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A STUDY OF DIGITAL TWINS IN SIMULATING AND
IMPROVING MECHANICAL MANUFACTURING
PROCESSES

Qin JIANG "%, Jinyuan FAN 2

This paper explores the integration of digital twin technology into the
automotive stamping process, aiming to improve production accuracy, efficiency,
and sustainability. By building a high-fidelity digital twin model and incorporating
intelligent optimization algorithms, the stamping process is simulated and adjusted
in a virtual environment. The study demonstrates that the application of digital twin
enhances dimensional consistency, optimizes material utilization, and supports
decision-making in production systems. The results confirm the potential of digital
twin technology in addressing key challenges in mechanical manufacturing and
promoting intelligent transformation in the automotive sector.
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1. Introduction

In the context of Industry 4.0, digital twin (DT) technology plays an
increasingly important role in monitoring, managing, and improving the entire
lifecycle of manufacturing systems. Magalhaes et al. [ 1] demonstrated the creation
of a digital twin entity to ensure the coordinated operation of a flexible
manufacturing system composed of CNC machines, robotic arms, and pallet
conveyors, which highlights DT’s potential in achieving intelligent transformation
and optimizing resource efficiency. As a key enabler of intelligent manufacturing,
digital twin (DT) technology creates virtual replicas of physical systems, enabling
lifecycle-wide optimization of design, production, and maintenance. For instance,
Polini and Corrado [2] proposed a DT framework for composite assembly
manufacturing, demonstrating how simulation-driven decision-making can
enhance each phase of the product lifecycle. Recent studies, such as that by
Parvanda and Kala [3], emphasize DT's role in improving transparency, resource
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allocation, and real-time monitoring across production systems, particularly when
integrated with additive manufacturing and Industry 4.0 platforms. However,
challenges remain in standardization, interoperability across domains, and
scalable deployment, as outlined by Guivarch et al. [4] in their helicopter dynamic
system case. Within the context of stamping processes, Liu and Zhang [5] used a
DT-based debugging model to simulate material deformation and optimize die
designs, thereby improving formability prediction and tool performance.

This study investigates the application of digital twin technology in
mechanical manufacturing process optimization, focusing on parameter modeling,
process simulation, and intelligent adjustment in a virtual environment. The
objective is to improve efficiency, accuracy, and sustainability through real-world
case validation and algorithmic decision support.

2. Literature Review

Mechanical manufacturing process flow, acting as the bridge from digital
design to physical realization, is a highly complex systems engineering task,
spanning raw material input to finished product output. Béttjer et al. [6] reviewed
unit-level DT applications and emphasized the interconnected nature of
mechanical process optimization through smart monitoring and control.
Traditional optimization methods-such as layout reengineering, tooling upgrades,
quality system deployment, and skill training-remain vital. These techniques
eliminate inefficiencies, enhance process quality, and ensure product compliance
with standards such as ISO 9001. However, they often lack a system-wide
perspective. Hartmann et al. [7], through a multiscale DT for laser-directed energy
deposition, pointed out that many traditional approaches target isolated processes
rather than optimizing across the entire production chain. In addition, Liu et al. [§]
highlighted the issue of weak data dependence in legacy manufacturing, where
decision-making still heavily relies on human experience rather than on dynamic
data-driven analysis, thus limiting accuracy. Lugaresi and Matta [9] further
addressed the difficulty of real-time response in conventional systems by
comparing automated digital twin generation with static manufacturing flows. Lei
and Karimi [10], working on DT models in ironmaking, demonstrated the
importance of dynamic 3D simulation in adapting to design variations under
changing process parameters, which is difficult to achieve with static legacy
approaches.

