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DUAL JET TIME-DEPENDENT HAMILTON GEOMETRY
AND THE LEAST SQUARES VARIATIONAL METHOD

Mircea Neagu1, Vladimir Balan2, Alexandru Oană3

In this paper we geometrize on the 1-jet space J1∗(R,M) the time-
dependent Hamiltonians, in the sense of canonical nonlinear connections,
Cartan N -linear connections, d-torsions and d-curvatures. Some time-
dependent Hamiltonian field-like geometrical models (electromagnetic-like
and gravitational-like) depending on momenta are also constructed.
An application related to the time-dependent Hamiltonian of the least squares
variational method is also studied.
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1. Introduction

We further confine to the opinion expressed by Peter Olver in his cele-
brated work [13], which says that 1-jet spaces and their duals are appropriate
fundamental ambient mathematical spaces used to model classical and quan-
tum field theories. In such a physical and geometrical context, suggested by
the cotangent bundle framework of Atanasiu ([1, 2]) and Miron et al. (see,
e.g., [6, 8]), followed papers like [10] and [12] which are devoted to developing
the time-dependent covariant Hamilton geometry on dual 1-jet spaces (in the
sense of d−tensors, time-dependent semisprays of momenta, nonlinear connec-
tions, N -linear connections, d−torsions and d−curvatures), which is a natural
dual jet extension of the Hamilton geometry on the cotangent bundle. The
geometrical study from the papers [10] and [12] is realized on the dual 1-jet
vector bundle J1∗(R,M) ≡ R×T ∗M → R×M, whose local coordinates are de-
noted by (t, xi, p1i ). Here M

n is a smooth real manifold of dimension n, whose
local coordinates are (xi)i=1,n. The coordinates p1i are called momenta, and
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alexandru.oana@unitbv.ro

129



130 Mircea Neagu, Vladimir Balan, Alexandru Oană

the dual 1-jet space J1∗(R,M) is called the time-dependent phase space of mo-
menta. The transformations of coordinates (t, xi, p1i ) ←→ (t̃, x̃i, p̃1i ), induced
from R×M on the dual 1-jet space J1∗(R,M), have the expressions

t̃ = t̃ (t)

x̃i = x̃i (xj)

p̃1i =
∂xj

∂x̃i

dt̃

dt
p1j ,

(1)

where dt̃/dt ̸= 0 and det(∂x̃i/∂xj) ̸= 0. Consequently, in our dual jet geometri-
cal approach, we use a ”relativistic” time t. As an example, in the Hamiltonian
approach from the monograph [8], the authors use the trivial bundle R×T ∗M
over the base cotangent space T ∗M , whose coordinates induced by T ∗M are
(t, xi, pi). The changes of coordinates on the trivial bundle R× T ∗M → T ∗M
are 

t̃ = t

x̃i = x̃i (xj)

p̃i =
∂xj

∂x̃i
pj,

pointing out the absolute character of the time variable t.

2. Time-dependent Hamiltonians of momenta

Let us start with a time-dependent Hamiltonian H : E∗ = J1∗(R,M)→
R, locally expressed by

E∗ ∋ (t, xi, p1i )→ H(t, xi, p1i ) ∈ R,
whose fundamental vertical metrical d−tensor is given by

G
(i)(j)
(1)(1) =

1

2

∂2H

∂p1i∂p
1
j

.

Let h = (h11(t)) be a semi-Riemannian metric on the time manifold R,
together with a d−tensor gij(t, xk, p1k) on the dual 1-jet space E∗, which is
symmetric, has the rank n = dimM and has a constant signature.

Definition 2.1. A time-dependent Hamiltonian H : E∗ → R, having the
fundamental vertical metrical d−tensor of the form

G
(i)(j)
(1)(1)(t, x

k, p1k) =
1

2

∂2H

∂p1i∂p
1
j

= h11(t)g
ij(t, xk, p1k), (2)

is called a Kronecker h-regular time-dependent Hamiltonian function.

In this geometrical context, we can introduce the following notion:

Definition 2.2. A pair of mathematical objects Hn = (E∗, H), consisting of
the dual 1-jet space E∗ = J1∗(R,M) and a Kronecker h-regular time-dependent
Hamiltonian H : E∗ → R, is called a time-dependent Hamilton space.
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Example 2.1. If h11(t) (respectively φij(x)) is a semi-Riemannian metric on
the time (respectively spatial) manifold R (respectively M) having the physi-
cal meaning of gravitational potentials, while m, c and e are the well-known
constants from Theoretical Physics representing the mass of the test body,
speed of light and electric charge, then let us consider the Kronecker h-regular
time-dependent Hamiltonian H1 : E

∗ → R, defined by

H1 =
1

4mc
h11(t)φ

ij(x)p1i p
1
j −

e

m2c
A

(i)
(1)(x)p

1
i +

e2

m3c
F (t, x)− P(t, x), (3)

where A
(i)
(1)(x) is a d−tensor on E∗ having the physical meaning of a potential

d−tensor of an electromagnetic field, P(t, x) is a potential function and the
function F (t, x) is given by

F (t, x) = h11(t)φij(x)A
(i)
(1)(x)A

(j)
(1)(x).

