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CONTROLLABILITY AND LONGITUDINAL MOVEMENT 
STABILITY OF AN INSECT-TYPE MICRO AIR VEHICLE 

 
Lucian SEPCU 1, Petre NEGREA2, Mihai LUNGU 3, Romulus LUNGU4 

This paper presents some studies concerning the controllability and the stability 
of the longitudinal movement of an insect-type micro air vehicle (MAV) by using a non-
dimensional linearized dynamic model. The model’s controllability studies are based 
on the modal transformation.   

For different combinations of control variables, the stabilization is realized by 
repositioning the model’s matrix eigenvalues, respectively by optimal linear quadratic 
control. The theoretical results are validated by numerical simulations for a specific 
case study. 
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1. Introduction 

Scientific literature presents the results of some studies and researches 
concerning the motion dynamics of insect-type MAV’s, as, for example, in [1], [2], 
[3], respectively of the robots built based on biological insect models (MFI- Micro-
mechanical Flying Insect) [4], [5], [6]. MAV’s dynamical models are built based on 
the aerospace vehicles general motion equations, [7], using the flapping (vibrating) 
wing’s forces and moments. Stability and command derivatives are calculated based on 
the values obtained during wind-tunnel experiments, for different insect types [8], [9].  

MAV’s longitudinal dynamics linearized models, described by equation with 
dimensional or non-dimensional state variables, have, in many cases, unstable matrix 
eigenvalues (unstable eigenmodes). For these models stabilization it is compulsory to 
reposition their matrix eigenvalues. Therefore, in this paper one determines the main 
(observable) state values for each eigen-mode, as well as the command variables for 
main state values’ control. Furthermore, for each eigen-mode’s control, one has to 
analyze the controllability and which one of the control variables is effective for that 
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eigen-mode. One uses the modal transformation and a transformation matrix is built 
using the longitudinal dynamics model’s matrix eigenvectors’ components. For 
different control variables combinations, the MAV model’s control (stabilization) law 
is designed, by repositioning the model’s matrix eigenvalues. The linear quadratic 
optimal control law is also designed. In order to estimate the MAV dynamical 
model’s state, one may use a state estimator [10]. Theoretical results are validated by 
the time characteristics obtained by numerical simulations. 

2. Studies concerning the controllability of an insect-type MAV 
dynamic linear non-dimensional model 

 MAV’s longitudinal motion model is described by the state equation: 
  uxx BA += , (1) 

with the non-dimensional state variables’ vector [ ]Tyzx VV θΔωΔΔΔ= ∗∗∗x  and 

the command vector [ ]T21 αΔφΔαΔΔΦ=u ; 1αΔ  and −αΔ 2  wing’s attack 
angle’s symmetrical and asymmetric variations; −ΔΦ  flapping angle’s amplitude’s 
variation and −φΔ  flapping angle’s mean value’s variation; 
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where Vx and Vz are MAV’s velocities with respect to the ox and oz axis of the 
−oxyz frame (solidary with the MAV, −ox longitudinal axis, −oy lateral axis, 

−oz completes the right rectangular frame), −f  flapping frequency. The matrices A  
and B  have the following general and particular forms [9], [11]: 
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One has chosen the morphological and cinematic parameters for MAV (insect 
type) from [11]: deg,90,mm41 mm,  2.2 mm,6.5,mg3.27 2

2 =Φ==== aScrm  
.2,kgm25.1,kgm11084.1 ms,25.61,Hz160 20

3210 frVJftf yyw Φ==ρ⋅==== −−   
 One uses the notations:  
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the resultant forces after MAV axes and −yM  the pitch moment. With these, one 

expresses: ,,,,,,
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stability and control derivatives one uses the values resulted from the 
characteristics given in [11]; using these, by linear interpolation, one obtains the 
characteristics whose slopes are the non-dimensional stability and command 
derivatives; it results: ,240.1,0092.0,240.2,050.0,320.2 **** −===−=−=∗

wwuuu ZXMZX  
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Regarding the control of each one of the natural modes (flight controllability), one 
has to know which one of these modes is controllable and if the answer is positive, 
which inputs are effective. It can be realized using the modal decomposing method; 
dynamical system’s model is transformed into a system with modal coordinates 
(state variables). Analyzing this new system, one can identify which modes could be 
controlled. The couple of complex-conjugated eigenvectors, corresponding to the 
complex-conjugated eigenvalues 2,1λ , are denoted as i21 η±η  and the real eigen-
vectors, corresponding to the real eigenvalues 3λ  and 4λ , as 3η  and 4η  (table 1).  
 Transformation matrix T is built up with the A-matrix (in (4)) eigen-
vectors’ components. 
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Changing the coordinates (state variables) as 