3. Application of digital twin in mechanical manufacturing technology

In terms of process parameter optimization, digital twin technology
combines advanced data analysis and machine learning algorithms to form a
closed-loop optimization system [11, 12].
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Fig. 1. Mechanical manufacturing process flow

This process is usually subdivided into multiple interrelated stages to
ensure accurate execution and efficient coordination of each step. The specific

process design flow is shown in Fig. 1.
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Fig. 2. Application of digital twins in mechanical manufacturing technology

The system automatically collects historical processing data, analyzes
processing results under different parameter combinations, identifies optimal
parameter intervals, and predicts optimal processing strategies under new
materials and designs. Through deep learning algorithms, the system learns from
past successes and failures and gradually improves the accuracy and applicability
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of the recommended parameters, providing customized strategies for efficient and
high-quality machining of complex parts. This is shown in Fig. 2.

4. Mechanical manufacturing process simulation based on digital twin

4.1 Application frame of digital twin in mechanical manufacturing

The application framework of digital twin technology in mechanical
manufacturing usually includes four core links: data acquisition of physical
entities, data processing and model building, real-time simulation and
optimization analysis, feedback control and decision support. At the heart of this
framework is the full lifecycle management of physical devices by integrating
technologies such as the Internet of Things (IoT), big data, cloud computing and
artificial intelligence. The specific framework is shown in Fig. 3.
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Fig. 3. Framework process
4.2. Process modeling and simulation

In the process of mechanical manufacturing simulation based on digital
twinning technology, CAD model and virtual prototype construction, simulation
analysis of material characteristics and dynamic simulation analysis are three core
components, which together constitute a solid foundation for process simulation
and optimization.

In sophisticated CAD environments, designers use parametric or
nonparametric techniques to build part models, where parametric design gives
models the ability to dynamically adjust through flexible mathematical
expressions. A typical parametric design expression is the Bézier curve equation,
as shown in Equation 1.

P()=>B(t) P
M

where P(t) represents the point on the curve at parameter 7, B (t) is the i

the Bernstein basis polynomial of degree n, and P; denotes the ith control point.
The degree n determines the smoothness of the curve. This formulation allows the
geometric shape of the model to be flexibly adjusted, which is responsible for
controlling the shape of the curve, and is the control point, which determines the
key turning position of the curve, and n defines the smoothness of the curve. This
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design method not only improves the flexibility of model modification, but also
provides a solid foundation for subsequent virtual prototype verification and
optimization

Material mechanics simulation relies on finite element method (FEM) to
predict and analyze material behavior during machining by solving complex
physical field problems. Equilibrium equation is a core equation in FEM, which
describes the equilibrium state of internal force in continuous medium: in this
equation, represents stress tensor, describes the action state of force on each point
inside the object; F is volume force density, reflecting the influence of external
force. By solving these equations, one can gain insight into the material's response
to stress and predict possible deformation and fracture conditions [13, 14].

In the automobile body stamping process, the workpiece material used is
DP980 dual-phase steel, with a yield strength of 600 MPa, a tensile strength of
980 MPa, and an elongation of 12%. The geometric shape of the stamping parts is
complex, including multiple curved surfaces with different curvature radii. For
example, the maximum curvature radius of the door stamping part is 300 mm, the
minimum curvature radius is 50 mm, and there are multiple mounting holes of
different sizes and positions distributed on it, with hole diameters ranging from 8
mm to 20 mm.

The stamping technology used in this study is multi-station progressive
stamping technology. This technology sets multiple stations on the same mold, so
that the workpiece can complete multiple stamping processes in one stamping
stroke, which greatly improves production efficiency. Its working principle is to
use the reciprocating motion of the press to send the sheet into each station for
stamping processing in turn, and each station completes specific stamping
operations, such as blanking, punching, bending, etc. Compared with traditional
stamping technology, multi-station progressive stamping technology has the
advantages of high precision, high efficiency, and high degree of automation,
which can meet the needs of high-quality and large-scale production of
automobile body stamping parts. In actual production, this technology can control
the dimensional accuracy of stamping parts within + 0.15 mm, and the production
efficiency is increased by more than 30% compared with traditional stamping [15,
16].

