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METHOD AND APPLICATION FOR URBAN GAS DEMAND 

PREDICTION BASED ON THE INTEGRATED ADAPTIVE 

NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 

Zizi LI1, Wei XIAO2,*, Yun GAO3, Ying WEI4 

Accurate urban gas demand forecasting can significantly assist managers in 

developing efficient natural gas supply plans. This study, based on the Adaptive 

Neuro-Fuzzy Inference System (ANFIS), innovatively integrates neural networks with 

fuzzy logic principles to construct a daily urban gas demand prediction model. 

Experimental results demonstrate that the hybrid forecasting algorithm based on 

ANFIS achieves superior performance in daily urban gas demand prediction 

compared to Artificial Neural Networks (ANNs), Fuzzy Cognitive Maps (FCM), and 

their combined models. The Mean Absolute Percentage Error (MAPE) on the test set 

is less than 20%, significantly improving prediction accuracy. Validation results 

indicate that the ANFIS prediction algorithm effectively enhances the accuracy of 

neural network models, providing a scientific basis for emergency supply planning in 

gas companies and exhibiting promising application prospects. 

Keywords: Neuro-fuzzy; neural networks; soft computing; fuzzy cognitive maps; 

urban gas prediction 

1. Introduction 

With the increasing emphasis on transitioning to a sustainable and 

environmentally friendly economy, natural gas, celebrated for its cleaner-burning 

properties, is securing a growing share in global energy consumption. A report from 

the China Petroleum Economic and Technological Research Institute revealed that 

in 2023, China consumed a total of 391.7 billion cubic meters of natural gas, 

marking a 6.6% increase compared to the previous year. This highlights the vast 

growth potential of the country's natural gas market [1]. The consumption of natural 

gas in China is mainly allocated to four major sectors: urban use, industrial fuel, 

power generation, and chemical production, contributing 32.6%, 39.0%, 18.1%, 

and 9.9% respectively to the overall demand. This highlights that urban gas (UG) 

represents a major share of China's natural gas consumption. For government and 
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natural gas industry policy-makers, accurately forecasting urban gas demand, 

especially during winter, is crucial for formulating and implementing effective 

policies. Additionally, for urban gas providers, accurately forecasting short-term 

demand is vital for efficient production planning and gas supply management. This 

guarantees the secure provision of urban gas, improves the balance between supply 

and demand, and optimizes resource utilization [2]. 

Owing to a multitude of unpredictable elements, short-term urban gas 

demand experiences nonlinear effects. Currently, models for forecasting short-term 

gas demand in urban areas are generally divided into three main categories. The 

initial group encompasses traditional statistical forecasting models, including those 

that rely on time series analysis and multivariate regression techniques [3,4]. The 

second category encompasses models that utilize artificial intelligence, including 

grey prediction models, Artificial Neural Networks (ANN), and Support Vector 

Machines (SVM) [5,6]. For instance, reference [7] developed a FARX (function 

autoregressive with exogenous variables) model to predict gas demand for the 

following day. In references [8,9], the adaptive intelligent grey model was used for 

forecasting urban gas (UG) demand. Various methods have been explored 

regarding neural network algorithms, including the training and testing of 

multilayer perceptrons with different activation functions and radial basis function 

networks. In the third category, hybrid forecasting techniques are delineated, which 

include the amalgamation of genetic algorithms with Back Propagation (BP) neural 

networks [10,11], the synthesis of adaptive networks and fuzzy mathematics [12], 

as well as the integration of neural networks [13] and multivariate time series 

methodologies [14-16]. 

A review of existing literature highlights certain limitations in next-day 

urban gas demand predictions using Artificial Neural Networks (ANN) and hybrid 

methods [17]. Specifically, since neural network models follow the principle of 

minimizing empirical risk, they may be affected by overfitting. Furthermore, the 

complexity associated with the multi-tiered architecture of network systems may 

impart a consequential impact on the stability of the predictive outcomes. 

