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CONTROLLABILITY AND LONGITUDINAL MOVEMENT
STABILITY OF AN INSECT-TYPE MICRO AIR VEHICLE

Lucian SEPCU !, Petre NEGREA?, Mihai LUNGU *, Romulus LUNGU*

This paper presents some studies concerning the controllability and the stability
of the longitudinal movement of an insect-type micro air vehicle (MAV) by using a non-
dimensional linearized dynamic model. The model’s controllability studies are based
on the modal transformation.

For different combinations of control variables, the stabilization is realized by
repositioning the model’s matrix eigenvalues, respectively by optimal linear quadratic
control. The theoretical results are validated by numerical simulations for a specific
case study.
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1. Introduction

Scientific literature presents the results of some studies and researches
concerning the motion dynamics of insect-type MAV’s, as, for example, in [1], [2],
[3], respectively of the robots built based on biological insect models (MFI- Micro-
mechanical Flying Insect) [4], [5], [6]. MAV’s dynamical models are built based on
the aerospace vehicles general motion equations, [7], using the flapping (vibrating)
wing’s forces and moments. Stability and command derivatives are calculated based on
the values obtained during wind-tunnel experiments, for different insect types [8], [9].

MAV’s longitudinal dynamics linearized models, described by equation with
dimensional or non-dimensional state variables, have, in many cases, unstable matrix
eigenvalues (unstable eigenmodes). For these models stabilization it is compulsory to
reposition their matrix eigenvalues. Therefore, in this paper one determines the main
(observable) state values for each eigen-mode, as well as the command variables for
main state values’ control. Furthermore, for each eigen-mode’s control, one has to
analyze the controllability and which one of the control variables is effective for that
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eigen-mode. One uses the modal transformation and a transformation matrix is built
using the longitudinal dynamics model’s matrix eigenvectors’ components. For
different control variables combinations, the MAV model’s control (stabilization) law
is designed, by repositioning the model’s matrix eigenvalues. The linear quadratic
optimal control law is also designed. In order to estimate the MAV dynamical
model’s state, one may use a state estimator [10]. Theoretical results are validated by
the time characteristics obtained by numerical simulations.

2. Studies concerning the controllability of an insect-type MAV
dynamic linear non-dimensional model
MAV’s longitudinal motion model is described by the state equation:
X =AX+ Bu, (D)

with the non-dimensional state variables’ vector X =[AV; AV} Am; AG]T and

the command vector u= [A(D Ao, AP Aa, ]T; Aa, and Ao, — wing’s attack
angle’s symmetrical and asymmetric variations; A® — flapping angle’s amplitude’s
variation and A¢ — flapping angle’s mean value’s variation;

AV, AV,

AV AV =—=, Ao,
) VO VO

Aw .
=—>,40" = A0, )
/

where V, and V. are MAV’s velocities with respect to the ox and oz axis of the
oxyz —frame (solidary with the MAV, ox—longitudinal axis, oy-—lateral axis,
oz — completes the right rectangular frame), f — flapping frequency. The matrices 4
and B have the following general and particular forms [9], [11]:

X, X, Xgoo. Xo Xo X5 X,
ot el S
zorn | |z oz %z

A=\ w* m" m Bl wmt omt omt | &)
R N R Y P
T Ty Iy o I Iu T
0 0 1 0 | 0 0 0 0

One has chosen the morphological and cinematic parameters for MAV (insect
type) from [11]: m = 27.3mg,r, = 5.6mm, ¢ = 2.2 mm, S, = 4lmm?, ® = 90deg,
f =160Hz,t, =1/f = 625ms,J,, =1.84-110"kgm’,p = 1.25kgm,V; = 20f,.