Then the Hamilton space EDHn = (E∗, H1) defined by the time-dependent
Hamiltonian (3) is called the time-dependent Hamilton space of electrody-
namics of autonomous type. This is natural, since in the particular case of the
metric h = δ = 1, we recover the classical Hamilton space of electrodynamics
studied in the monograph [8]. The non-dynamical character (i.e., the inde-
pendence on the temporal coordinate t) of the spatial gravitational potentials
φij(x) motivated us to use the term ”autonomous”.

Example 2.2. More generally, if we take on E∗ a symmetric d−tensor field
gij(t, x) having the rank n and a constant signature, we can define the Kro-
necker h-regular time-dependent Hamiltonian H2 : E

∗ → R, by putting

H2 = h11(t)g
ij(t, x)p1i p

1
j + U

(i)
(1)(t, x)p

1
i + F(t, x), (4)

where U
(i)
(1)(t, x) is a d−tensor field on E∗ and F(t, x) is a function on E∗.

Then the Hamilton space NEDHn = (E∗, H2) defined by the affine quadratic
time-dependent Hamiltonian (4) is called the non-autonomous time-dependent
Hamilton space of electrodynamics. The dynamical character (i.e., the de-
pendence on the temporal coordinate t) of the gravitational potentials gij(t, x)
motivated us to use the word ”non-autonomous”.

3. Canonical nonlinear connections on Hn-spaces

In the sequel, following the geometrical ideas from (Miron, [6]), we will
prove that any Kronecker h-regular time-dependent Hamiltonian H produces
a natural nonlinear connection on the dual 1-jet bundle E∗, which is deter-
mined by H alone. In order to do that, let us consider a Kronecker h-regular
time-dependent HamiltonianH, whose fundamental vertical metrical d−tensor
is given by (2). Also, let us introduce the generalized Christoffel symbols
of the inverse spatial metrical d−tensor gij(t, x

k, p1k), where gij(t, xk, p1k) =
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h11(t)G
(i)(j)
(1)(1)(t, x

k, p1k), via the formulas

Γk
ij =

gkl

2

(
∂gli
∂xj

+
∂glj
∂xi
− ∂gij

∂xl

)
.

In this context, by using the notations from above, we can state the following
result:

Theorem 3.1. The pair of local functions N =
(
N
1

(1)
(i)1, N2

(1)
(i)j

)
on E∗, where

N
1

(1)
(i)1 = H1

11p
1
i = (h11/2)(dh11/dt)p

1
i ,

N
2

(1)
(i)j =

h11

4

[
∂gij
∂xk

∂H

∂p1k
− ∂gij

∂p1k

∂H

∂xk
+ gik

∂2H

∂xj∂p1k
+ gjk

∂2H

∂xi∂p1k

]
,

(5)

represents a nonlinear connection on E∗, which is called the canonical nonlin-
ear connection of the time-dependent Hamilton space Hn = (E∗, H).

Proof. Taking into account the transformation rule of the Christoffel symbol
H1

11 of the temporal semi-Riemannian metric h11, by direct local computations,

we deduce that the temporal components N
1

(1)
(i)1 from (5) verify the transfor-

mation rules of a temporal nonlinear connection (see [10] or [12, p.100]).
The spatial components from (5) become (except the multiplication fac-

tor h11) exactly the canonical nonlinear connection from the classical Hamilton
geometry (see [6] or [8, p.127]). □

4. Cartan canonical connection in Hn-spaces

Let Hn = (E∗ = J1∗(R,M), H) be a time-dependent Hamilton space,
whose fundamental vertical metrical d−tensor is given by (2). Let

N =
(
N
1

(1)
(i)1, N

2

(1)
(i)j

)
be the canonical nonlinear connection of the time-dependent Hamilton space
Hn, given by (5).

