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A STUDY OF DIGITAL TWINS IN SIMULATING AND 
IMPROVING MECHANICAL MANUFACTURING 

PROCESSES 

Qin JIANG 1, 2*, Jinyuan FAN 2 

This paper explores the integration of digital twin technology into the 
automotive stamping process, aiming to improve production accuracy, efficiency, 
and sustainability. By building a high-fidelity digital twin model and incorporating 
intelligent optimization algorithms, the stamping process is simulated and adjusted 
in a virtual environment. The study demonstrates that the application of digital twin 
enhances dimensional consistency, optimizes material utilization, and supports 
decision-making in production systems. The results confirm the potential of digital 
twin technology in addressing key challenges in mechanical manufacturing and 
promoting intelligent transformation in the automotive sector. 
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1. Introduction 

In the context of Industry 4.0, digital twin (DT) technology plays an 
increasingly important role in monitoring, managing, and improving the entire 
lifecycle of manufacturing systems. Magalhães et al. [1] demonstrated the creation 
of a digital twin entity to ensure the coordinated operation of a flexible 
manufacturing system composed of CNC machines, robotic arms, and pallet 
conveyors, which highlights DT’s potential in achieving intelligent transformation 
and optimizing resource efficiency. As a key enabler of intelligent manufacturing, 
digital twin (DT) technology creates virtual replicas of physical systems, enabling 
lifecycle-wide optimization of design, production, and maintenance. For instance, 
Polini and Corrado [2] proposed a DT framework for composite assembly 
manufacturing, demonstrating how simulation-driven decision-making can 
enhance each phase of the product lifecycle. Recent studies, such as that by 
Parvanda and Kala [3], emphasize DT's role in improving transparency, resource 
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allocation, and real-time monitoring across production systems, particularly when 
integrated with additive manufacturing and Industry 4.0 platforms. However, 
challenges remain in standardization, interoperability across domains, and 
scalable deployment, as outlined by Guivarch et al. [4] in their helicopter dynamic 
system case. Within the context of stamping processes, Liu and Zhang [5] used a 
DT-based debugging model to simulate material deformation and optimize die 
designs, thereby improving formability prediction and tool performance. 

This study investigates the application of digital twin technology in 
mechanical manufacturing process optimization, focusing on parameter modeling, 
process simulation, and intelligent adjustment in a virtual environment. The 
objective is to improve efficiency, accuracy, and sustainability through real-world 
case validation and algorithmic decision support. 

2. Literature Review 

Mechanical manufacturing process flow, acting as the bridge from digital 
design to physical realization, is a highly complex systems engineering task, 
spanning raw material input to finished product output. Böttjer et al. [6] reviewed 
unit-level DT applications and emphasized the interconnected nature of 
mechanical process optimization through smart monitoring and control. 
Traditional optimization methods-such as layout reengineering, tooling upgrades, 
quality system deployment, and skill training-remain vital. These techniques 
eliminate inefficiencies, enhance process quality, and ensure product compliance 
with standards such as ISO 9001. However, they often lack a system-wide 
perspective. Hartmann et al. [7], through a multiscale DT for laser-directed energy 
deposition, pointed out that many traditional approaches target isolated processes 
rather than optimizing across the entire production chain. In addition, Liu et al. [8] 
highlighted the issue of weak data dependence in legacy manufacturing, where 
decision-making still heavily relies on human experience rather than on dynamic 
data-driven analysis, thus limiting accuracy. Lugaresi and Matta [9] further 
addressed the difficulty of real-time response in conventional systems by 
comparing automated digital twin generation with static manufacturing flows. Lei 
and Karimi [10], working on DT models in ironmaking, demonstrated the 
importance of dynamic 3D simulation in adapting to design variations under 
changing process parameters, which is difficult to achieve with static legacy 
approaches. 

3. Application of digital twin in mechanical manufacturing technology 

In terms of process parameter optimization, digital twin technology 
combines advanced data analysis and machine learning algorithms to form a 
closed-loop optimization system [11, 12].  
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Fig. 1. Mechanical manufacturing process flow 
 

This process is usually subdivided into multiple interrelated stages to 
ensure accurate execution and efficient coordination of each step. The specific 
process design flow is shown in Fig. 1. 