The model of the stamping machine used in this process is JH21-250, and the
equipment code is CN2023005. Its nominal pressure is 2500 kN, which can meet
the pressure requirements of different stamping processes; the slide stroke is 250
mm, which can ensure the forming depth of the stamping parts; the stamping
speed is 40 times/minute, which ensures production efficiency. In the long-term
operation test, the stamping machine worked continuously for 1000 hours at the
rated pressure, the equipment stability was good, and the failure rate was less than
1% [17, 18].
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This study adopts a stamping simulation model based on the finite element
method, which can simulate the flow of materials, stress and strain distribution,
and the force of the mold during the stamping process. When establishing the
simulation model, the stamping parts and molds are firstly three-dimensionally
modeled and imported into the finite element analysis software ABAQUS. Then
the model is meshed and the model is meshed using C3D8R eight-node linear
hexahedral unit with a unit size of 2 mm is used to ensure calculation accuracy
and efficiency. Material properties are set. The elastic modulus of DP980 dual-
phase steel is 207 GPa, the Poisson's ratio is 0.3, and the yield criterion adopts the
above-mentioned Hill yield criterion. At the same time, the stamping process
parameters are defined, such as the stamping speed of 500 mm/s and the friction
coefficient of 0.12. Through simulation calculation, the distribution of various
physical quantities in the stamping process, such as equivalent stress, equivalent
plastic strain, etc., can be obtained to provide data support for process
optimization. Compared with the metallographic structure analysis of the actual
stamping parts, the deviation of the simulated equivalent strain distribution from
the actual situation is within 5%.

5. Technology Improvement Strategy of Digital Twin Drive

5.1 Optimization of process parameters based on simulation results

In the actual production scenario, process parameter optimization is faced
with a multi-objective optimization problem, the core of which lies in how to
achieve the optimal balance among multiple mutually restrictive objectives such
as cost, quality and energy consumption. This process is made more efficient and
accurate by digital twinning techniques, which integrate advanced multi-objective
optimization algorithms such as Genetic Algorithm (GA, Particle Swarm
Optimization (PSO), and Fuzzy Logic to search for a series of compromise
solutions in a wide parameter space, known as Pareto Frontier, rather than a single
optimal solution. The application of these algorithms on digital twin platforms
provides powerful decision support systems for complex manufacturing
processes.

Taking the stamping process of automobile body as an example, the
optimization objectives include not only improving the size accuracy of stamping
parts (measured by tolerance range, where and are the maximum and minimum
values of size respectively), but also reducing material waste (expressed by scrap
ratio) and prolonging the service life of dies (die wear rate). In the framework of
multi-objective optimization, we can define the objective function as follows. In
pursuit of the ultimate optimization of the manufacturing process, three core
objectives are clearly stated: quality maximization, aimed at reducing the size
tolerance range, expressed by the formula minimize (), to ensure product



A study of digital twins in simulating and improving mechanical manufacturing processes 269

accuracy; cost minimization, focusing on efficient use of materials, striving to
reduce the proportion of scrap, expressed by the formula minimize (); and energy
consumption reduction, aimed at extending mold life, achieved by minimizing
mold wear rate minimize (), thereby reducing maintenance costs. Genetic
algorithms play a key role in achieving these multi-objective optimizations. The
algorithm advances the population evolution to a better solution through an
iterative process, including population initialization, fitness based selection,
crossover and mutation operations of genetic operators, where t is an
intergenerational marker indicating the sequence of operations. This series of
carefully designed steps, supported by the digital twin platform, find the best
balance point between size accuracy, material utilization rate and energy
consumption for complex manufacturing processes such as automobile body
stamping, showing the powerful power and unlimited potential of intelligent
optimization technology in modern manufacturing industry. Particle swarm
optimization, on the other hand, simulates the foraging behavior of birds, each
particle represents a potential solution, and by updating the individual optimal
solution, individual optimal solution and global optimal solution, the flight
direction and speed are continuously adjusted to approach the optimal solution set.

The update formula can be expressed as Equations 2-3.