Theorem 4.1 (the Cartan canonical N -linear connection). On the time-
dependent Hamilton space Hn = (E∗, H) endowed with the canonical nonlinear
connection (5), there exists a unique h-normal N-linear connection

CΓ(N) =
(
H1

11, Ai
j1, H i

jk, C
i(k)
j(1)

)
, (6)

having the following metrical properties:

(i) gij|k = 0, gij|(k)(1) = 0,

(ii) Ai
j1 =

gil

2

δglj
δt

, H i
jk = H i

kj, C
i(k)
j(1) = C

k(i)
j(1),

where ”/1”, ”|k” and ”|(k)(1) ” represent the local covariant derivatives induced by

the h-normal N-linear connection CΓ(N).
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Proof. Let CΓ(N) =
(
H1

11, Ai
j1, H i

jk, C
i(k)
j(1)

)
be an h-normal N -linear connec-

tion, whose local coefficients are defined by the relations

A1
11 = H1

11 =
h11

2

dh11

dt
, Ai

j1 =
gil

2

δglj
δt

,

H i
jk =

gir

2

(
δgjr
δxk

+
δgkr
δxj
− δgjk

δxr

)
, C

j(k)
i(1) = −

gir
2

(
∂gjr

∂p1k
+

∂gkr

∂p1j
− ∂gjk

∂p1r

)
.

Taking into account the local expressions of the local covariant derivatives
induced by the h-normal N -linear connection CΓ(N), by local computations,
we infer that CΓ(N) satisfies conditions (i) and (ii).

Conversely, let us consider an h-normal N -linear connection

C̃Γ(N) =
(
Ã1

11, Ãi
j1, H̃ i

jk, C̃
i(k)
j(1)

)
,

which satisfies conditions (i) and (ii). It follows that we have

Ã1
11= H1

11, Ãi
j1 =

gil

2

δglj
δt

.

Moreover, the metrical condition gij|k = 0 is equivalent with

δgij
δxk

= grjH̃
r
ik + girH̃

r
jk.

Applying now a Christoffel process to the indices {i, j, k}, we get

H̃ i
jk =

gir

2

(
δgjr
δxk

+
δgkr
δxj
− δgjk

δxr

)
.

By analogy, using the relations C
i(k)
j(1) = C

k(i)
j(1) and gij|(k)(1) = 0, together with a

Christoffel process applied to the indices {i, j, k}, we find

C̃
j(k)
i(1) = −

gir
2

(
∂gjr

∂p1k
+

∂gkr

∂p1j
− ∂gjk

∂p1r

)
.

In conclusion, the uniqueness of the Cartan canonical connection CΓ(N)
on the dual 1-jet space E∗ = J1∗(R,M) is obvious. □

Remark 4.1. The Cartan canonical connection CΓ(N) of the time-dependent
Hamilton space Hn also verifies the metrical properties

h11/1 = h11|k = h11|(k)(1) = 0, gij/1 = 0.

5. d−Torsions and d−curvatures

By applying the formulas of the local d−torsions and d−curvatures of
an h-normal N -linear connection DΓ(N) (see Tables and formulas from [5])
to the Cartan canonical connection CΓ(N), we get the following important
geometrical results:
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Theorem 5.1. The torsion tensor T of the Cartan canonical connection CΓ(N)
of the time-dependent Hamilton space Hn is determined by the local d−com-
ponents

hR hM v
hRhR 0 0 0

hMhR 0 T r
1j R

(1)
(r)1j

vhR 0 0 P
(1) (j)
(r)1(1)

hMhM 0 0 R
(1)
(r)ij

vhM 0 P
r(j)
i(1) P

(1) (j)
(r)i(1)

vv 0 0 0

where T r
1j = −Ar

j1, P
r(j)
i(1) = C

r(j)
i(1) ,

P
(1) (j)
(r)1(1) =

∂N
1

(1)
(r)1

∂p1j
+ Aj

r1 − δjrH
1
11, P

(1) (j)
(r)i(1) =

∂N
2

(1)
(r)i

∂p1j
+Hj

ri,

R
(1)
(r)1j =

δN
1

(1)
(r)1

δxj
−

δN
2

(1)
(r)j

δt
, R

(1)
(r)ij =

δN
2

(1)
(r)i

δxj
−

δN
2

(1)
(r)j

δxi
.