  [ ] ,, 4321
TT ξξξξ=ξξ=x  (6) 

where 4,1, =iiξ  are the modal coordinates, the system in (1) becomes 

  ,,,u 11 BTBATTABA −− ==+ξ=ξ  (7) 
or 

 [ ] [ ] [ ] ;2143214321
TTT

BA αΔφΔαΔΔΦ+ξξξξ=ξξξξ  (8) 

this system represents the modal form of (1)-system. Analyzing the A-matrix 
elements, one observes that its first two lines contain values which are 
approximately equal to the real parts and to the imaginary parts of 2,1λ  
eigenvalues. The third and the fourth line contains eigenvalues approximately 
equal to 3λ  and 4λ . State variables 1ξ  and 2ξ  are the modal coordinates of the 
unstable oscillating mode, while 3ξ  and 4ξ  are state variables of the rapid mode, 
respectively of the slow mode. 
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In order to assure a MAV stable plane flight, one has to stabilize the 
unstable oscillating mode and to increase the stabilization of the stable slow mode 
( 4λ  must be displaced to the left side of the complex plan, on the negative side of 
the real axis, which means a 4λ  growing). Although this mode is a stable one, it is 
slowly convergent, so 4λ  should be increased, for example .15.04 −=λ  1ξ  and 2ξ  
modal coordinates control (unstable oscillating mode coordinates) could be made 
by the first two lines of the B-matrix (9). As long as the elements in 3rd and 4th 
columns of those lines are ten times greater than the elements in 1st and 2nd columns 
of the same matrix, it results that the oscillating mode’s stability could be controlled 



Controllability and longitudinal movement stability of an insect- type micro air vehicle       63 

by φΔ  and/or 2αΔ  (elements in columns 1-3 of the 4th line in matrix B are one 
order greater than the element in 4th column of the same line); because φΔ  controls 
the oscillating mode, it shall be omitted for the coordinate’s control.  

Table 1 
System’s matrix eigenvectors  

State variable Mode 1 (oscillating) - i21 η±η  Mode 2 (rapid) - 3η  Mode 2 (slow) - 4η  
∗Δ xV  i1263.00702.0 ±−  0.1149 0.4106 
∗Δ zV  i00289.000239.0 ±−  0.0024 0.8818 
∗ωΔ y  i1417.005534.0 ±  -0.1844 0.00043 
θΔ  0.9786 0.9760 -0.231702 

 
                                                                                                                          Table 2 

Eigenvectors components’ amplitudes and phases 
State variable Mode 1 (oscillating) Mode 2 (rapid) Mode 2 (slow) 

∗Δ xV  0.1445 (119.060) 0.1149 (00) 0.4106 (00) 
∗Δ zV  0.0038 (129.590) 0.0024 (00) 0.8818 (00) 
∗ωΔ y  0.1521 (68.660) 0.1844 (1800) 0.00043 (00) 
θΔ  0.9786 (00) 0.9760 (00) 0.2317 (1800) 

As table 2 shows, ∗∗ ωΔΔ yxV , , and θΔ  are the main variables for the unstable oscilla-
ting mode and ∗Δ zV  is the observable variable of the aperiodic slow mode. Therefore, 
the unstable oscillating mode can be controlled by φΔ  and/or ,2αΔ  with feedback 
gains after θΔωΔΔ ∗∗

yxV ,  and the aperiodic slow mode can be controlled by ΔΦ  
and/or .2αΔ  

 3. Insect-type MAV linear non-dimensional model motion stability 
by two or more command variables  

               3.1. Control by the variables ΔΦ  and φΔ  

 The variable φΔ  is expressed as: 

