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WAVELETS, PROPERTIES OF THE SCALAR FUNCTIONS
C.PANA’

Pentru a contrui o undind convenabild ¥ este necesard si suficientd o
analiza multirezolutie. Analiza multirezolutie este legatd de functia de scalare. In
acest articol prezentam cdteva proprietdati ale functiei de scalare aplicand

transformarea Fourier. Alegerea undinei Y este esentiald. Problema este de a
adapta Y la 0 anumitd clasd de semnale, de exemplu semnale vocale sau muzicale.

To build a convenient wavelet Y a multiresolution analysis is necessary and
sufficient. The multiresolution analysis is connected to the scalar function. In this
article / paper we present some properties of the scalar function applying the

Fourier transform. The choice of the wavelet Y is essential. The problem is to
adapt Y to a certain class of signals, for example vocal or musical signals.
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Introduction

These problems have a special role in questions regarding the processing
of signals in real time and the identification, optimization and the control of the
most diverse systems.

In this paper we determine a scalar functiong € L2, p eV, so that the
string @(2¢—n) is a sampling string.

1. Preliminaries
We recall that a wavelet ¥ : R — C is a function from L I~r2 such that
‘i’(O) =0 and ¥,V satisfy the following decreasing-type conditions:

@) <C A+, “i’(a))‘ <C(+w)17%,6>0.

To determine ¥ , any signal with finite energy f € I? hasa decomposition
of the type

F@=Cy [ (f,¥,)¥,p(O)a dadb (1)
RZ
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by the Calderon’s formula. Such a decomposition is interpreted in this
way: the signal f is an overlapping of “blocks of building”

\Pa,b(t) =|a|_1/2 ‘I’(ﬂJ , a,beR, a#0, b real parameters each well located
a

in time and frequency.

2
For example if W (¢)=(1 —tz)exp(—%] then “P a.b (t)‘ is concentrated in

o —

[b—2|a Ya,b (@)

,b+2|a

], and

2
o | . .
= 270 exp[—TJ is concentrated in the

“crown” i|a|$|a)|s4|a|.

By portioning the domain of integration of the plane O, , we can obtain

some algorithms for applications of the reconstruction formula (1).

To do this, «consider a network in the plane O

ab >
takinga = 27/ ,b= k-2 , J,k €Z . Moreover we can choose the wavelet ¥ such

that ¥ ; , =¥, ; to form an orthogonal basis for 2.

Instead of integral representation (1) there is another representation of f :
SO=D(1 5 ) ¥ @) )
Jok

, where the convergence of series is in the space I’ , endowed with the
usual norm.

To build a convenient wavelet ¥, a multiresolution analysis is necessary
and sufficient. To be more specific, we start from the scalar function ¢ € I’ with
¢(0)=0 so that ¢(x) = ZCn(p(2x —n) and¥(x) = Zdngo(Zx —n) . Then, for any

n n

fel? it follows,

f(t)= lim 27 j F(x)- 0P - x—t)dx (2)
poo S
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o0
In particular, the integrals 27 I f(x)-p(2P x—k)dx can be approximated

—0o0

through the samples f(k/27) .

By recurrent relations one can elaborate an algorithm for the computations

o0
of the scalar products <f,‘ij> =2//2 j f(x)‘P(2j -x—k)dx and for the calculus
—o0
of the scalars < [ jk>- Such algorithms can be seen in the theory of sub-banda
filtration.

We remind that a multiresolution in > is a rising string Vi) mez, of
closed linear subspaces of 1% so that Vi © Vs foranymeZ; the reunion of

subspaces V), is supposed to be dense in [? and the intersection is reduced to the
null subspace.

Moreover we assume that f(¢)eV,, & f(2t)eV,,,; and there exists a

function @ € I? called the scalar function of the multiresolution analysis, such

that @(t—n), neZ is an orthonormal basis in V), then {\/Eq)(Zt—n)},neZ

form an orthonormal basis for Vj; as @el], qo(t):chx/E(o(%—k) with
k

Z|ck|2 <oo. This relation is called the dilation in time equation for ¢; in
k

frequency it follows (under the hypothesis @ € )y )

o {33 55 n(342)
where m, (%) = Zk:ck exp(_ik%j % '

We wish to determine a wavelet ¥ so that W(¢t—n),neZ to be an
orthonormal basis in Wy, where W, is the orthogonal complement of ¥} in V] ,

Vi =Vy ©W,. If such a wavelet is determined then (V)m fixed (¥

orthonormal basis in ,, .

mn )n is an
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Because I’ = @ W, ( @ W, is dense in L?) it results that the family

me. mez.

with two indices ¥,,,,, m,n € Z forms an orthonormal basis for 12

It is known that ‘Y (¢) is defined by:

P(0) =2 e (-1 p21 k) or, if Yellni?, then
k
A iw 1) 1)
(@) exp( 2}”0(2 ”j q)(zj
2. Examples

1) A classic example is represented by the scalar function ¢y and the

wavelet ¥ of Haar
1, te {O,l)
2

1
Y()=4-1, te[g,l)

0,otherwise

(p(t)z{l,ifte[o,l)

0, otherwise

Another classic example is the Shannon pair,

where p(t) = Stn 7t (t#0);0(0)=1.