Moreover, as the sample size grows, the complexity of training neural network 

models also increases, resulting in a lack of model simplicity and flexibility, along 

with a diminished capacity for generalization within the modeling process. The 

ability to handle inherent data fuzziness is also somewhat lacking. Most forecasting 

methods require large datasets for training and relatively many features for accurate 

predictions [18]. In addition, the model structure is complex, time-consuming, and 

difficult for non-experienced AI users to apply. Currently, there is little research on 

how to apply ANFIS technology to urban gas (UG) demand forecasting, especially 

with a lack of in-depth exploration in determining the optimal model configuration. 
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Based on the research gap outlined above, this paper aims to develop an 

easy-to-use and highly generalized integrated forecasting model for urban gas 

demand prediction. The main innovations are as follows: 

First, a simple, fast, and robust integrated ANFIS forecasting model is 

constructed. The proposed model exhibits high flexibility, making it particularly 

suitable for large datasets. It is user-friendly and demands short running time. 

Second, a meticulous optimization process is applied to ANFIS to determine 

the output structure that best enhances forecasting performance. 

2. Basic Method 

2.1 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) [19] is an integrated 

intelligent system that merges the adaptive properties of neural networks with the 

capacity of fuzzy logic to manage ambiguity and process linguistic expressions. It 

can be described using Takagi-Sugeno (TS) type fuzzy "IF-THEN" rules. The TSK-

ANFIS framework refers to the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

built on Takagi-Sugeno-Kang (TSK) type fuzzy inference rules. In this framework, 

the fuzzy rules are in TSK form, where "T" stands for "Fuzzification", "S" for 

"Solution" (or "System"), and "K" for "Knowledge" (or "Rules"). 

TSK fuzzy rules are expressed in the IF-THEN form, with each rule 

consisting of a fuzzified antecedent variable and an output result. The antecedent 

variable is fuzzified based on input variables, and the output is computed through 

the solving part. The ANFIS framework combines TSK fuzzy rules with neural 

networks, enabling adaptive learning and parameter adjustment of the fuzzy rules, 

thereby improving the accuracy and robustness of the system. 
𝑅𝑖: 𝑖𝑓 𝑥1 = 𝐴𝑖,1 𝑎𝑛𝑑 … 𝑎𝑛𝑑 𝑥𝑘 = 𝐴𝑖,𝑘

𝑡ℎ𝑒𝑛 𝑦𝑖 = 𝑏𝑖,0 + 𝑏𝑖,1𝑥1 + ⋯ + 𝑏𝑖,𝑘𝑥𝑘
(1) 

In the equation: Ri represents the fuzzy rule number; xk is the input variable; 

Ai,k represents the membership function that corresponds to the input variable xk; yi 

is the output variable; bi,k is the linear coefficient term. 

A typical ANFIS network structure includes five layers (Fig. 1). 

 
Fig. 1: TSK ANFIS basic frame diagram. 
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In the first layer, each node 𝑖 is associated with a linguistic label and defined 

by the membership function in equation (2). 

𝑤𝑖 = ∏ 𝐴𝑖,𝑘

𝑛

𝑘=1
(𝑥𝑘) (2) 

In the equation, wi represents the activation strength of the i-th rule; 𝑛 is the 

number of input variables; xk is the input variable; and Ai,k(xk) denotes the 

membership degree of xk associated with the membership function Ai,k. 

In the third layer, the 𝑖-th node calculates the proportion of its activation 

relative to the total activation of all rules. This layer serves as a normalization step, 

balancing the intensities across the rules. The output from each node is given by 

equation (3). 

𝑤̅𝑖 =
𝑤𝑖

∑ 𝑤𝑖𝑖=1

(3) 

In the equation: 𝑤̅𝑖 is the normalized activation strength of the i-th rule; wi 

is the original activation strength of the i-th rule. 