One uses the notations:
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M
X*: V)z( ,Z*: Vf ’M;:Vzi}"t*:%’m*:#’t*:ti’
g Tog Tog Togy
p 2 a p 2 a p 2 ac p 2 a"w
J
m' = L’J"w =—2  g"= 8ty ; X,Y and Z are the components of
V—°2S t : V—°2S ct? 0
p 2 a"w p 2 a w
the resultant forces after MAV axes and M, — the pitch moment. With these, one
expresses: X = ai*,X; = ai*,X* :aX—*,Zj = ai*,Zf; :ai*,Z* = ai*,
ov; ov; 1 ow), oV, ov: 1 ow),
., oM’ ., oM’ . oM’ . ), QI ), G X"
M:=—2X M =—2X M =— anqu):a—,Xa L
oV, oV ‘oo, oD Y da, Y 0%
* * * * * aM*
X;:(EX ’Z;ZGZ ’Z;:(?Z ,ijﬁz_’Z;:(?Z M = r
> oo, o Yoo, * 0d * Oa, o
=L M= M = 2 For the calculation of non-dimensional

Mo, Y 89T da,
stability and control derivatives one uses the values resulted from the
characteristics given in [11]; using these, by linear interpolation, one obtains the
characteristics whose slopes are the non-dimensional stability and command
derivatives; it results: X = -2.320,Z; = —0.050, M, = 2.240, X, = 0.0092, Z, = —1.240,
M, = 00092 X, =-0.0459, Z; = —0.0080, M, = -0.6857, X;, = 0.00075, Z;, = ~1.5625,

w

Mg, = 0.0000, X; = 0.00046 Z; = -2.9536 M;] = 0.0000, Xg =-0.0716 Zg =-0.0242,
M =-3.0773, X;, = -2.9536,Z;, = 0.0000, M,, = 0.5670. The matrices (3) become:

-0.0115 -0.0015 -0.0111 -0.0230 0.00001  0.00046 —0.03759 -0.0415
A=|" 0.0040 0 0 0 B=|" 0.0242 —-0.04463 -0.03748 0 (4)
0.1989 —0.0926 -0.0661 0 ’ 0 0 -0.3096  0.0480 |
0 0 1 0 0 0 0 0

Regarding the control of each one of the natural modes (flight controllability), one
has to know which one of these modes is controllable and if the answer is positive,
which inputs are effective. It can be realized using the modal decomposing method;
dynamical system’s model is transformed into a system with modal coordinates
(state variables). Analyzing this new system, one can identify which modes could be
controlled. The couple of complex-conjugated eigenvectors, corresponding to the
complex-conjugated eigenvalues A, ,, are denoted as m, +n,i and the real eigen-

vectors, corresponding to the real eigenvalues A, g4 A4, as n; and n, (table 1).

Transformation matrix 7 is built up with the A-matrix (in (4)) eigen-
vectors’ components.
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2(-0.0702) 2(0.1263) 0.1149  0.4106
2(-0.00239) 2(0.00289) 0.0024  0.8818
2(0.05534) 2(0.14171) —0.1844 0.00043
2(0.9786) 0 0.9760 231702

T=[2m 2, m; m]= (5)

Changing the coordinates (state variables) as

x=Tee=[g, & & &[. (6)
where &;,i= 1,4 are the modal coordinates, the system in (1) becomes
E=AE+Bu,A=T"'AT,B=T"'B, (7)
or

B, & & & =4k & & & +BA® Aa, A AwT:  (8)

this system represents the modal form of (1)-system. Analyzing the A-matrix
elements, one observes that its first two lines contain values which are
approximately equal to the real parts and to the imaginary parts of 4,

eigenvalues. The third and the fourth line contains eigenvalues approximately
equal to A; and A,. State variables &, and &, are the modal coordinates of the

unstable oscillating mode, while &, and &, are state variables of the rapid mode,
respectively of the slow mode.

g, 0.0578  0.1433 —0.0000 —0.00017 &,
E,| |-0.1466 0.0554 —0.0001 0.0001 | &,
£, |-0.0019 0.0032 -0.1889 0.0001 | &;
£, 0.0019  —0.0007 —0.0000 —0.0018 | &

~0.0166 —0.0311 —0.3238 0.1046 | AD
0.0239  0.0449 -0.5504 -0.0076 || Aa,
0.0276  0.0502  0.6386 —0.22093 | A} |
-0.0279 -0.0512 -0.0424  0.0012 | Aa.,

