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ON THE NONLINEAR OUTPUT REGULATION PROBLEM —
PART 1 - MIMO NONLINEAR SYSTEMS NORMAL FORMS
AND A DISCUSSION ON THE NECESSARY CONDITIONS
FOR SOLVING THE CONTROL PROBLEM

Andreea UDREA!, Alexandru TICLEAZ Cristian FLUTUR 3, Valentin
TANASA*

In aceasta lucrare este prezentatd problema reglarii iesirii dacd se
considera sisteme neliniare MIMO. In acest context formele normale pentru
reprezentarea sistemelor neliniare sunt de mare interes. Doud forme normale
pentru sisteme neliniare MIMO sunt prezentate. Prima releva vectorul de grade
relative si poate fi aplicatd pentru sisteme pdtrate inversabile (forma normald
clasicd), a doua poate fi utilizatd si pentru sisteme nepatrate si dd
detalii/informatii despre proprietatile de inversabilitate ale sistemului scris in
aceasta forma (forma normala recentd). Conditiile necesare pentru rezolvarea
problemei reglarii iesirii pentru sisteme scrise in forma clasicd §i cea recentd sunt
prezentate. Din discutia prezentatd rezultd cd problema pusa se poate rezolva sub
presupuneri mai putin restrictive daca sistemul este scris in forma normald
obtinuta prin algoritmul structurii zerourilor la infinit (forma recenta). Aceastd
abordare permite de asemenea discutarea problemei de reglare §i in cazul
sistemelor MIMO nepatrate.

In this paper the general problem of output regulation when dealing with
nonlinear MIMO systems is presented. In this context, normal forms for nonlinear
systems are of great importance. Two normal forms for MIMO nonlinear systems
are presented. The first one reveals the relative degrees vector and can be applied
for square invertible systems (classic normal form), while the second can be used
for non square systems and gives details on the system invertibility properties
(recent normal form). The necessary conditions for solving the output regulation
problem for the classical normal form and, respectively, the recent normal form
are presented. From this discussion it results that the problem can be solved under
weaker assumptions if considering the later form (obtained by using the infinite
zero structure algorithm). This approach also permits discussing the regulation

problem for non square MIMO systems.
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1. Introduction

A defining problem in control theory is the design of feedback
controllers so as to have certain outputs of a plant to track particular reference
trajectories. An appealing idea is dynamic inversion, but this can rarely be
carried on in an exact manner through open loop control. In fact, closed-loop
control (which achieves an approximate dynamical inversion) is almost always
the solution of choice, since, in any realistic scenario, the control goal has to be
achieved in spite of a good number of phenomena which would cause
unexpected system behavior (for instance: parameter variations, additional
undesired inputs).

One particular (deterministic) form of this problem is to consider that the
dynamics of the system that generates the references and the disturbances (the
exosystem) are known and consequently design a controller that steers to zero
certain outputs of the augmented system plant-plus-exosystem, thus achieving
what is called the property of output regulation. Problems of this kind have been
extensively studied in the 1970s for linear MIMO systems; the works of Francis
and Wonham for instance, provide an exhaustive presentation of the theory [1,
2]. The results culminated with the Internal Model Principle (IMP), which states
that a structurally stable solution (i.e. robust to plant parameter variations)
necessarily has to use feedback of the regulated variables and incorporate in the
feedback path a (possibly redundant) model of the exosystem.

A nonlinear enhancement of this theory was initiated at the beginning of
the 1990s [3, 4]. The seminal paper of Isidori and Byrnes [3], although limited in
scope (it only secured local, nonrobust, regulation about an equilibrium point),
highlighted fundamental ideas which shaped all subsequent developments in this
area of research. For instance, it points out the basic challenges in solving the
output regulation problem in a nonlinear setting, namely to create an invariant
set on which the desired regulated variable vanishes, and to render this set
asymptotically attractive. It also highlights the fundamental link between the
problem in question and the notion of “zero dynamics” (a concept introduced
and studied earlier by the same authors).

In the past 20 years, the design philosophy introduced in the paper above
was extended in several directions. One goal was to move from “local” to
“nonlocal” convergence, for which several approaches at increasing level of
generality have been proposed [5, 6, 7]. An important advance of [7] was to give
a general (nonequlibirum) definition of the problem, through a convenient
definition of the notion of “steady state” for nonlinear systems. Another concern
was to obtain design methods which are insensitive, or even robust, with respect
to model uncertainties (either in the plant or in the exosystem) [8, 9].
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A general framework in which the output regulation problem is solved
finally emerged. The basic ideas were captured within two fundamental
properties, the internal model property and the stabilizability property. Once the
first propriety is achieved, the output regulation problem can be simply solved
through high-gain stabilization techniques [10].

A crucial observation was that the problem of achieving the asymptotic
IMP is closely related to, and actually can be cast as, the problem of designing a
nonlinear observer. By using available observer designs [11, 12, 13], this
approach has lead to effective design methods that fall in two classes: based on
immersion (they imply rather strong assumptions) [14, 15] and newest results
dropping the immersion/observability condition [16, 17]. The results referred to
above are by no means general; they can be applied to particular classes of
systems, under specific hypotheses.