Within the fourth layer, each node operates as a dynamic component, with 

its activities regulated by equation (4). At this layer, each node conducts a linear 

computation, with the coefficients being iteratively refined based on the error 

feedback from the interconnected layers of the feedforward neural network. 

𝑦̅𝑖 = 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖) (4) 

In the equation, 𝑦̅𝑖  represents the weighted output of the i-th rule, 𝑤̅𝑖 

denotes the normalized activation of the i-th rule, and (𝑝𝑖, 𝑞𝑖, 𝑟𝑖)  is the set of 

conclusion parameters. 

In the fifth layer, there exists a single fixed node, which embodies the 

cumulative net outputs from the nodes of the preceding layer. This node determines 

the aggregate output by aggregating all incoming signals, as illustrated in the 

equation (5).  

𝑧 = ∑ 𝑦̅𝑖
𝑖

(5) 

In the equation, z represents the final system output, and 𝑦̅𝑖  denotes the 

weighted output of the i-th rule. 

ANFIS employs a composite learning strategy for model training. The 

parameters of the initial layer are honed through the backpropagation method, 

whereas the parameters of the penultimate layer are refined using either a least 

squares estimation technique or an adaptation of the backpropagation approach. 

2.2 The Fuzzy C-Means (FCM) clustering algorithm 

The Fuzzy C-Means (FCM) clustering algorithm is based on fuzzy set 

theory, allowing data points to have varying levels of membership across multiple 

clusters. In FCM, every datum is assigned a level of affiliation to each cluster 
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centroid, rather than being exclusively allocated to one particular cluster. The 

membership degree is computed by optimizing an objective function, which aims 

to minimize the distance between data points and their corresponding cluster centers 

while maximizing the consistency of their membership degrees. The procedure of 

the FCM algorithm (Fig. 2) is as follows: 

 
Fig. 2: FCM algorithm flow chart 

 

Step 1: Initialize Cluster Centers: Select initial cluster centers, which can 

be chosen randomly or determined based on prior knowledge. 

Step 2: Compute Membership Degrees: For each data point, calculate its 

degree of membership with respect to each cluster center, typically using Euclidean 

distance or other distance metrics. 

Step 3: Refine Cluster Hubs: Reassess the coordinates of the cluster hubs 

according to the determined membership magnitudes. 

Step 4: Repeat Steps 2 and 3: Keep cycling through steps 2 and 3 until the 

termination conditions are satisfied, such as achieving the predetermined maximum 

iterations or observing no further alterations in the cluster centers. 

3. GA-FCM-ANFIS Urban Gas Demand Prediction Model 

The Genetic Algorithm, Fuzzy C-Means clustering, and Adaptive Neuro-

Fuzzy Inference System are integrated to form the GA–ANFIS-FCM hybrid 

method. The process is as follows: 

Step 1: Initialize and generate the initial population. 
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Step 2: Assess the viability of each individual within the population, choose 

a duo of individuals for replication, and arrange them based on their viability. 

Step 3: Integrate the separated individuals and a subset of the current 

population into the existing group, forming a new one. 

Step 4: Stop the algorithm and adjust the ANFIS parameters. This process 

is repeated until the predefined endpoint is reached. 

Fig. 3 illustrates the algorithm flow for urban gas demand prediction. 

 
Fig. 3: Flow chart of GA-FCM-ANFIS prediction model 

To ensure that the ANFIS model is efficiently applied to urban gas demand 

prediction, a structured process must be followed, with the correct configuration of 

the model's inputs and training parameters. The steps are as follows: 

1.Select the Fuzzy Inference System (FIS) Model: Given the need for 

interpretability and computational efficiency, this paper selects the Sugeno fuzzy 

model. 

2. Partition the Input Space: There are two approaches: grid partitioning 

and subtractive clustering. The grid partitioning approach compartmentalizes the 
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input space into a mesh pattern devoid of overlaps, which is well-suited for contexts 

with a limited quantity of input variables. 