  .432 θΔ+ωΔ+Δ=φΔ ∗∗ kkVk yx  (10) 

Consequently, the aperiodic slow mode could be controlled by ΔΦ  with 
∗Δ zV  feedback: ∗Δ=ΔΦ zVk1 . From the systems (1) and (3) one separates the ∗Δ zV  

variable’s equation, but omitting the terms containing the state variables 
∗Δ xV , ∗ωΔ y , θΔ , as well as the command variables 1αΔ , φΔ  and 2αΔ ; it results the 

following equation, which is built only with the terms containing φΔ  and ∗Δ zV  
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variables with the values in (4), 
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Introducing ∗Δ=ΔΦ zVk1  in (11), it becomes: 

  .0242.0 1
∗∗ Δ−=Δ zz VkV  (12) 

One chooses 1k  so ;0242.015.0 14 k==λ  .2.61 =k  
 Considering equation (10), one extract from (1) and (3) the first, the third 
and the fourth equation, but omitting the term which contains −Δ ∗

zV  variable and 
the terms containing the command variables ;,, 21 αΔαΔφΔ  one obtains the equation: 
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 Eliminating φΔ  between equations (11) and (13), one obtains: 
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 The eigenvalues of the matrix M are the solutions of the characteristic 
equation ( ) ,0det =−λ MI  which has the form: 

  ;023 =+λ+λ+λ cba  (17) 
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             In order to calculate the coefficient 432 ,, kkk  one has to determine the 
(17) - equation’s coefficient cba ,, using the Viette formulas: 
  ,,, 321313221321 cba −=λλλ=λλ+λλ+λλ−=λ+λ+λ  (19) 

where iλ , 3,1=i  are imposed. Therefore, imposing the new eigenvalues: 

  ,15.0,15.015.0 32,1 −=λ±−=λ i  (20) 

where 3,1,,, =jim ji  are deduced from the (15)- equation’s coefficient, identified 
with (3). It results the system’s solution: 

,',',' 433332231423322221413312211 cknknknbknknknaknknkn =++=++=++  (21) 

where 3,1,,, =jin ji  are the coefficient of −432 ,, kkk  arguments in (18) and ',',' cba  
are the terms in (18) which are not containing these arguments. For the imposed 
(20) eigenvalues one obtains .2387.0,3950.1,0645.0 432 === kkk  
 Usually, MAV’s command (stabilization) log law has the form: 
  .xu K−=  (22) 

According to (10), this log law may be expressed as: 
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Fig. 1 presents the structure of MAV’s motion stabilization system. 
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Fig. 1. Block diagram of system stabilization longitudinal movement of MAV 
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Fig. 2. Adimesionale time characteristics of the MAV, with variable control ΔΦ  and φΔ  

 Repositioning the eigenvalues in the left complex semi-plane, by introducing 
feedbacks after state variables ,)15.0,15.015.0( 432,1 −=λ=λ±−=λ i  it results: 

oscillating mode’s period ∗
0T  decreases from 40 to 30 (flaps), the dumping coefficient 

is very good ( 707.0=ξ ) and the override is very small (4.3%); transient regime’s 
duration (time) ms28=rt (it takes approximately 23 flaps) and the half-life time 

ms2821 =t  (it takes approximately 5 flaps). For the stable aperiodic eigen-modes 

(identical) 17.443 == TT  ms (it takes ∗∗ = 43 TT 766.6 ≅= flaps; ⎟
⎠
⎞λ=∗

4,34,3
1T . The 

eigenvalues of the system presented in fig. 1 are ,1282.01365.02,1 i±−=λ  
.0479.01638.04,3 i±−=λ  

 In fig. 2 there are plotted the characteristics ( )tVx
∗Δ , ( )tVz

∗Δ , ( )ty
∗ωΔ , 

( )tθΔ , ( )tφΔ  and ( )tφΔ  for the system in fig. 1, obtained by using Matlab, starting 
from initial conditions ( ) rad.01.0,3.0,08.0,3.00 =θΔ=ωΔ=Δ=Δ ∗∗∗

yzx VV  

 3.2. Control by the variables ΔΦ  and 2αΔ  

 If the control is realized by the variables ΔΦ  and ,2αΔ then 

  ., 43221 θΔ+ωΔ+Δ=αΔΔ=ΔΦ ∗∗∗ kkVkVk yxz  (24) 

