U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 2, 2015 ISSN 2286-3540

METHODS FOR REAL TIME IMPLEMENTATION OF
IMAGE PROCESSING ALGORITHMS

Sorin ZOICAN', Roxana ZOICAN?, Dan GALATCHI®

For certain types of applications, such as videoclips processing, the image
processing may not terminate within its deadline. The paper presents methods for
implementation of image processing algorithms in real time. These methods involve
using of graphical processing units (GPU) or digital signal processors (DSP). The
illustrated methods may be applied for many image processing algorithms. In
general, a denoising algorithm has two phases which are run sequentially: the first
one determines the noisy pixels and the second applies a median filtering
considering the only good pixels. In all such denoising algorithms, the first phase is
run for multiple times depending on the noise power. The second phase also may be
executed more than one time but this depends on the specific algorithm. The
methods presented includes: 1) parallel processing using the GPU, 2) DSP
implementation based on a Blackfin microcomputer with support of Visual DSP
kernel (VDK) and 3) adjust the number of iteration to be executed in each phase of
the algorithm in such way so the deadline to be respected. The paper proposes two
frameworks for real time implementation of very complex image processing
algorithms: a) based on GPU and b) based on DSP and integrates optimization
solutions such as adjusting the algorithm and exploits the DSP parallelism. The
first method is appropriate for applications in personal computers and the second
may be used in mobile devices.

Keywords: impulsive noise removal; graphic processing unit; digital signal

processor (DSP); real time implementation

1. Introduction

In a multimedia application image is often corrupted by impulsive noise

due the errors in the transmission channel. Impulsive noise, called “salt and
pepper”, is caused by camera sensors, faulty hardware memory locations, or
because errors occurred during communication channels transmitting images,
affecting randomly a fraction of the total number of pixels, leaving other pixels

1
Professor, Electronics, Telecommunication and Information Technology, Telecommunications

Department, University POLITEHNICA of Bucharest, Romania, e-mail: sorin@elcom.pub.ro

2 Professor, Electronics, Telecommunication and Information Technology, Telecommunications

3

Department, University POLITEHNICA of Bucharest Bucharest, Romania, e-mail:
roxana@elcom.pub.ro

Associate Professor, Electronics, Telecommunication and Information Technology,
Telecommunications Department, University POLITEHNICA of Bucharest, Romania, e-mail:
dg@elcom.pub.ro

138 Sorin Zoican, Roxana Zoican, Dan Galatchi

unchanged. It is important to eliminate this type of noise in the images before they
can apply other subsequent processing methods such as contour detection, object
recognition or image segmentation. Many denoising algorithms exist almost all
based on median filtering [1]. However, the median filter may cause blurred in the
reconstructed image. To overcome this phenomena a noised pixel detector is
applied before median filtering. In such way the edges in the image will be
preserved. The noised pixels detector is repeatedly applied over the image in order
to achieve better results [1], [2]. Unfortunately, this additional phase added to the
classical median filter increases the computation time and it is possible that the
application not run in real time. Moreover, many image denoising algorithms have
a second phase that computes median value adaptively using the results from the
first phase. Fig. 1 illustrates an image denoising algorithm with two phases [1].

Phase 1
Corrupted - Dt?tern'_nne . | Adapt window
X # noisy pixels
image X lenght
matrix
Determine
median value
Adapt median .| for good _|Reconstructed
filter length "l pixelsin v image
curent
v window

Phase 2

Fig. 1. The generic image denoising algorithm

For videoclips, the algorithm is applied each frame.

In real time systems, there are specific deadlines to be met [3]. In
particular, for a video processing application, deadlines are determined by the
number of frames per second. If processing time exceeds the deadline then the
following methods may be used to maintain system functionality: reserving of
additional resources, tasks skip, adaptation of the task activation period and an
adaptation of task execution time. In embedded systems, with limited resources,
additional resources reserving can not be a viable option. More, the activation
period is fixed and it not be modified without a severe degradation in
performance. For example, a videoclip cannot play at a different (larger) frame per
second rate, different from the original rate. In such systems only the task skipping
and execution time adaptation may lead to deadline meeting while preserving the
functionality. The videoclip processing should be divided into two task category:
mandatory tasks and additional tasks. [3], [4]. The mandatory task ensures a basic
quality of the videoclip and the additional tasks improves the quality. In case that
the deadline may be exceeded some of additional tasks (or all of them) will be
skipped. The execution time adaptation is as similar methods. In this situation, the
videoclip processing may be divided into several tasks consists of iterative

Methods for real time implementation of image processing algorithms 139

sequences. The image processing performance increases with the number of
iterations of each task.