3. Choose the Partition Method: This paper opts for the grid partitioning 

method since it is simple and effective, especially when investigating the types and 

forms of membership functions, particularly for a small number of input variables. 

4. Input Variables and Membership Functions (MFs): Five variables 

have been chosen as inputs for the model: month, day, temperature, gas 

consumption from the previous day, and the current day's gas demand. The grid 

partitioning approach is used to determine the quantity and types of membership 

functions for each input, along with the corresponding fuzzy rules and their 

parameter values. 

5. Consider the Limitations of the ANFIS Architecture: As the count of 

input variables surpasses five, ANFIS encounters constraints stemming from 

heightened computational intricacy and extended training durations. 

6. Explore Configurations to Improve Efficiency: To enhance the model's 

accuracy and reduce errors, five configurations are considered: 

⚫ Number of membership functions (MFs) 

⚫ Type of membership functions (triangular, trapezoidal, bell-shaped, 

Gaussian, S-shaped) 

⚫ Output membership function type (constant or linear) 

⚫ Optimization method (hybrid or backpropagation) 

⚫ Number of training epochs 

Given the complexity of the model architecture and the need to explore 

various parameters to optimize performance, this paper aims to construct an 

effective ANFIS model for urban gas demand (UG) prediction by following this 

structured approach. 

In the revised manuscript, we have clarified that all experiments were 

carried out in MATLAB R2024a using the Fuzzy Logic Toolbox (v2.6) and Global 

Optimization Toolbox (v3.5). Specifically, FCM clustering was executed with the 

built-in fcm function, the initial Sugeno-type FIS structure was generated via 

genfis1, and ANFIS training employed the anfis function under the hybrid learning 

scheme. Genetic‐algorithm operations—including population initialization, fitness 

evaluation, selection, crossover, and mutation—were conducted using the ga 

function, with each individual’s fitness computed as the RMSE of the trained 

ANFIS model. We also detail the key training parameters: the number and type of 

membership functions per input (triangular, trapezoidal, bell-shaped, Gaussian, or 

S-shaped), the use of a Hybrid optimizer, a maximum of 200 training epochs, and 

convergence criteria based on negligible change in the training error. 
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4. Experimental Preparation 

4.1 Experimental Data 

The dataset covers historical data on urban gas demand from ten different 

cities across Italy (Rome, Milan, Napoli, Turin, Palermo, Genoa, Bologna, Firenze, 

Bari, and Catania), spanning a total of 8 years. Notably, the time periods for each 

dataset (city) differ. Table 1 describes the years covered by each dataset. The data 

was initially provided by the Italian Gas Pipeline Company, which operates, 

manages, develops, and interconnects Italy's gas system. After comparing outliers 

and the total sample size, this study selected data from the following ten cities. In 

the preprocessing stage, a minor number of outliers were eliminated, and missing 

data points were imputed using the mean value of the two preceding days. The 

dataset was divided into training and test sets for ANFIS modeling and performance 

evaluation. For every city, the dataset from the final year, covering November 2017 

to October 2018, was allocated for validation purposes, while data from the 

preceding years were used to train the developed GA-FCM-ANFIS hybrid 

forecasting model, as depicted in Table 1. 
Table 1 

The time period involved in the time series data set of each city 

City Data Time Dimension City Data Time Dimension 

Rome 2/2013-10/2018 Genoa 3/2010-10/2018 

Milan 3/2013-10/2018 Bologna 6/2013-10/2018 

Napoli 9/2011-10/2018 Firenze 3/2012-10/2018 

Turin 5/2014-10/2018 Bari 9/2012-10/2018 

Palermo 3/2010-10/2018 Catania 3/2010-10/2018 

Accurate forecasting of urban gas demand in Italy requires selecting the 

appropriate quantity and category of input parameters. Consequently, five variables 

were meticulously selected to serve as input parameters, with the urban gas 

consumption demand at each distribution point from the previous day being the 

output parameter. This forecasting model is grounded in historical urban gas 

consumption data, meteorological information, and calendar-related indicators. 

