 
5. Evaluating the performances of the  for picture data 

compression 
DLT

 
We wanted to evaluate the performances obtained by using the Discrete 

Legendre Transform for picture data compression, comparing them with those 
obtained using other already known transforms. 

We used a 64  pixel and 32 amplitude level image (Lincoln) given in 
the Appendix of the book of Gonzales and Wintz [1]. This picture corresponds to 
a data matrix:  

64×

11 1 1

1

, ,2 ,64

64, 64,2 64,64

x x x
MX

x x x

⎛ ⎞
⎜= ⎜
⎜ ⎟
⎝ ⎠

M M M

L

L

                                  (68) 

We made a zonal coding such that the picture corresponding to the data 
matrix MX  is divided into 512 vectors having each of them 8 pixels (8 vectors on 
each row). 

Assume the eight pixel vector MV  has a covariance matrix SIG  
(denoted by 

N
XΣ  in relation (49)):  

( )
1

1

1

7

6
i jX

7 6

SIGN

ρ ρ

ρ ρΣ ρ

ρ ρ

−

⎛ ⎞
⎜ ⎟
⎜ ⎟

= = = ⎜
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M M M

L

L

L

⎟                          (69)  

and consider a transformation:  
RY FI MV ,= ⋅                                                    (70) 

where  is a transformation matrix, FI MV  is the transformed vector. 
According to (50) and (69) we obtain  

SY FI SIGN FIT= ⋅ ⋅                                             (71)  
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where  signifies the transpose of . If we extract the elements of the 
principal diagonal of  

FIT FI
SY

( )1 8D d ,...,d= ,                                                (72)  
and recorder the above elements of  into the row vector:  D

( )1 8i id ,...,d ,Δ =                                                (73)  
such that:  

81 ii dd ... .≥ ≥                                                  (74) 
(The row vectors  and D Δ  have the same elements but in a different order).  
Denote:  

( )8 1i ,...,iIP =                                                  (75) 
To each of the 256 vectors MV  we apply firstly relation (70) and secondly 

consider the element of RY  having the indices { }8 7 6 5i ,i ,i ,i

RYN

 (see (75)) to be zero. 
We denoted by  the truncated vectors obtained in this way. We applied then 
the Inverse Discrete Legendre Transform to the vectors , thus obtaining the 
reconstituted picture vectors called  

RYN

VN FIT RYN= ⋅ .                                            (76) 
The reconstructed vectors are put in a new 64 x 64 picture data matrix 

denoted by .  RXN
11 1 1

1

, ,2 ,64

64, 64,2 64,64

ˆ ˆ ˆx x x
RXN

ˆ ˆ ˆx x x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

M M M

L

L

                             (77) 

The 64 x 64 error matrix, , may be computed as a difference:  REPS
11 1 1

1

, ,2 ,64

64, 64,2 64,64

REPS ,MX RXN

ε ε ε

ε ε ε

⎛ ⎞
⎜ ⎟= =− ⎜ ⎟
⎜ ⎟
⎝ ⎠

M M M

L

L

               (78)  

where: 
1i , j i , ji , j ˆx x ,i, j ,...,64.ε −= =  

To evaluate the performances of a picture coding algorithm, we used the 
following total parameters: 

(1) The error norm  
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1
1

i , j
i j

N
4096

;ε= ∑∑                                           (79) 

(2) The signal to noise ratio  

10
2 2
i, j i , j2

i j i j
xN lg ε⎛ ⎞ ⎛

= ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠
∑∑ ∑∑ ;⎞⎟                           (80) 

(3) The error histogram: 
 

( )
}{

}{
the number of  errors  for k = 1,2,3,4,5

the number of  errors 

ij i , j

ijij

/ k k 1,
H k

6/ .

ε ε

εε

⎧ ≤ ≤ +⎪= ⎨
≥⎪⎩

    (81) 

 

6. Conclusions 

Within this paper we introduces a new orthogonal transform called the 
Discrete Legendre Transform ( , starting from the Legendre Polynomials. )DTL

We proved that the performances obtained using on ( )DTL  for picture 
coding are very close to those corresponding to the best suboptimal orthogonal 
transform known (the Discrete Cosine Transform in variants of Ahmed and 
respectively Kitajima). 
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