4 t t t t t
Via =W Vi +t¢ 1 '(pi,d _'xi,d)+c2 1 (gy _xi,d) )
t+1 it t+1
Xig =Xia TVia

€)

where v, is the velocity of particle i at iteration ¢ x| is the current
position, w is the inertia weight, ¢, and ¢, are the cognitive and social learning
coefficients respectively, 7 and r, are random values uniformly distributed in

[0, 1], p; is the personal best position of particle iii, and z' is the global best

position found by the swarm so far.

Fuzzy logic provides a flexible way to deal with complex and nonlinear
relations by establishing rule base to deal with the transformation from qualitative
to quantitative, and helps decision makers to make reasonable trade-offs among
multiple objectives. Through the parallel implementation of the above algorithm
on the digital twin platform, the automobile body stamping process can realize
accurate parameter optimization, for example, while maintaining the size accuracy
within the range of = 0.1 mm, the scrap ratio can be reduced to less than 5%, and
the die wear rate can be reduced by 10% annually, so that the double
improvement of production efficiency and economic benefit can be realized while
ensuring high-quality products, which perfectly reflects the great potential and
value of digital twin and multi-objective optimization algorithm in modern
manufacturing process improvement.
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5.2. Virtual debugging and verification

The use of digital twinning technology significantly reduces the need for
physical prototypes, and designs that previously required physical trials can now
be completed in highly simulated virtual environments. That means expensive
physical testing costs are drastically reduced, research and development cycles are
shortened, and innovation speeds up. For example, in the aerospace field,
thermodynamic cycle simulation of engines through digital twins can verify the
effectiveness and reliability of design solutions without the need to manufacture
actual prototypes, greatly saving development costs and time.

5.3. Predictive maintenance and health management

A core advantage of digital twins is their ability to monitor and predict the
status of equipment in real time. By integrating IoT sensor data, digital twins can
continuously track the operating state of critical equipment, such as vibration,
temperature, pressure, etc., and build predictive models using machine learning
algorithms. These models can identify impending failure modes of equipment in
advance and provide early warning signals to maintenance teams, making
maintenance activities more proactive and efficient. For example, in the
maintenance of wind turbines, through the analysis of gearbox vibration data, the
digital twin model can predict bearing failures weeks in advance, ensuring timely
maintenance and avoiding sudden downtime losses.

In the process of in-depth exploration of the application of digital twin
technology in stamping process, many cutting-edge research results have provided
valuable references for this article. For example, Zhou et al., conducted research
on the incremental bending stamping system based on digital twin in the literature
[19]. They elaborated in detail how the system uses digital twin technology to
optimize the stamping process, achieve precise control of complex stamping
processes, and significantly improve the forming quality and process stability of
stamping parts. In the literature [20], Zhao et al. focused on the application of
digital twin-driven information-physical systems in the autonomous control of
micro-punching systems. By building advanced information-physical models,
they realized real-time monitoring and intelligent control of the micro-punching
process, effectively improving the processing accuracy and production efficiency
of the micro-punching system. These studies have demonstrated the great
potential of digital twin technology in the stamping field from different
dimensions, providing an important theoretical and practical basis for this article
to deeply integrate digital twin technology into the automobile body stamping
process, and inspiring this article to further explore the application possibilities of
digital twin technology in optimizing stamping process parameters, improving
product quality and production efficiency.
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5.4 Case studies and application practices

In today's global automobile manufacturing arena, the competitive
situation is increasingly white-hot, technological innovation has become the core
driving force for major manufacturers to seek competitive advantage. With the
diversification of consumer preferences and the continuous improvement of
automobile quality requirements, not only the appearance design and driving
experience have become the focus of attention, but also the safety, durability and
fuel efficiency of vehicles have become important criteria for evaluating a car.
Under this background, a well-known automobile manufacturing enterprise,
facing the fierce competition of domestic and foreign competitors and the industry
transformation brought by the new energy automobile wave, deeply realized that
the traditional production mode has been difficult to meet the new demand of the
market.