 

Fig. 2. Application of digital twins in mechanical manufacturing technology 
 

The system automatically collects historical processing data, analyzes 
processing results under different parameter combinations, identifies optimal 
parameter intervals, and predicts optimal processing strategies under new 
materials and designs. Through deep learning algorithms, the system learns from 
past successes and failures and gradually improves the accuracy and applicability 
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of the recommended parameters, providing customized strategies for efficient and 
high-quality machining of complex parts. This is shown in Fig. 2. 

4. Mechanical manufacturing process simulation based on digital twin 

4.1 Application frame of digital twin in mechanical manufacturing 
The application framework of digital twin technology in mechanical 

manufacturing usually includes four core links: data acquisition of physical 
entities, data processing and model building, real-time simulation and 
optimization analysis, feedback control and decision support. At the heart of this 
framework is the full lifecycle management of physical devices by integrating 
technologies such as the Internet of Things (IoT), big data, cloud computing and 
artificial intelligence. The specific framework is shown in Fig. 3. 
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Fig. 3. Framework process 

4.2. Process modeling and simulation 
In the process of mechanical manufacturing simulation based on digital 

twinning technology, CAD model and virtual prototype construction, simulation 
analysis of material characteristics and dynamic simulation analysis are three core 
components, which together constitute a solid foundation for process simulation 
and optimization. 

In sophisticated CAD environments, designers use parametric or 
nonparametric techniques to build part models, where parametric design gives 
models the ability to dynamically adjust through flexible mathematical 
expressions. A typical parametric design expression is the Bézier curve equation, 
as shown in Equation 1. 
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the Bernstein basis polynomial of degree n, and Pi denotes the ith control point. 
The degree n determines the smoothness of the curve. This formulation allows the 
geometric shape of the model to be flexibly adjusted, which is responsible for 
controlling the shape of the curve, and is the control point, which determines the 
key turning position of the curve, and n defines the smoothness of the curve. This 
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design method not only improves the flexibility of model modification, but also 
provides a solid foundation for subsequent virtual prototype verification and 
optimization 

Material mechanics simulation relies on finite element method (FEM) to 
predict and analyze material behavior during machining by solving complex 
physical field problems. Equilibrium equation is a core equation in FEM, which 
describes the equilibrium state of internal force in continuous medium: in this 
equation, represents stress tensor, describes the action state of force on each point 
inside the object; F is volume force density, reflecting the influence of external 
force. By solving these equations, one can gain insight into the material's response 
to stress and predict possible deformation and fracture conditions [13, 14]. 

In the automobile body stamping process, the workpiece material used is 
DP980 dual-phase steel, with a yield strength of 600 MPa, a tensile strength of 
980 MPa, and an elongation of 12%. The geometric shape of the stamping parts is 
complex, including multiple curved surfaces with different curvature radii. For 
example, the maximum curvature radius of the door stamping part is 300 mm, the 
minimum curvature radius is 50 mm, and there are multiple mounting holes of 
different sizes and positions distributed on it, with hole diameters ranging from 8 
mm to 20 mm. 

The stamping technology used in this study is multi-station progressive 
stamping technology. This technology sets multiple stations on the same mold, so 
that the workpiece can complete multiple stamping processes in one stamping 
stroke, which greatly improves production efficiency. Its working principle is to 
use the reciprocating motion of the press to send the sheet into each station for 
stamping processing in turn, and each station completes specific stamping 
operations, such as blanking, punching, bending, etc. Compared with traditional 
stamping technology, multi-station progressive stamping technology has the 
advantages of high precision, high efficiency, and high degree of automation, 
which can meet the needs of high-quality and large-scale production of 
automobile body stamping parts. In actual production, this technology can control 
the dimensional accuracy of stamping parts within ± 0.15 mm, and the production 
efficiency is increased by more than 30% compared with traditional stamping [15, 
16]. 