These factors are the core input variables for predicting urban gas demand. More 

specifically, the dataset includes the following components: historical urban gas 

demand data for each city's gas supply station, the average daily temperature (in 

Celsius), and indicators for the month and date. Among these, historical urban gas 

demand data is associated with two distinct input variables: the gas consumption of 

the previous day and the current day. Temperature data is obtained from the 

meteorological station closest to the delivery point. As for the calendar indicators 

(month and date), some data formatting preprocessing is required. Specifically, 

each variable needs to consider two different input indicators. Let k = 1, 2, …, 12 

define the month indicator (January to December), and l = 1, 2, …, 7 define the date 
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indicator (Monday to Sunday). According to the encoding program, the month 

index is mapped to the range [1/12, 1], with January to December corresponding to 

consecutive scaled values within this range. That is to say, the parameter for January 

is set to 1/12, while for December it is set to 1. In a similar fashion, the days of the 

week are scaled to fall within the interval [1/7, 1], with Monday being assigned the 

value of 1/7 and Sunday the value of 1. These parameters are detailed in Table 2. 

Table 2 

Model input and output parameters 

Type Parameter Unit 

Input 

Previous day's gas demand MWh 

Current day's gas demand MWh 

Daily average temperature °C 

Month indicator K=1/12, 2/12,…,1 

Output Next day's gas demand I=1/7,2/7,…, 1 

To ensure that all data entries have the same finite value range, each variable 

is normalized to the [0,1] range using Min-Max normalization. However, during 

the testing phase, the normalized variables will be restored to their original values. 

The data normalization follows the equation (6):  

𝑥𝑖
new =

𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
, ∀𝑖 = 1,2, … , 𝑁 (6) 

In the equation, 𝑥i
𝑛𝑒𝑤 represents the normalized value of the i-th variable 𝑥; 

xi denotes the i-th input variable; and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 indicate its minimum and 

maximum values, respectively. 

4.2 Evaluation function 

This study evaluates the predictive performance of different models using 

Mean-Square Error (MSE), Root Mean-Square Error (RMSE), and Mean Absolute 

Error (MAE) as criteria. The specific equations are as follows:  

MSE =
1

𝑇
∑ (𝑍(𝑡) − 𝑋(𝑡))2

𝑇

𝑡=1
(7) 

MAE =
1

𝑇
∑ |𝑍(𝑡) − 𝑋(𝑡)|

𝑇

𝑡=1
(8) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (9) 

In the equation: T represents the number of samples; Z(t) denotes the true 

value, and X(t) denotes the predicted value of the t-th sample. 

5. Results Analysis 

5.1 Prediction Using the Integrated ANFIS Model 

Modeling and simulation were carried out based on the integrated ANFIS 

prediction framework proposed in Section 3. Different configurations of ANFIS 
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models were constructed according to the characteristics of datasets from various 

cities. The next-day NG demand (i.e., T+1 prediction) was calculated using the 

generated fuzzy inference systems. 

Table 3 presents the optimal ANFIS configurations for each city in the 

Italian sample dataset. The results were ordered according to the smallest MAPE, 

MSE, and RMSE values. The findings indicate that the three ANFIS 

configurations—trimf 2-2-2-2-2, trimf 3-3-3-2-2, and gaussmf 3-3-3-2-2—

performed best. Among these, triangular membership functions (trimfs) generally 

demonstrated superior performance when used as input variables. Specifically, for 

the input variables month, day of the week, and average temperature, the number 

of MFs was set to 3. For the input variables current-day gas demand and previous-

day gas demand, the number of MFs was set to 2 or 3 in most cases. Notably, the 

output membership-function type is ''Constant'' and the optimizer is ''Hybrid''. 