Theorem 5.2. The curvature tensor R of the Cartan canonical connection
CΓ(N) of the time-dependent Hamilton space Hn is determined by the follow-
ing adapted local curvature d−tensors:

hR hM v
hRhR 0 0 0

hMhR 0 Rl
i1k −R(1)(l)

(i)(1)1k = −Rl
i1k

vhR 0 P
l (k)
i1(1) −P (1)(l) (k)

(i)(1)1(1) = −P
l (k)
i1(1)

hMhM 0 Rl
ijk −R(1)(l)

(i)(1)jk = −Rl
ijk

vhM 0 P
l (k)
ij(1) −P (1)(l) (k)

(i)(1)j(1) = −P
l (k)
ij(1)

vv 0 S
l(j)(k)
i(1)(1) −S

(1)(l)(j)(k)
(i)(1)(1)(1) = −S

l(j)(k)
i(1)(1)

where

Rl
i1k =

δAl
i1

δxk
− δH l

ik

δt
+ Ar

i1H
l
rk −Hr

ikA
l
r1 + C

l(r)
i(1)R

(1)
(r)1k,

Rl
ijk =

δH l
ij

δxk
− δH l

ik

δxj
+Hr

ijH
l
rk −Hr

ikH
l
rj + C

l(r)
i(1)R

(1)
(r)jk,

P
l (k)
i1(1) =

∂Al
i1

∂p1k
− C

l(k)
i(1)/1 + C

l(r)
i(1)P

(1) (k)
(r)1(1) ,

P
l (k)
ij(1) =

∂H l
ij

∂p1k
− C

l(k)
i(1)|j + C

l(r)
i(1)P

(1) (k)
(r)j(1) ,
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S
l(j)(k)
i(1)(1) =

∂C
l(j)
i(1)

∂p1k
−

∂C
l(k)
i(1)

∂p1j
+ C

r(j)
i(1)C

l(k)
r(1) − C

r(k)
i(1) C

l(j)
r(1).

6. Momentum field-like geometrical models

In what follows, we create a large geometrical framework on the dual
1-jet space E∗ for a time-dependent Hamiltonian approach of the electromag-
netic and gravitational physical fields. Our geometric-physical construction
is achieved starting only from a given time-dependent Hamiltonian function
H, which naturally produces a canonical nonlinear connection N , a canonical
Cartan N -linear connection CΓ(N) and their corresponding local d−torsions
and curvatures. In this context, we construct some geometrical time-dependent
Hamiltonian electromagnetic-like and gravitational-like field theories, governed
by some natural geometrical momentum Maxwell-like and Einstein-like equa-
tions.

6.1. Geometrical momentum Maxwell-like equations

Let Hn = (E∗, H) be a time-dependent Hamilton space, endowed with
its canonical nonlinear connection (5), which produces the adapted verti-

cal distinguished 1-forms δp1i = dp1i + N
1

(1)
(i)1dt + N

2

(1)
(i)jdx

j. Let CΓ(N) be

the Cartan canonical linear connection of the space Hn, locally defined by
(6). Let us also consider the canonical Liouville-Hamilton d−tensor field
of momenta C∗= p1i (∂/∂p

1
i ), together with the fundamental vertical metrical

d−tensor (2). All these geometrical objects allow us to define the metrical
deflection d−tensors

∆
(i)
(1)1 = p

(i)
(1)/1, ∆

(i)
(1)j = p

(i)
(1)|j, ϑ

(i)(j)
(1)(1) = p

(i)
(1)|

(j)
(1),

where p
(i)
(1) =G

(i)(k)
(1)(1)p

1
k and ”/1”, ”|j” and ”|(j)(1)” are the local covariant derivatives

induced by the Cartan connection CΓ(N). Taking into account the form of
the local covariant derivatives of the Cartan canonical connection CΓ(N), by
direct computations, we get

Proposition 6.1. The metrical deflection d−tensors of the time-dependent
Hamilton space Hn are given by

∆
(i)
(1)1 = −h11g

ikAr
k1p

1
r, ∆

(i)
(1)j = h11g

ik
[
−N

2

(1)
(k)j −Hr

kjp
1
r

]
,

ϑ
(i)(j)
(1)(1) = h11g

ij − h11g
ikC

r(j)
k(1)p

1
r.

In order to construct our time-dependent Hamiltonian theory of electro-
magnetism, we introduce the following geometric-physical notion:
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Definition 6.1. The distinguished 2-form on the 1-jet space E∗, defined by

F = F
(i)
(1)jδp

1
i ∧ dxj + f

(i)(j)
(1)(1)δp

1
i ∧ δp1j , (7)

where

F
(i)
(1)j =

1

2

[
∆

(i)
(1)j −∆

(j)
(1)i

]
, f

(i)(j)
(1)(1) =

1

2

[
ϑ
(i)(j)
(1)(1) − ϑ

(j)(i)
(1)(1)

]
, (8)

is called the electromagnetic field of the time-dependent Hamilton space Hn

or momentum electromagnetic field.

By a straightforward calculation, we infer the following

Proposition 6.2. The local components F
(i)
(1)j and f

(i)(j)
(1)(1) of the electromagnetic

field F, associated with the Hamilton space Hn, have the following expressions:

F
(i)
(1)j =

h11

2

[
gjkN

2

(1)
(k)i − gikN

2

(1)
(k)j +

(
gjkHr

ki − gikHr
kj

)
p1r

]
, f

(i)(j)
(1)(1) = 0.