The model of the stamping machine used in this process is JH21-250, and the 
equipment code is CN2023005. Its nominal pressure is 2500 kN, which can meet 
the pressure requirements of different stamping processes; the slide stroke is 250 
mm, which can ensure the forming depth of the stamping parts; the stamping 
speed is 40 times/minute, which ensures production efficiency. In the long-term 
operation test, the stamping machine worked continuously for 1000 hours at the 
rated pressure, the equipment stability was good, and the failure rate was less than 
1% [17, 18]. 
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This study adopts a stamping simulation model based on the finite element 
method, which can simulate the flow of materials, stress and strain distribution, 
and the force of the mold during the stamping process. When establishing the 
simulation model, the stamping parts and molds are firstly three-dimensionally 
modeled and imported into the finite element analysis software ABAQUS. Then 
the model is meshed and the model is meshed using C3D8R eight-node linear 
hexahedral unit with a unit size of 2 mm is used to ensure calculation accuracy 
and efficiency. Material properties are set. The elastic modulus of DP980 dual-
phase steel is 207 GPa, the Poisson's ratio is 0.3, and the yield criterion adopts the 
above-mentioned Hill yield criterion. At the same time, the stamping process 
parameters are defined, such as the stamping speed of 500 mm/s and the friction 
coefficient of 0.12. Through simulation calculation, the distribution of various 
physical quantities in the stamping process, such as equivalent stress, equivalent 
plastic strain, etc., can be obtained to provide data support for process 
optimization. Compared with the metallographic structure analysis of the actual 
stamping parts, the deviation of the simulated equivalent strain distribution from 
the actual situation is within 5%. 

5. Technology Improvement Strategy of Digital Twin Drive 

5.1 Optimization of process parameters based on simulation results 
In the actual production scenario, process parameter optimization is faced 

with a multi-objective optimization problem, the core of which lies in how to 
achieve the optimal balance among multiple mutually restrictive objectives such 
as cost, quality and energy consumption. This process is made more efficient and 
accurate by digital twinning techniques, which integrate advanced multi-objective 
optimization algorithms such as Genetic Algorithm (GA, Particle Swarm 
Optimization (PSO), and Fuzzy Logic to search for a series of compromise 
solutions in a wide parameter space, known as Pareto Frontier, rather than a single 
optimal solution. The application of these algorithms on digital twin platforms 
provides powerful decision support systems for complex manufacturing 
processes. 

Taking the stamping process of automobile body as an example, the 
optimization objectives include not only improving the size accuracy of stamping 
parts (measured by tolerance range, where and are the maximum and minimum 
values of size respectively), but also reducing material waste (expressed by scrap 
ratio) and prolonging the service life of dies (die wear rate). In the framework of 
multi-objective optimization, we can define the objective function as follows. In 
pursuit of the ultimate optimization of the manufacturing process, three core 
objectives are clearly stated: quality maximization, aimed at reducing the size 
tolerance range, expressed by the formula minimize (), to ensure product 
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accuracy; cost minimization, focusing on efficient use of materials, striving to 
reduce the proportion of scrap, expressed by the formula minimize (); and energy 
consumption reduction, aimed at extending mold life, achieved by minimizing 
mold wear rate minimize (), thereby reducing maintenance costs. Genetic 
algorithms play a key role in achieving these multi-objective optimizations. The 
algorithm advances the population evolution to a better solution through an 
iterative process, including population initialization, fitness based selection, 
crossover and mutation operations of genetic operators, where t is an 
intergenerational marker indicating the sequence of operations. This series of 
carefully designed steps, supported by the digital twin platform, find the best 
balance point between size accuracy, material utilization rate and energy 
consumption for complex manufacturing processes such as automobile body 
stamping, showing the powerful power and unlimited potential of intelligent 
optimization technology in modern manufacturing industry. Particle swarm 
optimization, on the other hand, simulates the foraging behavior of birds, each 
particle represents a potential solution, and by updating the individual optimal 
solution, individual optimal solution and global optimal solution, the flight 
direction and speed are continuously adjusted to approach the optimal solution set. 
The update formula can be expressed as Equations 2-3. 
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where t
iv  is the velocity of particle i at iteration t, t

ix  is the current 
position, w is the inertia weight, 1c  and 2c  are the cognitive and social learning 
coefficients respectively, 1r  and 2r  are random values uniformly distributed in 
[0, 1], t

ip  is the personal best position of particle iii, and tz  is the global best 
position found by the swarm so far. 