)

In order to assure a MAV stable plane flight, one has to stabilize the
unstable oscillating mode and to increase the stabilization of the stable slow mode
(A, must be displaced to the left side of the complex plan, on the negative side of

the real axis, which means a |x 4| growing). Although this mode is a stable one, it is
slowly convergent, so [,| should be increased, for example %, =—-0.15. & and &,

modal coordinates control (unstable oscillating mode coordinates) could be made
by the first two lines of the B-matrix (9). As long as the elements in 3 and 4™
columns of those lines are ten times greater than the elements in 1% and 2™ columns
of the same matrix, it results that the oscillating mode’s stability could be controlled
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by A¢ and/or Aa, (elements in columns 1-3 of the 4™ Jine in matrix B are one

order greater than the element in 4™ column of the same line); because A¢ controls

the oscillating mode, it shall be omitted for the coordinate’s control.

System’s matrix eigenvectors

Table 1

State variable | Mode 1 (oscillating) - 1, £ n,i | Mode 2 (rapid) - n, | Mode 2 (slow) - 1,
AV? ~0.0702 +0.1263i 0.1149 0.4106
AV ~0.00239 + 0.00289; 0.0024 0.8818
Ao}, 0.05534+0.1417i -0.1844 0.00043
AB 0.9786 0.9760 -0.231702
Table 2
Eigenvectors components’ amplitudes and phases
State variable | Mode 1 (oscillating) Mode 2 (rapid) Mode 2 (slow)
AV 0.1445 (119.06%) 0.1149 (0% 0.4106 (0°)
AV 0.0038 (129.59°%) 0.0024 (0°) 0.8818 (0°)
Ao, 0.1521 (68.66") 0.1844 (180°%) 0.00043 (0%
AO 0.9786 (0% 0.9760 (0% 0.2317 (180°)

63

As table 2 shows, AV, Aoy, and AO are the main variables for the unstable oscilla-

ting mode and AV is the observable variable of the aperiodic slow mode. Therefore,
the unstable oscillating mode can be controlled by A¢ and/or Aa,,, with feedback
gains after AV, Ao} A8 and the aperiodic slow mode can be controlled by A®

and/orAa., .

3. Insect-type MAYV linear non-dimensional model motion stability
by two or more command variables

3.1. Control by the variables A® and A¢
The variable A¢ is expressed as:

(10)

Consequently, the aperiodic slow mode could be controlled by A® with
AV feedback: A® =k AV, . From the systems (1) and (3) one separates the AV
variable’s equation, but omitting the terms containing the state variables

AY =k, AV + k3 Aw, + k4 AD.

AV, Aw} ,AB, as well as the command variables Aa, A and Aa,, ; it results the

following equation, which is built only with the terms containing A¢p and AV
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variables with the values in (4),
Z*

2y AV + =2 AD =0-AV] —0.0242AD. (11)
m

AV ==
m

Introducing A® = k,AV in (11), it becomes:
AV =-0.0242k, AV . (12)
One chooses &, so[L,|=0.15=10.0242k; k =6.2.
Considering equation (10), one extract from (1) and (3) the first, the third

and the fourth equation, but omitting the term which contains AV, — variable and

the terms containing the command variables A¢,Aa, ,Aa, ; one obtains the equation:

*

, ])n( ;(‘1 -8 | mf

AI./A; voM AV); g B

A®, | = J*" J*q 0 | Aw, [+ G Ad; (13)
A W »w AO W

AB 0 1 0 0

Eliminating A¢ between equations (11) and (13), one obtains:

ARSI R VI IN AN | (14)
T " 1 ]
my my, My b | k, m}l mgz m}3

M =|\my my, my |+|b, | ky| = mgl mgz mg3 ) (15)
myy Mz My, by | k4 My My My

my, =my, +bk,my, =my, +bky,my =m;+bk,,
My, =My, +byky, My, =my, +byky,myy = mys +byk,, (16)
My, =my, +bsky,myy =My, +byky,myy = my; +bik,.