Table 3 

Optimal ANFIS Architecture of Sample Cities in Italy (epochs=10) 

City 
ANFIS 

Run 

Input MF 

Type 
Number of MFs MSE RMSE MAPE 

Rome 22 gaussmf 3-3-2-2-2 0.0031 0.0430 9.1031 

Milan 15 trimf 3-3-3-2-2 0.0025 0.0502 20.1432 

Napoli 3 trimf 3-2-2-2-2 0.0017 0.0534 5.4434 

Turin 3 trimf 2-2-2-2-2 0.0020 0.0432 12.0043 

Palermo 22 gaussmf 3-2-2-2-2 0.0008 0.0298 11.5244 

Genoa 2 trimf 2-2-2-2-2 0.0089 0.0865 24.4294 

Bologna 5 gaussmf 2-2-2-2-2 0.0009 0.0287 10.2824 

Firenze 22 gaussmf 3-3-3-2-2 0.0008 0.0343 13.0023 

Bari 3 gaussmf 2-2-2-2-2 0.0018 0.0399 10.5800 

Catania 3 gaussmf 2-2-2-2-2 0.0019 0.0500 11.0343 

 

5.2 Comparison Between the Integrated ANFIS Model and Other 

Prediction Models 

With the aim of delve deeper into the efficacy of the proposed ANFIS-based 

architecture, this research undertakes a comparative analysis of the integrated 

ANFIS model against Artificial Neural Networks (ANNs), Fuzzy Cognitive Maps 

(FCMs), and hybrid models that amalgamate FCMs with ANNs in terms of their 

predictive accuracy. 

The ANN architecture is a three-layer feedforward neural network model. 

The architecture of the model includes an initial layer with five distinct input 

parameters (month, day, temperature, yesterday's gas consumption, and today's 

demand), a subsequent layer furnished with a decade of processing units, and a 

terminal layer configured to predict the demand for the upcoming day. In this ANN 
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structure, an S-shaped activation function is applied, and training is performed 

using the Levenberg-Marquardt algorithm. 

The Fuzzy Cognitive Map (FCM) approach, a subset of soft computing 

techniques, possesses adaptive learning attributes, exemplified by the Real-Coded 

Genetic Algorithm tailored for FCM (RCGA-FCM) and the Structure Optimization 

Genetic Algorithm tailored for FCM (SOGA-FCM). These methodologies are 

frequently implemented within the energy domain for the purposes of time series 

analysis and predictive modeling of demand. Consequently, this segment will 

embrace the application of RCGA-FCM and SOGA-FCM. [19] 

The composite FCMs-ANNs model [20] encompasses an initial layer that 

includes five inputs curated by SOGA-FCM, a subsequent layer housing a decade 

of neurons, and a final output layer. The model uses a sigmoid activation function 

and trains with the Levenberg-Marquardt backpropagation algorithm. 

 
Table 4 

Parameters and mean execution time for models 

Architectures Parameters for cities Average Running Time 
Average Running 

Time 

ANN 

The model is a multilayer feedforward network that 

incorporates six input variables, consists of a layer with 

12 neurons, and produces a single output. It utilizes a 

sigmoidal activation function for processing, employs 

the Levenberg-Marquardt learning algorithm for 

training, and is set to run for 70 epochs. 

22-28s 

RCGA-FCM 

The genetic algorithm parameters include uniform 

crossover at a probability of 0.3, Mühlenbein’s 

mutation at a probability of 0.3, ranking-based 

selection, an elitism strategy, a population size of 250 

individuals, and a maximum of 500 generations. 

1203s 

SOGA-FCM 

The genetic algorithm is configured with uniform 

crossover at a probability of 0.3, Mühlenbein’s 

mutation at a probability of 0.3, and employs a ranking 

selection process. It adopts an elitism strategy, 

maintains a population size of 250, and is set to evolve 

for a maximum of 500 generations. Additionally, the 

learning parameters are set with b1 and b2 both equal 

to 0.01. 