Fuzzy logic provides a flexible way to deal with complex and nonlinear 
relations by establishing rule base to deal with the transformation from qualitative 
to quantitative, and helps decision makers to make reasonable trade-offs among 
multiple objectives. Through the parallel implementation of the above algorithm 
on the digital twin platform, the automobile body stamping process can realize 
accurate parameter optimization, for example, while maintaining the size accuracy 
within the range of ± 0.1 mm, the scrap ratio can be reduced to less than 5%, and 
the die wear rate can be reduced by 10% annually, so that the double 
improvement of production efficiency and economic benefit can be realized while 
ensuring high-quality products, which perfectly reflects the great potential and 
value of digital twin and multi-objective optimization algorithm in modern 
manufacturing process improvement. 
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5.2. Virtual debugging and verification 
The use of digital twinning technology significantly reduces the need for 

physical prototypes, and designs that previously required physical trials can now 
be completed in highly simulated virtual environments. That means expensive 
physical testing costs are drastically reduced, research and development cycles are 
shortened, and innovation speeds up. For example, in the aerospace field, 
thermodynamic cycle simulation of engines through digital twins can verify the 
effectiveness and reliability of design solutions without the need to manufacture 
actual prototypes, greatly saving development costs and time. 

5.3. Predictive maintenance and health management 
A core advantage of digital twins is their ability to monitor and predict the 

status of equipment in real time. By integrating IoT sensor data, digital twins can 
continuously track the operating state of critical equipment, such as vibration, 
temperature, pressure, etc., and build predictive models using machine learning 
algorithms. These models can identify impending failure modes of equipment in 
advance and provide early warning signals to maintenance teams, making 
maintenance activities more proactive and efficient. For example, in the 
maintenance of wind turbines, through the analysis of gearbox vibration data, the 
digital twin model can predict bearing failures weeks in advance, ensuring timely 
maintenance and avoiding sudden downtime losses. 

In the process of in-depth exploration of the application of digital twin 
technology in stamping process, many cutting-edge research results have provided 
valuable references for this article. For example, Zhou et al., conducted research 
on the incremental bending stamping system based on digital twin in the literature 
[19]. They elaborated in detail how the system uses digital twin technology to 
optimize the stamping process, achieve precise control of complex stamping 
processes, and significantly improve the forming quality and process stability of 
stamping parts. In the literature [20], Zhao et al. focused on the application of 
digital twin-driven information-physical systems in the autonomous control of 
micro-punching systems. By building advanced information-physical models, 
they realized real-time monitoring and intelligent control of the micro-punching 
process, effectively improving the processing accuracy and production efficiency 
of the micro-punching system. These studies have demonstrated the great 
potential of digital twin technology in the stamping field from different 
dimensions, providing an important theoretical and practical basis for this article 
to deeply integrate digital twin technology into the automobile body stamping 
process, and inspiring this article to further explore the application possibilities of 
digital twin technology in optimizing stamping process parameters, improving 
product quality and production efficiency. 
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5.4 Case studies and application practices 
In today's global automobile manufacturing arena, the competitive 

situation is increasingly white-hot, technological innovation has become the core 
driving force for major manufacturers to seek competitive advantage. With the 
diversification of consumer preferences and the continuous improvement of 
automobile quality requirements, not only the appearance design and driving 
experience have become the focus of attention, but also the safety, durability and 
fuel efficiency of vehicles have become important criteria for evaluating a car. 
Under this background, a well-known automobile manufacturing enterprise, 
facing the fierce competition of domestic and foreign competitors and the industry 
transformation brought by the new energy automobile wave, deeply realized that 
the traditional production mode has been difficult to meet the new demand of the 
market. 