These ideas were pursued mainly for SISO nonlinear systems, leading to
some effective designs. The fact that so far there have been limited attempts to
solve the problem in the MIMO case (e.g.[18]) is not entirely surprising, and for
various reasons. First, seeing how the design of observers is instrumental in the
design of controllers that solve the output regulation problem, the design of
observers in the multiple-output case is known to pose serious technical
difficulties, especially in obtaining the right canonical forms that allow a
meaningful (constructive) characterization of the observability properties [19].
Second, MIMO normal forms are not simple extensions of SISO normal forms.
For instance, while SISO normal forms lend themselves naturally to the
definition of nonlinear equivalents for the linear finite and infinite zero
structures and invertibility properties, the extension of these notions to MIMO
systems is nowhere near as straightforward. On the other hand, a normal form of
some kind represents the only tool to (robustly) handle nonlinear dynamics for
control purposes, while normal forms that seem to be adequate for the MIMO
nonlinear output regulation problem have been introduced just recently. Last, but
not the least, while there is a wealth of stabilization tools for SISO nonlinear
systems, there are not so many available for MIMO systems.

In this paper we are going to present the assumptions under which the
problem of output regulation can be solved in the case of nonlinear MIMO
systems. This problem is strongly linked to the normal forms of nonlinear
MIMO systems. The normal forms evolved in close relationship with the control
techniques. The paper is structured as follows: in chapter 2 the classic and
recent results on normal forms used for MIMO nonlinear control problems are
introduced and the zeros dynamics of the system is discussed, in chapter 3 the
general problem of output regulation for nonlinear MIMO systems is presented,
in chapter 4 the necessary conditions under which the output regulation problem
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can be solved are discussed and the assumptions considered in [18] are relaxed
and chapter 5 deals with conclusions and further developments.

2. Normal forms and zero dynamics for MIMO nonlinear systems

Normal forms for nonlinear MIMO systems are meant to reveal key
structural properties of the analyzed/considered system: relative degrees, zero
dynamics and invertibility properties. The relative degrees expose the infinite
zero structure, while the zero dynamics characterize the finite zero structure of
the system. These notions are important (as in the case of linear systems) when
control problems are of interest. Considering the following MIMO system:

x = f(x,u) )

y =h(x)
with: x € R" the state, u € R” the input, y € R” the output, if the system is input
affine it can be represented as:

x=f(x)+g(@u @
y = h(x)
where: u=col(u,...,u,), y=col(y,..y,)  gx)=[gx),. g,x)]

h(x) = (h(x),...,h,(x)) and g(x) is @ nxm matrix and u(x), y(x), h(x) are vectors
and system (2) can be rewritten as (3):

=+ Y8, (o
3y = hy(x) ®

y,=h,(x)
In the case of square systems, m=p>1 the system can be written in the normal
form introduced by Isidori in [20]. This is based on the existence of some vector
relative degrees {r,,...,r,} at a point xy:
1. ngL’;hl.(x):O; j=1,m; i=1,m; k<r-1; inaneighborhood of x,.
Ly L7y (x) ... Ly, L7y (%)
2. M =|: E nonsingular in x.

Ly Ly 7h,(x)... L, L™, (x)
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Each relative degree r; is associated to the i system output. The sum of the
relative degrees is at most n. By applying the following transform
®:x—>(z,e):

[, (x) ... L7 hy(x)]

®(x) = E ]

(4, (x)... L} b, (%)]
(considering that dLj}h,. (x),j=0,r-1, i=1,m are linearly independent) the system
in (2) can be written in normal form as:

z= fy,(z,e)+P(z,e)u

€1=€,

,i=1,m 4)

€, 1=¢€

i i
. m
e, =q(z.e)+ Y m(z.eu,
Jj=1

Yi=é€,
where I’l.j(e,z)ng]zl.0®_l(e,z), and the function @©:x—>(e,z) is a
diffeomorphism from x to (e,z).

Observation 1: In the case of SISO systems there is always possible to find a set

of functions such that ngzl.(x) =0,/=1p; i=1,n-2r[ . For the MIMO case, this
=1
is possible only if the distribution spanned by the column vectors {g,,g,,...g,}

is involutive in a neighborhood of x,.

Observation 2: If the matrix M(e,z) is singular and rankM<m is constant (the
system can not be written in the normal form with m relative degrees), a
dynamic extension algorithm proposed in [20] can be used in order to extend
the system by adding integrators on the input channels such that the system
might be written in normal form.