2. The framework for real time implementation using GPU

This section proposes a framework for real time implementation of image
processing algorithm using Computer Unified Device Architecture (CUDA)
technology - a software programming model for programmers to write scalable
parallel programs using C. In the CUDA programming model, the Graphical
Processing Unit (GPU), or device, is viewed as a computing element that works in
cooperation with the main Central Processing Unit (CPU), or host. The issues
regarding with mapping the noise removal algorithm on CUDA are the following:
the parallelization of the algorithm, the efficient configuration of the kernel and
the efficient memory accesses in device and between device and host. The CUDA
device architecture is illustrated in Fig. 2 [5].

SHARED MEMORY

REGISTERS REGISTERS REGISTERS

I I I INSTRUCTION
UNIT

PROCESSOR1 PROCESSOR 2 PROCESSOR N

CONSTANT MEMORY

TEXTURE MEMORY

MULTIPROCESSOR

Fig. 2. CUDA Hardware architecture

A CUDA program consists of one or more phases that are executed on
either the host or a device. The phases that exhibit little or no data parallelism are
implemented in host code. The phases that exhibit rich amount of data parallelism
are implemented in the device code. The device code consists of data-parallel
functions, called kernels, and their associated data structures [6]. The kernel
function is executed, in parallel, for a large number of threads. The execution of a
typical CUDA program is illustrated in Fig. 3. Threads are organized into blocks
and blocks are organized into a grid. A multiprocessor executes one block at a
time. A set of threads executed in parallel represents a warp. The execution starts
with host execution. When a kernel function is invoked, the execution is moved to
a device, where a large number of threads are generated to take advantage of data

140 Sorin Zoican, Roxana Zoican, Dan Galatchi

parallelism. In a processing image application for each pixel the same
computations are performed, so the number of threads is the number of total
pixels in the image.

Copy
processing
data from
MAIN
host to HOST CPU
ity \ MEMORY
“h
./L”? ih
Launch
cooy — [pu GPU DEVICE camel
results from MEMORY &mel on

CORE | |CORE
\ |CORE I |CORE I

A\ > |CORE| |c0RE|
Execute the

kermel in

each GPU
core in
parallel

GPU to GPU
host T CORE | |CORE

Fig. 3. CUDA program flow

Once a block is assigned to a multiprocessor; it is further divided into 32-
thread units called warps that contain threads with consecutive, increasing thread
identifier. The multiprocessor scheduler manages warps and will execute a SIMT
(Single Instruction Multiple Threads) instruction by all the threads in a warp as
soon as the warp is ready and resources are available. The branching instruction
should be avoided in order to ensure that all the executing threads of a warp be
executing the same instruction.

Following the algorithm presented above, we split it into two kernels that
will be launched by the host but will be executed by the GPU. The two kernels
implement the two phases of the noise removal algorithm and they are illustrated
in Fig. 4. One of the keys to good performance is to keep the multiprocessors on
the device as busy as possible. A device in which work is poorly balanced across
the multiprocessors will deliver suboptimal performance. Hence, it’s important to
design the application to use threads and blocks in a way that maximizes hardware
utilization and to limit practices that impede the free distribution of work. The
ratio of the number of active warps per multiprocessor to the maximum number of
possible active warps is called occupancy. One of several factors that determine
occupancy is register availability. If each thread block uses many registers, the

Methods for real time implementation of image processing algorithms 141

number of thread blocks that can be resident on a multiprocessor is reduced,
thereby lowering the occupancy of the multiprocessor.