Developping such a function F; with respect to the Hilbert base

(go(t - n))neZ is exactly the classic formula of sampling of Shannon.

2) It is also known Meyer’s wavelet ¢(¢) defined by
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1, a)| SzTﬂ
p(w) = . 3|a)| o Ay’ @peL{NL,,where r(x) is a
cos| —r| —-1 ,—<|a)|£—
27 3
. k 0, forx<0
function C" so that »(x) = and r(x)+r(l1-x)=1.
1, forx>1

We propose to determine a scalar functiong € r? , @€V such that the
string @(2¢—n) is a sampling string for f €V}, thatisforany f eV},
n
f@0=73 f(5j¢?(2t—n) , 3)
nez

the convergence being in I’

In particular,
n >
p(t)= Y (p(—jw(%—n) 3)
2
nez
Ifpe I'nr? , then, applying the Fourier operator, one obtains:

=5 Xo(5 o[ 05 (5]

3. Theorem 1

Let ¢ €V be a fixed scalar function.

The following statements are equivalent:
a) forany f eV, wehave

fo= > f (%}p(Zt—k) (the convergence is in 1% );

ke2Z+1

b) pt)= Y. cogy(zr—j) (in I?)

je2Z+1

Proof: (a)=>(b) is obvious, since ¢ €V},.
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(b)=(a). Since (go(t —n))nEZ is an orthonormal base in 1> o Vo, €V,

we have:
f@)= z B,9(t—n), where
nel
> A=l <o @)
nez

On the other hand, from (b) we have:

p(t—n)= z (p[%}p(2t—2n—j),where z ¢2(§j<oo

je2Z+1 je2Z+1
One obtains

k:=2n+j
f0=2 B, ( j¢(2t 2n - j) =
]GZZH

nez
:Zﬁn[ > ¢[——H}P(2f k)] Y - k)|:2ﬂn (——nﬂ
net ke2Z+1 ke2Z+1 nez
(4)
= > go(2t—k)f(§j.
ke2Z+1

The convenient grouping of terms in the series in the computation from

above is permitted, since the series is absolutely convergent in I’ , because 7 is
commutative convergent (sumable). Precisely, we have:

k
ﬂn ¢(__nj ¢)(2t_k) = ﬂn (__nj =
3 Jplel§nloe-nl= T o5 4
ke2Z+1 ke2Z+1
Thus f()= | f&j@(%—k) = > Bup(t—n)
ke2Z+1 nez

both series being convergent in 2. Tt follows:

M= % ~(4-S i 3 £

ke2Z+1 nez ke2Z+1
The proof is complete.
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Remark a) The implication (b) =(a) says that we can “know” f
somehow, only knowing the samples f (%j,kez, k odd integer, if this is

possible for the scalar function ¢ .

b) It is well known that the convergence of a sequence of functions in L”,
1< p<wo, implies the pointwise convergence almost everywhere of a

subsequence. In our case, the sequence is the sequence of the partial sums of the

series ) f(%jgo(%—k),(p =2).

ke2Z+1
4. Theorem 2
Assume that

o 1/2
(ﬁ(a))z(]‘w_ﬂ |u(x)|dxj ,where ueLl(R)

suppu < [—¢,&] where 0<e<7r.

)

Let (}1((0) = Z (’/\)(a)+4kﬂ),a)eR. The following statements are
keZ
equivalent:

(a) @(w)=¢1(w)-¢(§], (V) e suppg

w

(b) @(2

jzl,(V)a)e supp ¢

Proof
From suppu c[—g,g] and by the assumption (5), one can deduce that

supp@ < [-7 — &, 7 + €] . This leads to:

supp ¢ < U [—g—(4k+1)7r,g+(1—4k)7r].
keZ

These facts imply: supp@ Nsupp@ csuppp < [-z—¢&,7+¢] and, for
@ € supp@ Nsupp¢ , only one of the terms of the sum ¢ (@) is nonzero, and this

term is equal to @(w). To prove (a) = (b) , observe that
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(a)
w € suppp = w e supp@ , hence @(w)= @ (w)#0= (ﬁ(%j =1Vwesupp@, i.e.

(b).
(b) = (a) is obvious. The proof is complete.

Lxe[0,1)

Example Let u(x) = )
P ) {0,otherwise

Let (p((o) . wau(x)dle/z =(J.w+ﬂl[0,1) (x)dle/z _

w—7T —TT
(a)+7r)1/2,—7z§a)<1—7z
L1-7<w<rx
N 1/2 ©)
(l—a)+7r) JM<w<l+rmw
0, otherwise

Thus supp@ =[-7,1+ 7] and

R w Tl =« NE?)
o € su oS —c|l——,—+— |c|l-m, 7= ¢@| — |=1 by (6).
PP { 75 2} [ ] (p(zj y (6)

It follows that (a) holds for any w e [—7[, 1+ 7[] .

Conclusion
Instead of looking for a sampling function f in)), this can be searched in

V| and its recovery can be done through samples f (%), where neZ are odd

integers.
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