As the backbone of the industry, the company has long been committed to 
innovation and optimization of automobile manufacturing processes. However, 
the stamping workshop, as the first key process of automobile parts production, 
faces several challenges: firstly, the size tolerance control of stamping parts is 
unstable, which leads to frequent matching problems in subsequent assembly 
links, which affects the assembly quality and production efficiency of the whole 
vehicle; secondly, the material waste is serious, and the high raw material cost is 
lost in the processing process, which directly affects the profit space of the 
enterprise; Third, frequent replacement of molds not only increases maintenance 
costs, but also affects the continuity and stability of production lines. 

Table 1 shows the specific layout of sensors in key parts of the press, as 
well as the types and frequencies of data they collect. Through the pressure sensor, 
we can monitor the pressure change of the working surface of the stamping 
machine in real time, with a frequency of up to 100 Hz, which provides an 
important basis for accurate control of the stamping process. Temperature sensors 
are deployed inside the mold to monitor temperature changes at a frequency of 5 
Hz, which is essential to prevent mold damage due to excessive temperatures. The 
vibration sensor is installed on the drive shaft and monitors the vibration 
amplitude at a frequency of 20 Hz, which helps to detect equipment abnormalities 
in advance and prevent sudden failures. 

In the digital twin-assisted optimization process described in this section, 
the use of Bézier-based parametric modeling (as in Equation 1) enabled dynamic 
shape adjustments for parts with complex geometries during CAD-based 
prototyping. Additionally, the particle swarm optimization strategy (Equations 3 
and 4) was deployed to iteratively refine stamping speed and die parameters, 
effectively identifying configurations that minimized deviation in part accuracy 
and material loss. 
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Table 1 
Overview of sensor layouts and data types 

Sensor type Installation position Measurement 
parameters 

Data acquisition 
frequency (Hz) 

Pressure sensor Punch face Pressure (Pa) 100 

Temperature 
sensor Mold interior Temperature (°C) 5 

Vibration sensor On the transmission 
shaft 

Vibration amplitude 
(mm) 20 

Table 2 
Architecture composition of digital twin 

Component 
category Component name Description Correlated 

with 

Physical 
model 

3D model of 
stamping machine 

A high-precision simulation of 
the physical structure and 

operational principles of the 
stamping machine, providing an 
intuitive visual representation for 

digital twins. 

Data model 

Data model Real-time data 
processing module 

Responsible for cleaning, 
integrating, and storing collected 

data to support algorithmic 
models with high-quality data. 

Physical 
model, 

algorithm 
model 

Algorithm 
model 

Genetic algorithm 
optimization module 

Utilizes intelligent algorithms to 
automatically optimize stamping 
parameters, thereby enhancing 
overall process performance. 

Data model 

Table 2 describes the three core components of the digital twin 
architecture: physical model, data model, and algorithm model. The physical 
model is a high-precision 3D model of the stamping machine, which simulates the 
physical structure and working principle of the equipment and provides an 
intuitive visual representation for the digital twin; the real-time data processing 
module in the data model is responsible for cleaning, integrating, and storing data 
collected from machine sensors to ensure high-quality data support for the 
algorithm model; and the algorithm model uses an intelligent algorithm to 
automatically optimize stamping parameters through the genetic algorithm 
optimization module to improve the overall process performance. 
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Table 3 
Comparison of virtual debugging and actual measurement results 

Indicators 
Virtual 

debugging 
results 

Actual 
production 

results 
Difference analysis 

Production 
efficiency 
(pieces/h) 

2000 197 
±3% fluctuation due to factors 
like equipment wear, manual 

operation, etc. 

Pass rate (%) 98.5 97.8 
±0.7% difference, indicating high 
prediction accuracy of the digital 

twin model 

Table 3 compares the results of virtual commissioning and actual 
production, showing the differences in production efficiency and qualified rate. 
Virtual commissioning shows that 2,000 pieces can be produced per hour, while 
the actual production number is 197 pieces/hour, with a fluctuation of ± 3%, 
which may be due to interference factors in actual production such as equipment 
wear and manual operation. As for the qualified rate, virtual commissioning 
reached 98.5%, while actual production was 97.8%, with a difference of ± 0.7%, 
indicating that the digital twin model has high prediction accuracy and can 
provide effective guidance for actual production. 