Optimization could be made in order to increase the performance of the
implementation: the image will be stored in texture memory of CUDA device,
avoid the unnecessary memory transfers between host and device and carefully
configure the kernels [7]. The texture memory space is cached and optimized for
2D spatial locality, so threads of the same warp that read texture addresses that are
close together will achieve the best performance. Reading device memory through
texture fetching is an advantageous alternative to reading device memory from
global or constant memory. Another way to optimize is using of coalesced
memory accesses. Coalescing means that a memory read by consecutive threads
in a warp is combined by the hardware into several, wide memory reads. The
requirement is that the threads in the warp must be reading memory in order.

Initialization

HOST 1
+

Launch
Kernel 1

Phase1 |------- KERNEL 1 —

Sincro
threads

+

HOST 2 Phase 1

Block B

1

" Launch
Phase 2 f------- KERNEL 2 Kernel 2

>

Sincro
threads

— 3

STOP

Fig. 4. CUDA mapping of noise removal algorithm

The dimension of the grid must be carefully chosen. If the grid dimension
is multiple of the number of multiprocessors then all the multiprocessors will be
equally loaded and the device is kept busy as much as possible. On the other hand,
the number of coalesced memory accesses will be increased if such condition is
met. The grid dimension is calculated accordingly with the widths and height of
the image to be processed. If the image width is W and the image height isH ,
then the grid dimension is (W /T,,H /T,), where T,and T, represent the number of

threads, in horizontal and wvertical direction, in a block. The product

142 Sorin Zoican, Roxana Zoican, Dan Galatchi

W /T, *H /T, should be multiple of the number of multiprocessors. It may be

necessary to resize the image to meet such condition. The mentioned algorithm
was run on two devices: GeForce 8400 GS (with one multiprocessor and eight
cores) and GeForce 8800 GTS (with twelve multiprocessors and ninety six cores).
The program was also run on a PC with Windows 7, Intel dual core processor at
2.4 GHz and 3 Gbytes of RAM. All the figures in Table 1 are for the second case,
considering the first case as 100%. The two kernels have need of 14 or 15
registers and 29 bytes of shared memory each. The occupancy is 66% and it is as
large as possible, so the kernels are optimally implemented. As it is shown in
Table 1, the global memory efficiency and the coalesced memory accesses are
improved and the miss texture cache rate is reduced when the grid dimension is

multiple of the number of multiprocessors.
Table 1
GPU efficiency

Global load efficiency -10%
Global store efficiency -15%
Miss texture cache 500%

Global load un-coalesced | 17%
Global store un-coalesced | 150%

Table 2 indicates the performance (execution time in frames per seconds -
FPS) for various image sizes. The difference between cases GeForce 8800 (1) and
GeForce 8800 (2) is that in the second case the grid dimension is multiple of the
number of multiprocessors. One can observe that, in this case, the performance is
improved.

Table 2
Execution time for GPU implementation
Image size FPS
(480,480) (320,240) (640,480)
GeForce 8400 7 22 5
GeForce 8800 (1) 38 115 29
GeForce 8300 (2) 184 553 138

If the image size is not properly chosen, so the dimension of the grid to be
multiple of the number of processors, the algorithm was not implemented so FPS
is not applicable. The FPS in table 2 is calculated for a grayscale image therefore
for a color image (say in RGB format) the figures should divide by 3. In table 2,
one may observe that the noise removal algorithm may be implemented in real
time (about 15-25 FPS) even for color videos.

Methods for real time implementation of image processing algorithms 143

3. The framework for real time implementation using DSP

This section illustrates a framework for real time implementation of image
processing algorithms suitable for mobile devices using DSP microcomputers,
such Blackfin family. Below we will be explain in more details the fundamentals
of the modification in the image processing algorithm and how the video pixel
instructions works and reduce the processing time.