The main result of our abstract geometrical Hamilton time-dependent
electromagnetism of momenta is

Theorem 6.1. The electromagnetic components F
(i)
(1)j of the space Hn are

governed by the following geometrical Maxwell-like equations:
F

(i)
(1)k/1 =

1

2
A{i,k}

{
∆

(i)
(1)1|k +∆

(i)
(1)rT

r
1k + ϑ

(i)(r)
(1)(1)R

(1)
(r)1k +Ri

r1kp
(r)
(1)

}
∑

{i,j,k} F
(i)
(1)j|k = −

1

2

∑
{i,j,k}

{
ϑ
(i)(r)
(1)(1)R

(1)
(r)jk+Ri

rjkp
(r)
(1)

}
F

(i)
(1)j|

(k)
(1) =

1

2
A{i,j}

{
ϑ
(i)(k)
(1)(1)|j−P

i (k)
rj(1) p

(r)
(1) −∆

(i)
(1)rC

r(k)
j(1) − ϑ

(i)(r)
(1)(1)P

(1) (k)
(r)j(1)

}
,

where A{i,j} means an alternate sum and
∑

{i,j,k} means a cyclic summation
over these indices.

Proof. The general Ricci identities applied to the metric gij yield the equalities
(see [3]):

girRj
r1k + gjrRi

r1k = 0, girRj
rkl + gjrRi

rkl = 0,

girP
j (l)
rk(1) + gjrP

i (l)
rk(1) = 0.

(9)

Let us consider now the following non-metrical deflection d−tensor identities
(see [4]):

(d1) ∆
(1)
(p)1|k −∆

(1)
(p)k/1 = p1rR

r
p1k −∆

(1)
(p)rT

r
1k − ϑ

(1)(r)
(p)(1)R

(1)
(r)1k,

(d2) ∆
(1)
(p)j|k −∆

(1)
(p)k|j = p1rR

r
pjk − ϑ

(1)(r)
(p)(1)R

(1)
(r)jk,

(d3) ∆
(1)
(p)j|

(k)
(1) − ϑ

(1)(k)
(p)(1)|j = p1rP

r (k)
pj(1) −∆

(1)
(p)rC

r(k)
j(1) − ϑ

(1)(r)
(p)(1)P

(1) (k)
(r)j(1) ,

where ∆
(1)
(i)1 = p1i/1, ∆

(1)
(i)j = p1i|j, ϑ

(1)(j)
(i)(1) = p1i |

(j)
(1).
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By contracting the above deflection d−tensor identities with the fun-

damental vertical metrical d−tensor G
(i)(p)
(1)(1), and using the equalities (9), we

obtain the following metrical deflection d−tensor identities:

(d′1) ∆
(i)
(1)1|k −∆

(i)
(1)k/1 = −p

(r)
(1)R

i
r1k −∆

(i)
(1)rT

r
1k − ϑ

(i)(r)
(1)(1)R

(1)
(r)1k,

(d′2) ∆
(i)
(1)j|k −∆

(i)
(1)k|j = −p

(r)
(1)R

i
rjk − ϑ

(i)(r)
(1)(1)R

(1)
(r)jk,

(d′3) ∆
(i)
(1)j|

(k)
(1) − ϑ

(i)(k)
(1)(1)|j = −p

(r)
(1)P

i (k)
rj(1) −∆

(i)
(1)rC

r(k)
j(1) − ϑ

(i)(r)
(1)(1)P

(1) (k)
(r)j(1) .

To obtain the first (respectively, the third) geometrical Maxwell-like
equation, we permute the indices i and k in the identity (d′1) (respectively,
the indices i and j in the identity (d′3)), and we subtract this new identity
from the initial one. Moreover, by doing a cyclic sum by indices {i, j, k} in the
identity (d′2), it follows the second geometrical Maxwell-like equation. □

6.2. Geometrical momentum Einstein-like equations

On a time-dependent Hamilton space Hn = (E∗, H), via its fundamental
vertical metrical d−tensor given by (2) and its canonical nonlinear connection
(5), we construct a corresponding momentum time-dependent gravitational h-
potential, by taking

G = h11dt⊗ dt+ gijdx
i ⊗ dxj + h11g

ijδp1i ⊗ δp1j .