Table 4 
Summary of economic benefits 

Benefit indicators Initial 
value 

Optimized 
value 

Percentage 
improvement 

(%) 
Description 

Total cost savings 
(ten thousand yuan) 1000 85 15 Including materials, 

maintenance, etc. 

Productivity 
improvement (%) 80 95 18.75 Increase yield per 

unit time 

Payback period 
(months) 18 6 66.67 Faster cost recovery 

Waste emission 
reduction (tons) 50 40 20 Environmental 

contribution 

Note: The percentage changes are calculated as follows: 
Cost reduction = (1000 - 850)/1000 × 100% = 15% 
Productivity increase = (95 - 80)/80 × 100% = 18.75% 
Payback period shortening = (18 - 6)/18 × 100% = 66.67% 
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Waste emission reduction = (50 - 40)/50 × 100% = 20% 
The final row indicates a 20% reduction in monthly scrap emissions, 

which reflects a direct contribution to environmental sustainability. 
Table 4 summarizes the economics of optimization. The total cost savings 

reached 15%, or 850,000 yuan, due to the reduction of materials, maintenance and 
other costs. Production efficiency increased by 18.75%, from 80% to 95%, which 
means a significant increase in production per unit time.  

Table 5 
Comparison of Dimensional Accuracy Before and After Optimization 

Indicator Before optimization After optimization Improvement 
(%) 

Tolerance (mm) ±0.5 ±0.1 80 

Occurrence rate of fitting 
issues (%) 20 5 75 

Assembly quality rating 3/5 4.5/5 - 

Table 5 shows the changes in dimensional accuracy of stamped parts 
before and after implementing digital twin technology. After optimization, the 
tolerance was reduced from ± 0.5 mm to ± 0.1 mm, an 80% reduction; the 
occurrence rate of fitting issues dropped from 20% to 5%, improving by 75%. 
Additionally, the assembly quality rating increased from 3 to 4.5 out of 5, 
indicating a significant improvement in product quality. 

Table 6 
Comparison of die change frequency and maintenance costs 

Indicator Before 
optimization 

After 
optimization 

Improvement 
(%) 

Die changes per year 12 6 50 

Annual maintenance cost (ten 
thousand yuan) 50 30 40 

Table 6 illustrates the impact of optimization measures on die change 
frequency and maintenance costs. By adopting more efficient process parameters 
and better monitoring methods, the number of die changes was halved, and annual 
maintenance costs were reduced by 40%, effectively controlling operating costs 
while enhancing the continuity and stability of production lines. 

Table 7 reflects changes in material utilization rates and scrap emissions. 
Through optimized processes, material utilization improved by 15 percentage 
points to reach 90%, while scrap emissions decreased by 40%, with only 3 tons 
produced monthly. 
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Table 7 
Material utilization rate and waste emission comparison 

Indicator Before 
optimization 

After 
optimization 

Improvement 
(%) 

Material utilization rate (%) 75 90 20 

Scrap emissions (tons/month) 5 3 40 

This not only reduces raw material waste but also contributes to 
environmental protection. 

6. Conclusion 
This study demonstrated the effective integration of digital twin 

technology into the optimization of automotive stamping processes. The results 
provide both theoretical insights and practical validation, leading to several key 
conclusions: Digital twins enable intelligent, closed-loop manufacturing 
optimization by virtually modeling physical systems, integrating real-time sensor 
feedback, and applying machine learning-based decision-making. This 
significantly enhances design flexibility, process accuracy, and adaptability in 
mechanical manufacturing. 

Multi-objective optimization algorithms, such as genetic algorithms and 
particle swarm optimization, when deployed within digital twin frameworks, 
provide actionable strategies to balance cost, quality, and energy usage. This 
supports dynamic parameter adjustment and production system responsiveness to 
design changes. 

The digital twin approach significantly improves predictive maintenance 
and operational stability, reducing the frequency of unplanned downtime and 
extending equipment service life through early fault detection and virtual testing 
environments. 

The application of digital twin technology in real-world industrial 
scenarios validates its transformative role in intelligent manufacturing, offering 
measurable improvements in sustainability, efficiency, and quality assurance, and 
establishing a viable path for scalable industrial deployment. 
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