The Blackfin microcomputer is a 16-bit fixed-point processor that is based
on the MSA core, developed in cooperation by Analog Devices and Intel. Because
of its low cost and high performance, this processor is suitable in power-sensitive
applications (such as cellular phones) and computationally intensive applications
(video equipment, third-generation cellular phones). The Blackfin core combines
dual multiply-accumulate (MAC) units, an orthogonal reduced instruction-set
computer (RISC) instruction set, single instruction, multiple data (SIMD)
programming capabilities and multimedia processing features, into a unified
architecture. The Blackfin BF5xx processor includes system peripherals such as a
parallel peripheral interface (PPI), serial peripheral interface (SPI), serial ports
(SPORTS), general-purpose timers, universal asynchronous receiver transmitter
(UART), real-time clock (RTC), watchdog timer, and general-purpose
input/output (I/0O) ports. Blackfin processors have high peripheral supports, a
memory management unit (MMU) and RISC-like instructions, which are usually
found in many high-end microcontrollers. These processors have high-speed
buses and highly developed computational units that support variable-length
arithmetic hardware operations. The Blackfin processor uses a modified Harvard
architecture which allows multiple memory accesses per clock cycle. The
Blackfin processor instruction set is optimized so that 16-bit operation codes
represent the frequently used instructions. Complex DSP instructions are encoded
into 32-bit operation codes like multifunction instructions. Blackfin
microcomputers bear a limited multi-issue facility, where a 32-bit instruction can
be issued in parallel with two 16-bit instructions. This allows the programmer to
use several of the core resources in a single instruction cycle. The Blackfin
architecture supports instructions that control vector operations. We take
advantage of these instructions to carry out concurrent operations on multiple 16-
bit values, as well as add, subtract, multiply, shift, negate, pack and search [9].
Fig. 5 illustrates the Blackfin core architecture [8].

The image processing algorithm may be implemented on a Blackfin
microcomputer evaluation board EZ-KIT-Lite BF533 in C language using the
Visual DSP++ integrated development environment with compiler optimization
for speed [9], [10].

144 Sorin Zoican, Roxana Zoican, Dan Galatchi

|.I'L'|.'?|
|

MALC]
| [1]
AT | AN
SHIFTER ALK ALIN
DATA
. I HEGISTERS

ARITHRETIC UHITS

BaSsE IROEX LEMGTH MOHEY I
RLGISTERS REGHSTERS RECHSTERS RLGISTERS
| [[| POINTER
[I REGISTERS CONTROL
UNIT
(e | DG ‘

ADDRESSIRG UNITS
Fig. 5. The Blackfin microcomputers core architecture

Due the algorithm complexity it is possible that it does not run in real time
in this implementation if the scanning window length is large. Therefore,
optimization methods are necessary in order to achieve a real time implementation
(that is the frame processing to be performed in less than 40 milliseconds).
Execution time increases when impulsive noise is high because the number of
iterations in Phase 1 and Phase 2 will increase. It was shown that the
improvement is small if the number of iterations is increased over a specific limit
[11], so the algorithm can have less iteration in each phase, decreasing the
execution time, image quality still being good. A modified algorithm where the
execution time adaptation is used was illustrated in [12]. The modified algorithm
is aware about the remaining execution time of each task before it reaches its
deadline. If the remaining time is less than a specific threshold the scheduling
algorithm notify the task to modify the running parameters in Phase 1 and in
Phase 2 so that the execution time to be reduced and the deadline to be not
exceeded. The implementation of the modified algorithm integrates the basic
image processing algorithm presented above with the phase running control in
order to achieve the real time constraints [12]. The operating system kernel
(Visual DSP Kernel- VDK) [10] was involved to support the implementation. The
image processing algorithm may be implemented easily using VDK functionality:
each phase in algorithm will be separately coded in a dedicated task and a time
measurement mechanism will be defined using a periodic semaphore [12].
Specific methods to optimize the tasks execution were involved. These methods
will be discussed below for achieving a real time implementation using the digital

Methods for real time implementation of image processing algorithms 145

signal processing Blackfin microcomputer family [9]. The Blackfin processor has
a dual multiply and accumulate (MAC) signal processing engine, an orthogonal
instruction set and single instruction multiply data (SIMD) instructions. Issuing
parallel instructions and using vector operations may be used to obtain a real time
functioning. The Blackfin processor does permit up to three instructions to be
issued in parallel: one 32-bit DSP instruction and two 16-bit instructions
(load/store, DSP load). A powerful feature of Blackfin processors is the existence
of instructions that manipulate video pixels. Such instructions perform 8-bit pack
and unpack, quad 8-bit subtract operation that can be used to compute the
minimum and maximum values in four windows simultaneously. Also, four
values are updated in parallel. Using assembly language implement the iterative
instruction as hardware loops that save processor cycles. A more detailed
description of implementing quad operation, specifically for such image
processing algorithms, using Blackfin microcontroller was illustrated in [11],[12].