At the same time, let us consider that CΓ(N), which is given by (6), is the
Cartan canonical connection of the time-dependent Hamilton space Hn. We
postulate that the geometrical momentum Einstein-like equations, which gov-
ern the time-dependent gravitational h-potential G of the Hamilton space Hn,
are the abstract geometrical Einstein equations associated with the Cartan
canonical connection CΓ(N) and to the adapted metric G on E∗, namely

Ric(CΓ(N))− Sc(CΓ(N))

2
G = KT, (10)

where Ric(CΓ(N)) represents the distinguished Ricci tensor of the Cartan
connection, Sc(CΓ(N)) is the scalar curvature, K is the Einstein constant and
T is an intrinsic d−tensor of matter, which is called the momentum stress-
energy d−tensor.

In the adapted basis of vector fields (XA) = (δ/δt, δ/δxi, ∂/∂p1i ) , pro-
duced by the canonical nonlinear connection (5), the curvature tensor R of the
Cartan canonical connection CΓ(N) is locally expressed by R(XC , XB)XA =
RD

ABCXD. It follows that we have RAB =Ric(XA, XB) = RD
ABD, and Sc(CΓ) =
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GABRAB, where

GAB =


h11, for A = 1, B = 1

gij, for A = i, B = j

h11gij, for A = (1)
(i)
, B = (1)

(j)

0, otherwise.

(11)

Taking into account, on one hand, the form of the inverse metrical d−tensor
G∗ = (GAB) of the time-dependent Hamilton space Hn, and, on the other
hand, the expressions of the local curvature d−tensors attached to the Cartan
canonical connection CΓ(N), by direct computations, we get

Proposition 6.3. The Ricci d−tensor Ric(CΓ(N)) of the Cartan canonical
connection CΓ (N) of the time-dependent Hamilton space Hn is determined by
the following adapted components:

R11 := H11 = 0, R1i = R1
1i1 = 0,

R
(i)

1(1) = −P
1(i)
1(1)1 = 0, Ri1 = Rr

i1r, Rij = Rr
ijr,

R
(i)
(1)1 := −P

(i)
(1)1 = −P

i (r)
r1(1) , R

(j)
i(1) := −P

(j)
i(1) = −P

r (j)
ir(1) ,

R
(i)(j)
(1)(1) := −S

(i)(j)
(1)(1) = −S

i(j)(r)
r(1)(1), R

(i)
(1)j := −P

(i)
(1)j = −P

i (r)
rj(1) .

By using the notations R = gijRij and S = h11gijS
(i)(j)
(1)(1), we find

Corollary 6.1. The scalar curvature Sc(CΓ(N)) of the Cartan canonical con-
nection CΓ (N) of the space Hn is Sc(CΓ(N)) = R− S.

In this context, the main result of the Hamilton geometrical momentum
gravitational theory is

Theorem 6.2. The geometrical Einstein-like equations, which govern the grav-
itational h-potential G of the time-dependent Hamilton space Hn, have the
following adapted local form:

−R− S

2
h11 = KT11

Rij −
R− S

2
gij = KTij

−S(i)(j)
(1)(1) −

R− S

2
h11g

ij = KT(i)(j)
(1)(1)

0 = T1i, Ri1 = KTi1, −P (i)
(1)1 = KT(i)

(1)1,

0 = T (i)
1(1), −P (j)

i(1) = KT (j)
i(1), −P (i)

(1)j = KT(i)
(1)j,

(12)

where TAB, A,B ∈
{
1, i, (i)

(1)

}
represent the adapted components of the mo-

mentum stress-energy d−tensor of matter T.
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From a theoretical-physics point of view, it is well known that in the
classical Riemannian theory of gravity, the stress-energy d−tensor of matter
must verify some conservation laws. By a natural extension of the Riemannian
conservation laws, in our geometrical Hamiltonian context, we postulate the
following momentum conservation laws of the stress-energy d−tensor T:

TB
A|B = 0, ∀ A ∈

{
1, i,

(1)
(i)

}
,

where TB
A = GBDTDA. Consequently, by direct computations, we find

Theorem 6.3. The momentum conservation laws of the time-dependent Hamil-
ton space Hn are given by the following equations:

[
R− S

2

]
/1

= Rr
1|r − P

(1)
(r)1|

(r)
(1)[

Rr
j −

R− S

2
δrj

]
|r
= P

(1)
(r)j|

(r)
(1)[

S
(1)(j)
(r)(1) +

R− S

2
δjr

] ∣∣∣(r)(1) = −P
r(j)
(1)|r,

(13)

where

Ri
1 = giqRq1, P

(1)
(i)1 = h11giqP

(q)
(1)1, Ri

j = giqRqj,

P
(1)
(i)j = h11giqP

(q)
(1)j, P

i(j)
(1) = giqP

(j)
q(1) S

(1)(j)
(i)(1) = h11giqS

(q)(j)
(1)(1).