The eigenvalues of the matrix M are the solutions of the characteristic
equation det(A/ —M )=0, which has the form:

X +ak +bh+c=0; (17)
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a= _(mu Ty + m33) - (b1k2 + byky )»
b= [(mnmzz + My + mygmy, ) = (myymy, + mygma, + mymg )] +
+ (moyyby + mysby — myyb, Yy + (my by + myby = my by ey — (myby + myb, Je,,
c= [(mumzsmsz RRCPUSU m13m31m22) - (m12m23m31 RO R U ST )] + 18)
+ [(m23m32b1 + myymyshy ) = (mysmab, + mymyb, )]kz +
+ [(m33m21b] + m13m31b2) - (m23m31b1 + mymyb, )]k3 +
+ [(m11m32b1 + m22m31b1) - (m12m31b2 + mymy b, )]k4.
In order to calculate the coefficient k,,k;,k, one has to determine the
(17) - equation’s coefficient a,b,cusing the Viette formulas:
A +hy +Ahy =—a,A A, + A0 + A A, =B, A AN =—c, (19)

where A,, i =1,3 are imposed. Therefore, imposing the new eigenvalues:

Ay =—0.15£0.15i,1, =—0.15, (20)

where m, ; ,i,j=13 are deduced from the (15)- equation’s coefficient, identified
with (3). It results the system’s solution:
nyky + npky +npk, = a',nyky + npky + nypk, = b, nyk, + nyky +nk, = ¢, (21)

where n, ,fj =13 are the coefficient of k,,k;,k, — arguments in (18) and a',b',c

are the terms in (18) which are not containing these arguments. For the imposed
(20) eigenvalues one obtains k, =0.0645,k, =1.3950,k, = 0.2387.

Usually, MAV’s command (stabilization) log law has the form:

u=-KX. (22)
According to (10), this log law may be expressed as:
AD 0 k& 0 0l aAr
Ao, 0 0 0 Ofar
u=| 2 |=-Kx= 2 23
Ad ky 0 ks ky| Aw) 23)
Aat, 0 0 0 0/ A

Fig. 1 presents the structure of MAV’s motion stabilization system.

AD R MAV AV,
L Ag, X = Ax +Bu o AV,
Ag Aw,
Aa, — AO

Fig. 1. Block diagram of system stabilization longitudinal movement of MAV
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Fig. 2. Adimesionale time characteristics of the MAV, with variable control A® and A¢

Repositioning the eigenvalues in the left complex semi-plane, by introducing
feedbacks after state variables (A,, =-0.15+0.15i,A; =1, =-0.15), it results:

oscillating mode’s period 7, decreases from 40 to 30 (flaps), the dumping coefficient
is very good (& =0.707) and the override is very small (4.3%); transient regime’s
duration (time) ¢, =28ms (it takes approximately 23 flaps) and the half-life time
ty, =28ms (it takes approximately 5 flaps). For the stable aperiodic eigen-modes
(identical) T, =T, =4.17 ms (it takes T, =T, =6.66 =7 flaps; T;k4 =1/|7\.3’4|). The
cigenvalues of the system presented in fig. 1 are A, =-0.1365+0.1282i,
X34 =-0.1638 £0.0479i.

In fig. 2 there are plotted the characteristics AV.(¢),AV; (t),Am; (t),
A6(t), Ad(z) and A¢() for the system in fig. 1, obtained by using Matlab, starting
from initial conditions AV (0) =0.3,AV =0.08, A0, = 0.3,A0 = 0.01rad.