Additionally, dual-core Blackfin processors, (BF561 and BF60x) may be
involved. Each dual-core Blackfin processor has two cores, core A and core B,
each with its own internal memory. There is a common memory shared between
the two cores, and both cores share access to external memory. Each core
functions independently. Common routines and data will be placed in shared
memory without the need for explicit positioning.

The application program and data blocks are transferred from an external
memory device to specified internal memory locations. Once all blocks are
loaded, core A program execution is started. Core B remains in a held-off state
until a certain register bit is cleared, by execution of an instruction sequence in the
core A. After that, core B will start execution of its own application program. The
frame processing task is designed as a dual - core application that allows for
splitting the main code on the two cores and for all of the shared memory areas to
be used efficiently by both cores. Images can be seamlessly captured or displayed
using the parallel peripheral interface (PPI) using the appropriate direct memory
access (DMA) mode such that images can be processed in real time without
loosing a frame [13]. The size of data buffers involved in multimedia applications
exceeds the processor’s internal memory space. To take advantage of the low
latency access of the processor’s on-chip memory the data can be transferred to
the internal memory before it is requested by the programs runs by the core. In
this manner, cycles consumed due to the core being held off for a memory request
will be avoided. The DMA unit may be used to hide the latency of the memory
transfer [14]. In Fig. 6 is illustrated how the DMA unit is involved in order to
acquire the input frames or to store the output frames. Four input DMA buffers,
DMA Buffer In 0, DMA Buffer In 1, DMA Buffer In 2 , DMA Buffer In 3 and
similar four output buffers DMA Buffer Out 0, DMA Buffer Out 1, DMA Buffer
Out 2 , DMA Buffer Out 3 are defined. Fig. 6 illustrates both the input and output

146 Sorin Zoican, Roxana Zoican, Dan Galatchi

transfers and for simplicity the buffers are denoted as DMA Buffer 0, DMA Buffer
1, DMA Buffer 2 and DMA Buffer 3. The buffers are manipulated using pointers
which are stored in two tables TABPin = { DMA Buffer In 0, DMA Buffer In 1,
DMA Buffer In 2 , DMA Buffer In 3} and TABPout = { DMA Buffer Out 0, DMA
Buffer Out 1, DMA Buffer Out 2 , DMA Buffer Out 3 }. The DMA transfers use
alternatively as start address the four pointers defined in these two tables (for
input or output transfers).

DMA Buffer 0

DMA Buffer 1

DMA Buffer 2

DMA Buffer 3

Frame index

Core A \ Vsl

Core B

Fig. 6. The DMA buffers for input frame processing

Two successive input frames may be processed in the two cores of the processor.
When a DMA transfer is ready a specific interrupt is generated. A variable,
frame_index is defined in order to establish which input or output frame buffers
will be processed. The interrupt service routine will be setup the input and the
output frame pointers, BufferIn and BufferOut as follows:

BufferIn = TABPin[frame _indez|; BufferOut = TABPout|frame _indez];
frame _index = (frame _index 4+ 1)mod 4;

The image denoising algorithm, with number of iterations control, was
implemented using the Blackfin BF561 microcomputer and run with different
values of impulsive noise and maximum size of the scanning window. The above
presented techniques for code optimizing were involved.

Methods for real time implementation of image processing algorithms 147

Table 4 illustrates the average execution time, in frames per seconds
(FPS), for various image sizes. In this table the maximum number of iterations in
each phase, Lyax 1s considered as a parameter.

Table 3
The execution time in FPS for various grayscale image sizes
Image size FPS
I—max =1 Lmax =2 Lmax =3

(176,144) 266 95 48
(320,240) 87 31 16
(480,320) 43 15 8
(640,480) 21 7 4
(960,540) 13 4 2

The average time represents the arithmetic mean of the execution time for
noise levels ranging from 10% to 90%. One can observe that the new median
filtering can be used for color image size about320x 240, if the admitted frame per
second is minimum 25. For this limit there is a possibility to obtain a real time
functioning for the minimum scanning window.