900s 

Hybrid FCM-

ANN 

The model is a multilayer feedforward network that 

includes four inputs determined by the SOGA-FCM 

method, encompassing month, temperature, 

consumption from the previous day, and current 

consumption. This network contains a single hidden 

layer composed of 12 neurons and generates a solitary 

output. A sigmoidal activation function is employed 

within the network. It is trained via the Levenberg-

Marquardt learning algorithm and is configured to 

762s 
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operate for 25 epochs. 

Best ANFIS 

The model employs a triangular membership function 

(mf) with two different architectures: 2-2-2-2-2 or 3-3-

3-2-2. It features a constant output layer and utilizes a 

hybrid optimization strategy. The training process is 

set to run for 15 epochs, with b1 and b2 learning 

parameters both set to 0.01. 

25s 

 

Fig. 4 shows the comparison of prediction performance between the optimal 

ANFIS architecture and the aforementioned models for sample cities. The outcomes 

demonstrate that the ANFIS model surpasses other models by a significant margin 

in regard to prediction performance for the sample data. For instance, in the case of 

urban gas demand prediction for Rome, Italy, the MAPE values for ANFIS models 

is 9.89%, which is lower than other comparable models. 

 

 
（a) MSE 
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（b) R2 

 

 

 
(c) MAPE 
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(d) MAE 

 

 
(e) RMSE 

Fig. 4: Comparison of Prediction Performance of Sample Cities under Different Models 

6. Conclusion 

The paper proposes an integrated method based on the ANFIS framework 

for predicting urban gas demand. By simulating data sets from 10 cities in Italy, the 

optimal ANFIS integrated model for each city was identified and compared with 

ANNs and other soft computing models. The following conclusions were drawn:  

(1) The hybrid ANFIS model exhibits markedly enhanced performance in 

energy demand forecasting when juxtaposed with conventional ANN and FCM 

frameworks. 
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(2) The integrated ANFIS model has a much shorter runtime than the other 

comparison models, making it the optimal choice for next-day urban gas demand 

prediction. 

(3) When most cities use the same model configuration, the integrated 

ANFIS model demonstrates superior prediction accuracy, highlighting its 

generalization ability. 

The results indicate that the proposed integrated ANFIS model is efficient, 

fast, and robust, making it suitable for gas demand forecasting in cities similar to 

those in Italy. Predicting urban gas requirements in the short term is crucial for the 

immediate scheduling of gas transportation, improving the efficiency of storage 

facilities, making prompt purchases, and managing resource distribution. 

Therefore, this method is crucial for energy regulation and management authorities 

in Italy and surrounding regions. 

Upcoming studies will prioritize the creation of more sophisticated neuro-

fuzzy frameworks that provide clarity and openness, thereby evaluating the 

method's capacity to generalize. Additionally, research will explore applications in 

energy sector time series modeling and forecasting, through a profound exploration 

of efficient deep learning and integrated models based on regularized recurrent 

neural networks. 

Acknowledgement 

This work was supported by the "PetroChina Southwest Oil & Gasfield 

Company, Natural Gas Economics Research Institute, 2025D0100103."; Chengdu 

Academy of Social Sciences, 2024CS116". 

R E F E R E N C E S 

[1] Gao, Y., Wang, B., Hu, Y.D., et al. Review of China’s Natural Gas Development in 2023 and 

Outlook for 2024. Natural Gas Industry, 2024, 44(2): 166-177. 

[2] E. Yukseltan, A. Yucekayz, A.H. Bilge, et al. Forecasting Models for Dailynatural Gas 

Consumption Considering Periodic Variations and Demand Segregation. Socio-Economic 

Planning Sciences, 2021, 74:100937. 