7. Geometrization of the time-dependent Hamiltonian of the
least squares variational method

7.1. Hamiltonian d−torsions and d−curvatures of a dynamical
system

Let us consider a non-autonomous dynamical system, given by

dxi

dt
= X

(i)
(1)(t, x

k(t)), (14)

where X
(i)
(1)(t, x) is a d−tensor on R×M , whose solutions are the global min-

imum points of the least squares Lagrangian function (see Udrişte [14] and
Neagu-Udrişte [11])

L = h11(t)φij(x)
(
yi1 −X

(i)
(1)

)(
yj1 −X

(j)
(1)

)
= (15)

= h11φijy
i
1y

j
1 − 2h11φijX

(i)
(1)y

j
1 + h11φijX

(i)
(1)X

(j)
(1) ,

where yi1 = dxi/dt and φij(x) is a Riemannian metric on the spatial manifold
M , whose Christoffel symbols are γi

jk(x). The Hamiltonian associated with
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the Lagrangian (15) is given by

H =
h11φ

ij

4
p1i p

1
j +X

(k)
(1) p

1
k, (16)

where p1k = ∂L/dyi1 and H = p1ky
k
1 − L. This is called the least squares Hamil-

tonian associated with the dynamical system (14).
But, the differential geometry oh such time-dependent Hamiltonians was

developed in the preceding sections. Consequently, we can construct the distin-
guished geometry of the Hamiltonian (16), in the sense of canonical nonlinear
connections, Cartan N -linear connections, d−torsions and d−curvatures or
momentum electromagnetic-like 2-form. For instance, by direct computations,
the canonical nonlinear connection N of the time-dependent Hamiltonian func-
tion (16) has the components (see also the formulas (5))

N
1

(1)
(i)1 = H1

11p
1
i , N

2

(1)
(i)j = −γ

k
ijp

1
k + h11 (Xi1•j +Xj1•i) , (17)

where Xi1 = φikX
(k)
(1) , and

Xk1•r =
∂Xk1

∂xr
−Xs1γ

s
kr.

Moreover, the coefficients of the generalized Cartan canonical connection CΓ(N)
of the least squares Hamiltonian function (16) reduce to

A1
11 = H1

11, Ai
j1 = 0, H i

jk = γi
jk, C

i(k)
j(1) = 0. (18)

Remark 7.1. If we have h11 = 1 and φij = δij, we find the coefficients of
the canonical nonlinear connection produced by the least squares Hamiltonian
function (16) as being the following:

N
1

(1)
(i)1 = 0, N

2

(1)
(i)j =

∂X
(i)
(1)

∂xj
+

∂X
(j)
(1)

∂xi
.

Moreover, all coefficients of the Cartan canonical connection CΓ(N) of the
least squares Hamiltonian function (16), are zero.

By applying the formulas that determine the local d−torsions and d−cur-
vatures of the generalized Cartan canonical connection CΓ(N), we obtain the
following important geometrical results.

Theorem 7.1. The torsion tensor T of the generalized Cartan canonical con-
nection CΓ(N) associated with the least squares Hamiltonian (16) is deter-
mined by the local d−components

R
(1)
(r)1j = −

∂N
2

(1)
(r)j

∂t
−H1

11T
(1)
(r)j, R

(1)
(r)ij = −R

k
rijp

1
k +

[
T

(1)
(r)i|j − T

(1)
(r)j|i

]
,
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where

Rr
kij =

∂γr
ki

∂xj
−

∂γr
kj

∂xi
+ γp

kiγ
r
pj − γp

kjγ
r
pi, T

(1)
(i)j = h11 (Xi1•j +Xj1•i) .

Moreover, all the curvature d−tensors of the Cartan canonical connection
CΓ(N) of the least squares Hamiltonian (16) are zero, except

R
(1)(l)
(i)(1)jk = −R

(1)(l)
(i)(1)jk = −R

l
ijk := −Rl

ijk.

Remark 7.2. If we have h11 = 1 and φij = δij, we find the torsion components
produced by the least squares Hamiltonian function (16) as being the following:

R
(1)
(r)1j = −

(
∂2X

(r)
(1)

∂t∂xj
+

∂2X
(j)
(1)

∂t∂xr

)
, R

(1)
(r)ij =

∂2X
(i)
(1)

∂xr∂xj
−

∂2X
(j)
(1)

∂xr∂xi
.

Moreover, all the curvature d−tensors produced by the least squares Hamilton-
ian (16) are zero.