4, Conclusion

This work proposed two methods (frameworks) for real time
implementation of very complex image processing algorithms such as image noise
reduction algorithm. A generic image noise reduction algorithm, with two phases,
is implemented in order to validate the proposed methods. Each phase is running
for multiple times in order to efficiently eliminate the noise.

The first method involves the CUDA enabled graphics cards (CUDA-
GPU), already available in many computers. The kernel configuration,
minimizing the number of the registers per thread and the number of global
memory accesses are key factors that lead to a very efficient implementation of
image processing algorithms. If the program meets certain performance rules, the
obtained speedup is more than hundreds times compared to a PC computer.

The second method may be used in mobile devices and it involved a DSP
microcomputer and slightly modifies the image processing algorithm in order to
reduce the number of iterations of the denoising algorithm. A modified algorithm,
that controls the number of iterations in each phase, which trades off between the
quality of the restored image and the constraint to meet the deadlines, should be
implemented for Blackfin DSP in order to achieve the real time functionality.
Some optimization solutions, such as using of parallel instructions, vector
instructions and dual core microcomputers are involved in order to achieve best
performance.

The modified algorithm may be implemented in the CUDA framework in
order to achieve more performance in terms of speed of computations.

148 Sorin Zoican, Roxana Zoican, Dan Galatchi

The presented frameworks are indented to be used in different
applications: the first one in personal computer applications and the second one in
mobile devices. The GPU approach has the advantage of greater FPS comparing
with the DSP method, but it is dependent of resources in graphic unit and of
image size (that is, the image size determines the optimality of the parallelism by
kernel configuration). The DSP approach provides a smaller FPS, but greater
enough for a real time implementation if the image size is reasonable. Both
methods may be used for processing medium color image sizes.

REFERENCES

[1] Manohar Annappa Koli , “Robust Algorithm for Impulse Noise Reduction ”, International
Journal on Computer Science and Engineering (IICSE), Vol. 02, No. 07, 2010, 2375-2377

[2] Zhou Wang and David Zhang, “Progressive Switching Median Filter for the Removal of
Impulse Noise from Highly Corrupted Images”, IEEE Transactions On Circuits And
Systems—II: Analog And Digital Signal Processing, vol. 46, no. 1, Jan. 1999, pp. 78-80

[3] Real Time Systems, Architecture, Scheduling and Application, Seyed Morteza Babamir, editor,
Ed. Intech 2012, ISBN 978-953-51-0510-7

[4] Embedded Systems and Wireless Technology, Raul Aquino Santos and Arthur Edwards Block,
editors, CRC Press, 2012, ISBN 978-1-57808-803-4

[5] Jason Sanders, Edward Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley, ISBN-978-0131387683, 2011

[6] GPU Programming Guide, 2011,
http://developer.download.nvidia.com/ GPU_Programming_Guide/

[7] CUDA C Best Practices Guide, 2011,
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/

[8] Analog Devices, Blackfin Processors Manual, 2007

[9] Analog Devices, Inc., Blackfin Processor Programming Reference, 2012

[10] Analog Devices, Inc., VisualDSP 5.0 Kernel (VDK) Users Guide , 2011

[11] Sorin Zoican, “QoS Scheduling Algorithm for Videoclips Denoising”, Recent Advances in
Electronics, Signal Processing and Communication Systems, Proceedings of the 2013
International Conference on Electronics, Signal Processing and Communication Systems
(ESPCO 2013), Venice, Italy, September 28-30, 2013, pp. 40-44

[12] Sorin Zoican, “Videoclip Denoising Algorithm Implementation Using the Blackfin
Microcomputer Family”, TERI Procedia, vol. 4 (2013), ELSEVIER Journal, ISSN: 2212-
6678, International Conference on Electronic Engineering and Computer Science (EECS
2013), Beijing, China, May 22-23 2013, pp. 139-147.

[13] Kunal Singh and Ramesh Babu, Video Framework Considerations for Image Processing on
Blackfin Processors, Analog Devices EE276 , 2005

[14] Kaushal Sanghai, Video Templates for Developing Multimedia Applications on Blackfin
Processors, Analog Devices EE301 , 2006