[3] M. Akkurt, O.F. Demirel, S. Zaim. Forecasting Turkey’s Natural Gas Consumption by Using 

Time Series Methods European Journal of Economic & Political Studies, 2010, 3(2): 1-21. 

[4] M. Akpinar and N. Yumusak. Estimating household natural gas consumption with multiple 

regression: Effect of cycle. 2013 International Conference on Electronics, Computer and 

Computation (ICECCO), Ankara, Turkey, 2013, 188-191. 

[5] Wang J, Li N. Influencing factors and future trends of natural gas demand in the eastern, central 

and western areas of China based on the grey model. Natural Gas Industry B,2020,7(5): 

[6] Szoplik J. Forecasting of natural gas consumption with artificial neural networks. Energy, 2015, 

85208-220. 



214                                              Zizi Li, Wei Xiao, Yun Gao, Ying Wei 

[7] Yu Feng, Xu Xiaozhong. 2014 A short-term load forecasting model of natural gas based on 

optimized genetic algorithm and improved BP neural network. Applied Energy 134(134) 102-

113. 

[8] Ding, S. A novel self-adapting intelligent grey model for forecasting China’s natural-gas 

demand. Energy 2018, 162, 393-407.  

[9] Emmanuel F S, Gaston J T. Forecasting methodology with structural auto-adaptive intelligent 

grey models. MethodsX,2023,10102237-102237.  

[10] Chen Y, Chua W.S., Koch T. Forecasting day-ahead high-resolution natural-gas demand and 

supply in Germany. Applied Energy, 2018, 228, 1091-1110. 

[11] Yang, J., Zhang, H., Qian, Y. Research on Domestic Civil Aircraft Landing Residual Fuel 

Prediction Based on GA-BP Model. Computer Simulation, 2023, 40(11): 41-45. 

[12] Lugnan A, Aggarwal S, Plückelmann B F, et al. Emergent Self-Adaptation in an Integrated 

Photonic Neural Network for Backpropagation-Free Learning. Advanced science 

(Weinheim, Baden-Wurttemberg, Germany), 2024, e2404920.  

[13] Hribar, R.; Potočnik, P.; Šilc, J.; Papa, G. A comparison of models for forecasting the 

residential natural gas demand of an urban area. Energy, 2019, 167, 511-522.  

[14] Enzo L, Mauro V, Lucrezia M, et al. Structured Methodology for Clustering Gas Turbine 

Transients by Means of Multi-Variate Time Series//Università degli Studi di Ferrara, Ferrara, 

Italy; Siemens S.p.A., Milano, Italy, 2020. 

[15] Laib, O.; Khadir, M.T.; Mihaylova, L. Toward efficient energy systems based on natural gas 

consumption prediction with LSTM Recurrent Neural Networks. Energy 2019, 177, 530-542.  

[16] W. A Q K. An alternative approach for introducing instrumental variables based on ordinary 

least squares omitted variable bias. The Journal of Economic Education, 2023, 54(1):94-101.  

[17] Panapakidis, I.P.; Dagoumas, A.S. Day-ahead natural gas demand forecasting based on the 

combination of wavelet transform and ANFIS/genetic algorithm/neural network model. 

Energy 2017, 118, 231-245.  

[18] Ding, L.L., Zhao, Z.C., Wang, L. Design and Application of a Probabilistic Natural Gas 

Demand Forecasting Model Based on Dynamic Factors and Mixed-Frequency Data. 

Statistical Research, 2023, 40(11): 123-135. 

[19] Elpiniki I. Papageorgiou A B, Katarzyna Poczęta. A two-stage model for time series prediction 

based on fuzzy cognitive maps and neural networks. Neurocomputing, 2017,232:113-121. 

[20] Poczeta, K.; Kubuś, L.; Yastrebov, A. Papageorgiou, E.I. Temperature Forecasting for Energy 

Saving in Smart Buildings Based on Fuzzy Cognitive Map. Automation, 2018,743:93-103. 

 