3.2. Control by the variables A® and Aa.,

If the control is realized by the variables A® and Aa,, then

AD =k AV, Aa, = ky AV, + kA0, +k, A8, (24)

Equations (11) and (12) are still valid and &, =6.2. Equations (13) and
(15) will be modified, because the second term in the sum becomes
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T
X, M
{—“j e o} Aa,=[b b, Ok, ki kJAV: Al ao]. (25)
m .
In (16) only the second term in the sum has modified, as follows:
b, b, O'[k, ky k,]=[-0.0230 0 O] [k, k, k,] (26)
In the system (21) only b,and b, are modifying, resulting the values:
k, =12.2783,k, =7.8618,k, =—0.2445. (27)
Equation (23) has also been modified (by interchanging the matrix’s lines 3 and 4);
AD 0 k& 0 0| AV
Aa, 0 0 0far
= — | == = z 28
YT AD Kxoooko;' (28)
Ao, k2 0 k3 k4 AO

The eigenvalues of the matrix (Z =A-BK ) are not given by (20), because of the

approximations in (11) and (24); a couple of the complex conjugated eigenvalues
have positive real parts and the closed loop system in fig. 1 becomes unstable.

3.3. Control by the variables Aca, and A¢

With A¢ given by (17) and Aa, = k,AV.", it successively results:

. * Z,
AV =L Ayt 2 20 AG = 0. AV —0.08463A0. , (29)
m m
AV =—(0+0.0453k, AV = —A AV (30)

Choosing A, =-0.15, it results k, =3.36. Concerning the A¢-variable, given by
(10), the equations (13)+(21) still remain valid. The values for the k,,k;,k,
coefficient are the same in 3.1. Consequently, the command law is

AD 00 0 olfar
Ao, 0 kK 0 O]} AV

u=| 2 |==Kx = ! 2. 31
A9 k 0k k|| Ao Gl
Aa., 0 0 0 0] Ao

Similar to case 3.1, because of the assumed approximations, closed loop system’s
eigenvalues are a little different from the ones imposed in (20), but approximately
the same as in the case 3.1: A, = —0.1361+0.12807, 1, , = —0.1639 + 0.0484 .

In fig. 3 one presents the MAV’s time characteristics, determined for the
same initial conditions as in the before studied cases.
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Fig. 3. Time characteristics of the MAV, controlled by variables Ao, and A¢p

3.4. Control by the variables Aa, and Aa,
The command variables Ao, and Aa, are chosen as:
Ao, =k AV Aa,y =k, AV, + kA0 + k, A6 (32)

Concerning the variable Ao, the equations (29) and (30) are still valid; & =3.36.
The values of the coefficients k,,k;,k, are the same as the ones in the case 3.2. The
closed loop system becomes unstable.

3.5. Control by all the command variables

Matrix K is chosen to obtain the same eigenvalues as in (20) for the closed
loop system matrix 4 = (4 — BK). It results matrix K and the characteristics in fig.4.

0.3886 —1.5029 0.2243  0.0208
K = 0.7402 -2.7629 0.4057 0.0325 (33)
1 -1.0265 02619 -0.6285 -0.0522|

—2.4798 —-0.2399 0.8190 0.6004
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Fig. 4. Time characteristics of the MAV, controlled by variables A®,Aa,,Ad and Aa.,

3.6. Liniar quadratic otimal control (LQR)
The command law has the form as in [12]:
u=-Kx,K =R'B"P, (34)

where P is the solution of the algebraic Riccati matrix equation:

A"P+PA-PBR'B'P+0=0;0=031; R=0011, (35)

with 7 is the unitary matrix (4x4).
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Fig. 5. Time characteristics of the MAV, the linear quadratic optimal control
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0.2419 -2.7154 0.3053 0.0713

_| 04925 -4.9937 0.5572  0.1293 (36)
-1.1169 0.0750 -7.7387 —-5.3936(
-4.7642 -0.2056 1.6588  1.0322

Fig. 5 presents the time characteristics of the MAV by using the LQR control.
4. Conclusions

In this paper one studies the controllability of a system, represented by the

insect-type MAV longitudinal motion model; one builds the modal variables state
equation and establishes the variables’ combinations options which could control the
system. For each one of these possible combinations, the matrix K for the system’s
stabilizing was designed, by repositioning system’s matrix eigenvalues, respectively
for the linear quadratic optimal control. The quality of the system’s dynamical regimes
is emphasized by the time characteristics of the state variables and command variables,
for all command variables combination options (see fig. 2, fig. 3, fig. 4, fig. 5).
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[11]
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