As the backbone of the industry, the company has long been committed to
innovation and optimization of automobile manufacturing processes. However,
the stamping workshop, as the first key process of automobile parts production,
faces several challenges: firstly, the size tolerance control of stamping parts is
unstable, which leads to frequent matching problems in subsequent assembly
links, which affects the assembly quality and production efficiency of the whole
vehicle; secondly, the material waste is serious, and the high raw material cost is
lost in the processing process, which directly affects the profit space of the
enterprise; Third, frequent replacement of molds not only increases maintenance
costs, but also affects the continuity and stability of production lines.

Table 1 shows the specific layout of sensors in key parts of the press, as
well as the types and frequencies of data they collect. Through the pressure sensor,
we can monitor the pressure change of the working surface of the stamping
machine in real time, with a frequency of up to 100 Hz, which provides an
important basis for accurate control of the stamping process. Temperature sensors
are deployed inside the mold to monitor temperature changes at a frequency of 5
Hz, which is essential to prevent mold damage due to excessive temperatures. The
vibration sensor is installed on the drive shaft and monitors the vibration
amplitude at a frequency of 20 Hz, which helps to detect equipment abnormalities
in advance and prevent sudden failures.

In the digital twin-assisted optimization process described in this section,
the use of Bézier-based parametric modeling (as in Equation 1) enabled dynamic
shape adjustments for parts with complex geometries during CAD-based
prototyping. Additionally, the particle swarm optimization strategy (Equations 3
and 4) was deployed to iteratively refine stamping speed and die parameters,
effectively identifying configurations that minimized deviation in part accuracy
and material loss.
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Overview of sensor layouts and data types

Table 1

Sensor type Installation position Measurement Data acquisition
yP p parameters frequency (Hz)
Pressure sensor Punch face Pressure (Pa) 100
Temperature Mold interior Temperature (°C) 5
sensor
Vibration sensor On the transmission Vibration amplitude 20
shaft (mm)
Table 2
Architecture composition of digital twin
Component Component name Description Corre;lated
category with
A high-precision simulation of
the physical structure and
Physical 3D .model of oper.atlonal p?lnc1ples .otj the Data model
model stamping machine stamping machine, providing an
intuitive visual representation for
digital twins.
Responsible for cleaning, Physical
Real-time data integrating, and storing collected model,
Data model . o .
processing module data to support algorithmic algorithm
models with high-quality data. model
Utilizes intelligent algorithms to
Algorithm Genetic algorithm automatically optimize stamping
S - Data model
model optimization module parameters, thereby enhancing
overall process performance.

Table 2 describes the three core components of the digital twin
architecture: physical model, data model, and algorithm model. The physical
model is a high-precision 3D model of the stamping machine, which simulates the
physical structure and working principle of the equipment and provides an
intuitive visual representation for the digital twin; the real-time data processing
module in the data model is responsible for cleaning, integrating, and storing data
collected from machine sensors to ensure high-quality data support for the
algorithm model; and the algorithm model uses an intelligent algorithm to
automatically optimize stamping parameters through the genetic algorithm
optimization module to improve the overall process performance.
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Table 3
Comparison of virtual debugging and actual measurement results
Virtual Actual
Indicators debugging production Difference analysis
results results
Production +3% fluctuation due to factors
efficiency 2000 197 like equipment wear, manual
(pieces/h) operation, etc.
+0.7% difference, indicating high
Pass rate (%) 98.5 97.8 prediction accuracy of the digital
twin model

Table 3 compares the results of virtual commissioning and actual
production, showing the differences in production efficiency and qualified rate.
Virtual commissioning shows that 2,000 pieces can be produced per hour, while
the actual production number is 197 pieces/hour, with a fluctuation of + 3%,
which may be due to interference factors in actual production such as equipment
wear and manual operation. As for the qualified rate, virtual commissioning
reached 98.5%, while actual production was 97.8%, with a difference of £+ 0.7%,
indicating that the digital twin model has high prediction accuracy and can
provide effective guidance for actual production.