The local components F
(i)
(1)j and f

(i)(j)
(1)(1) of the momentum electromagnetic-

like field F, which are attached to the least squares Hamiltonian function (16),
are given by

F
(i)
(1)j =

1

8

[
φjkXk1•i − φikXk1•j + φjkXi1•k − φikXj1•k

]
, f

(i)(j)
(a)(b) = 0.

Remark 7.3. If we have h11 = 1 and φij = δij, we find that F
(i)
(1)j = 0, that is

the momentum electromagnetic-like field in this case is trivial, i.e. F = 0.

7.2. Geometrization of an Economy dynamical system

We study now the dynamical of competition between two economical
sectors governed by the first order differential system (see [15] and [9])

dE1

dt
= g1E1

(
1− E1

K1

− β1
E2

K1

)
dE2

dt
= g2E2

(
1− E2

K2

− β2
E1

K2

)
,

(19)

where:

• E1 and E2 are two populations of new firms born in the above economical
sectors;
• g1 and g2 are strictly positive constants representing the growth rates of
the two economical sectors;
• K1 and K2 are strictly positive constants representing the investments
of capitals;
• β1 and β2 are strictly positive constants representing the competitive
interaction coefficients.
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The differential system (19) can be reconsidered on the 1-jet space J1(R,M),
whose coordinates are (t, x1 = E1, x2 = E2, y11 = dE1/dt, y21 = dE2/dt) .

In this context, the solutions of class C2 of the system (19) are the global
minimum points of the least square Lagrangian (see [9])

L =
(
y11 −X

(1)
(1) (t, E1, E2)

)2
+
(
y21 −X

(2)
(1) (t, E1, E2)

)2
=

=
2∑

i,j=1

1 · δij
(
yi1 −X

(i)
(1)(t, E1, E2)

)(
yj1 −X

(j)
(1)(t, E1, E2)

)
.

where 
X

(1)
(1) (t, E1, E2) = g1E1

(
1− E1

K1

− β1
E2

K1

)
X

(2)
(1) (t, E1, E2) = g2E2

(
1− E2

K2

− β2
E1

K2

)
,

whose corresponding least squares Hamiltonian is given by

H =
δij

4
p1i p

1
j +X

(k)
(1) p

1
k =

1

4

[(
p11
)2

+
(
p12
)2]

+X
(1)
(1)p

1
1 +X

(2)
(1)p

1
2.

By applying the preceding geometrical theory, it follows that, using the

Jacobian notation J(X) =

(
∂X

(i)
(1)

∂Ej

)
i,j=1,2

=

=

 g1 − 2g1
E1

K1

− g1β1
E2

K1

−g1β1
E1

K1

−g2β2
E2

K2

g2 − 2g2
E2

K2

− g2β2
E1

K2

 ,

we find the following geometrical objects associated with the dynamical system
(19) (here we have i, j ∈ {1, 2}):
(1) The coefficients of the canonical nonlinear connection produced by the

dynamical system (19) are given by the temporal components N
1

(1)
(i)1 = 0,

and the spatial components are the entries of the symmetric matrix

N
2

=
(
N
2

(1)
(i)j

)
=

(
∂X

(i)
(1)

∂Ej

+
∂X

(j)
(1)

∂Ei

)
= J(X) + J(X)T =

=

 2

(
g1 − 2g1

E1

K1

− g1β1
E2

K1

)
−g1β1

E1

K1

− g2β2
E2

K2

−g1β1
E1

K1

− g2β2
E2

K2

2

(
g2 − 2g2

E2

K2

− g2β2
E1

K2

)
 .

Moreover, all the coefficients of the Cartan canonical connection CΓ(N)
of the least squares Hamiltonian function (16) are zero.
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(2) The nonzero torsion components produced by the dynamical system (19)
are the entries of the matrices:

R(1) =
(
R

(1)
(1)ij

)
=

(
∂2X

(i)
(1)

∂E1∂Ej

−
∂2X

(j)
(1)

∂E1∂Ei

)
=

=
d

dE1

[
J(X)− J(X)T

]
=

 0 −g1β1

K1
g1β1

K1

0

 ;

R(2) =
(
R

(1)
(2)ij

)
=

(
∂2X

(i)
(1)

∂E2∂Ej

−
∂2X

(j)
(1)

∂E2∂Ei

)
=

=
d

dE2

[
J(X)− J(X)T

]
=

 0
g2β2

K2

−g2β2

K2

0

 .

Moreover, all the curvature d−tensors produced by the dynamical system
(19) are zero.
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[11] M. Neagu, C. Udrişte, From PDE systems and metrics to multi-time field theories and
geometric dynamics, Seminarul de Mecanică 79(2001), 1-33.
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