 Equations (11) and (12) are still valid and .2.61 =k  Equations (13) and 
(15) will be modified, because the second term in the sum becomes 
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In (16) only the second term in the sum has modified, as follows: 

  [ ] [ ] [ ] [ ].000230.00 43243221 kkkkkkbb TT −=  (26) 

In the system (21) only 1b and 2b  are modifying, resulting the values: 

  .2445.0,8618.7,2783.12 432 −=== kkk  (27) 

Equation (23) has also been modified (by interchanging the matrix’s lines 3 and 4); 
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The eigenvalues of the matrix ( )BKAA −=
~  are not given by (20), because of the 

approximations in (11) and (24); a couple of the complex conjugated eigenvalues 
have positive real parts and the closed loop system in fig. 1 becomes unstable. 

 3.3. Control by the variables 1αΔ  and φΔ  

 With φΔ  given by (17) and ,11
∗Δ=αΔ zVk  it successively results: 

  ,04463.00 11
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z V
m
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V
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ZV  (29) 

  ( ) .0453.00 41
∗∗∗ Δλ−=Δ+−=Δ zzz VVkV   (30) 

Choosing ,15.04 −=λ  it results .36.31 =k  Concerning the φΔ -variable, given by 
(10), the equations (13)÷ (21) still remain valid. The values for the 432 ,, kkk  
coefficient are the same in 3.1. Consequently, the command law is 
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Similar to case 3.1, because of the assumed approximations, closed loop system’s 
eigenvalues are a little different from the ones imposed in (20), but approximately 
the same as in the case 3.1: .0484.01639.0,1280.01361.0 4,32,1 ii ±−=λ±−=λ   
 In fig. 3 one presents the MAV’s time characteristics, determined for the 
same initial conditions as in the before studied cases. 
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Fig. 3. Time characteristics of the MAV, controlled by variables 1αΔ  and φΔ  

3.4. Control by the variables 1αΔ  and 2αΔ  

 The command variables 1αΔ  and 2αΔ  are chosen as:    

  ., 432211 θΔ+ωΔ+Δ=αΔΔ=αΔ ∗∗∗ kkVkVk yxz  (32) 

Concerning the variable ,1αΔ  the equations (29) and (30) are still valid; 36.31 =k .  
The values of the coefficients 432 ,, kkk  are the same as the ones in the case 3.2. The 
closed loop system becomes unstable. 

3.5. Control by all the command variables 

Matrix K is chosen to obtain the same eigenvalues as in (20) for the closed 
loop system matrix ( ) .~ BKAA −=  It results matrix K and the characteristics in fig. 4. 
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Fig. 4.  Time characteristics of the MAV, controlled by variables  φΔαΔΔΦ ,, 1  and 2αΔ  

  3.6. Liniar quadratic otimal control  (LQR) 

The command law has the form as in [12]: 
 ,, 1 PBRKK T−=−= xu  (34) 

where P is the solution of the algebraic Riccati matrix equation: 
  ,0103001 I.R=; I.Q;QPBPBRPAPA TT ==+−+ −  (35) 

with I is the unitary matrix (4x4).  
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Fig. 5.  Time characteristics of the MAV, the linear quadratic optimal control 
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          Fig. 5 presents the time characteristics of the MAV by using the LQR control. 

4. Conclusions  

In this paper one studies the controllability of a system, represented by the 
insect-type MAV longitudinal motion model; one builds the modal variables state 
equation and establishes the variables’ combinations options which could control the 
system. For each one of these possible combinations, the matrix K for the system’s 
stabilizing was designed, by repositioning system’s matrix eigenvalues, respectively 
for the linear quadratic optimal control. The quality of the system’s dynamical regimes 
is emphasized by the time characteristics of the state variables and command variables, 
for all command variables combination options (see fig. 2, fig. 3, fig. 4, fig. 5).  
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