Table 4
Summary of economic benefits
. .. Percentage
Benefit indicators Initial Optimized improvement Description
value value o
(%)
Total cost savings 1000 85 15 Inclgdmg materials,
(ten thousand yuan) maintenance, etc.
' Product1v1ty0 30 95 18.75 Increasp y}f:ld per
improvement (%) unit time
Payback period
(months) 18 6 66.67 Faster cost recovery
Waste emission Environmental
reduction (tons) >0 40 20 contribution

Note: The percentage changes are calculated as follows:
Cost reduction = (1000 - 850)/1000 x 100% = 15%
Productivity increase = (95 - 80)/80 x 100% = 18.75%
Payback period shortening = (18 - 6)/18 x 100% = 66.67%
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Waste emission reduction = (50 - 40)/50 x 100% = 20%

The final row indicates a 20% reduction in monthly scrap emissions,
which reflects a direct contribution to environmental sustainability.

Table 4 summarizes the economics of optimization. The total cost savings
reached 15%, or 850,000 yuan, due to the reduction of materials, maintenance and
other costs. Production efficiency increased by 18.75%, from 80% to 95%, which
means a significant increase in production per unit time.

Table 5
Comparison of Dimensional Accuracy Before and After Optimization
Indicator Before optimization After optimization Imprz)oje)ment
()
Tolerance (mm) +0.5 +0.1 80
Occurrgnce ratg of fitting 20 5 75
issues (%)
Assembly quality rating 3/5 4.5/5 -

Table 5 shows the changes in dimensional accuracy of stamped parts
before and after implementing digital twin technology. After optimization, the
tolerance was reduced from + 0.5 mm to + 0.1 mm, an 80% reduction; the
occurrence rate of fitting issues dropped from 20% to 5%, improving by 75%.
Additionally, the assembly quality rating increased from 3 to 4.5 out of 5,
indicating a significant improvement in product quality.

Table 6
Comparison of die change frequency and maintenance costs
Indicator Before After Improvement
optimization optimization (%)
Die changes per year 12 6 50
Annual maintenance cost (ten 50 30 40
thousand yuan)

Table 6 illustrates the impact of optimization measures on die change
frequency and maintenance costs. By adopting more efficient process parameters
and better monitoring methods, the number of die changes was halved, and annual
maintenance costs were reduced by 40%, effectively controlling operating costs
while enhancing the continuity and stability of production lines.

Table 7 reflects changes in material utilization rates and scrap emissions.
Through optimized processes, material utilization improved by 15 percentage
points to reach 90%, while scrap emissions decreased by 40%, with only 3 tons
produced monthly.
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Table 7
Material utilization rate and waste emission comparison
Indicator Before After Improvement
optimization optimization (%)
Material utilization rate (%) 75 90 20
Scrap emissions (tons/month) 5 3 40

This not only reduces raw material waste but also contributes to
environmental protection.

6. Conclusion

This study demonstrated the effective integration of digital twin
technology into the optimization of automotive stamping processes. The results
provide both theoretical insights and practical validation, leading to several key
conclusions: Digital twins enable intelligent, closed-loop manufacturing
optimization by virtually modeling physical systems, integrating real-time sensor
feedback, and applying machine learning-based decision-making. This
significantly enhances design flexibility, process accuracy, and adaptability in
mechanical manufacturing.

Multi-objective optimization algorithms, such as genetic algorithms and
particle swarm optimization, when deployed within digital twin frameworks,
provide actionable strategies to balance cost, quality, and energy usage. This
supports dynamic parameter adjustment and production system responsiveness to
design changes.

The digital twin approach significantly improves predictive maintenance
and operational stability, reducing the frequency of unplanned downtime and
extending equipment service life through early fault detection and virtual testing
environments.

The application of digital twin technology in real-world industrial
scenarios validates its transformative role in intelligent manufacturing, offering
measurable improvements in sustainability, efficiency, and quality assurance, and
establishing a viable path for scalable industrial deployment.
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