The zero dynamics of (4)
Considering the system (4), the zero dynamics is given by the following
expression:

z= £,.(2,0) ©)
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A generalization of the above algorithm was made in [99]. The normal form of
system (2) is:
2= folx)+go(x)u

i-1
é[,j =¢nt zé‘i,j,l(x)vl + Gi,j(x)ui Jj=1 n; -1
=1

(6)

y,=eni=1lm

with  n <n,<..n

v, =ai(x)+b'j(x)u; i=1m
a(x)=L,e  (x)

& L
b(x)=Lse, (x)
and the matrix {b,(x),b,(x),...,b, (x)} is smooth and nonsingular.
Considering &, ;, (X)=0 the vector {n,, n,,...,n,} of system (6) represents exactly

the relative degrees vector (which, in the case of linear system gives the infinite
zero structure). If o, (x)=0 the vector {n,n,,..,n,} is not linked to the

infinite zero structure of a linear system [22].
Under the stronger assumptions that some matrix ranks are constant and the
distribution spanned by the column vectors {g,,g,,...g,,} is involutive, system

(6) takes the form:
2= fo(x)

i-1
€ =€ +Z5i,j,1(x)vi J=Lr-1
pn (7

y,=eni=lm

The zero dynamics of (6)
Using these generalizations of the normal form - (6) and (7), the zero dynamics
is given by:

z=fo(x) (8)
The assumptions needed for the elaboration of the presented normal forms are
rather strong. In a recent publication [22] these assumptions are substantially
weakened. Moreover, the infinite zero dynamics algorithm [22], [23] allows the
representation of MIMO nonlinear systems that are not necessary square and
invertible under the following form:
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my

z=f(x)+g,(x)u, + Z(Dz (X,

) i1
fi,j = é:i,j+1 +Z§i,j,l(x)vd,/’j =14q,-1
=1

éi,q,- = Vd,i (9)
YA = hA(Zizd)
Y =&ni=1m,

with ¢, <¢,<..<gq, ,

981' :{gi,l’fi,l""é,qi}’izl’ m,

v, = a;(x)+b,(x)u

Yy =col(§1,8,,, "'gmd,l)
and  col{b (x),b,(x),...,b, (x)}isnonsingular.
From the infinite zero structure algorithm, the dynamics ; ; does not depend on
v, [>j and it follows that :

0,,,(9=0, j<qi, i=1,my (10)

The relations (9), (10) hold under Assumption B[22].
In (9) m, represents the largest number for which the system can be transformed

in the normal form (this value results by applying the infinite zero structure
algorithm). The algorithm also identifies a vector of integer values {q,,q,,....¢,.}

that represents the infinite zero structure.
In addition, if Assumption C [22] holds there exist a coordinate transform that
puts the system in the form :

z=f.(x)+g.(x)u,

] i1
é\j = 5;,/41 +Z§i,j,] (x)vd,] j=Lgq,-1
=1

by = Vas (11)
¥y, =h,(x)
Yai = Cfi,l;i =1m,

and 5.’1.’, (x)=0, j<q, i=1,m,.

Moreover, the form (9) gives an insight on the system invertibility properties. If
the term u, is absent, the system is left invertible; if the term y, is absent, the
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system is right invertible; if the terms u,and y, are both absent, the system is
invertible and if the terms »,and y, exist, the system is degenerate [23].

In the case of square invertible systems with m=p= m, , the terms u,and y, do
not exist and the system takes the following normal form [22]:

z=f(z.9)
i—1
éi,j :ézi,m+/Z:l:5,-1j',(z,§)v/,j:1,q[_1 W
o =V
v, =&ni=lm,
with ¢, <¢,<..<g¢q, and
0,1 (0)=0, j<q, i=1,m (13)

It can be observed that the system in (12) form has a triangular structure [22]
between § ; and the inputs. Relation (13) reveals the fact that there is also a

triangular dependency of &, ;, on the state variables [23].

The zero dynamics of (12)
The system’s (12) zero dynamics is given by:
z=f.(z,0)
This type of normal form with a structure in which the inputs are entering
the system in a triangular fashion and the ¢&,,, functions have triangular

dependencies on the systems state presents valuable properties (aside weaker
assumptions and the fact that it shows the invertibility properties of the system)
from the control point of view [23]. Using it to solve the output regulation
problem hasn’t been yet pursuit.

In what follows we are going to give the general context of output
regulation problem in the case of MIMO systems and to compare the conditions
for the problem solvability in case of using the two normal forms presented
above in terms of assumptions restrictivity.

3. The general output regulation problem for MIMO nonlinear
systems

The problem of output regulation considers that the models for the
process to be control and the exosystem are known. The latter is supposed to
contain the reference and/or the perturbations. A regulator solving the problem
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in closed loop must assure: the boundedness of the state trajectory and uniform
convergence to 0 of the error.
We consider a multivariable system given by the following expression:

x= f(w,x,u)
y=k(w,x) (14)
e=h(w,x)
with: xe R" the state, u € R™ the control input, ee R” the regulated output,
y € R” the measured output, w e R" the exosystem’s state.
The exosystem is an autonomous system:

w=s(w) (15)
The functions f{w,x,u), h(w,x), k(w.x) and s(w) are considered to be of class C*
(sufficiently large) in their arguments. The initial conditions for the system vary
on a fixed closed set x(0) e X, and for the exosystem - vary on a invariant
compact setw(0) e W .

We further consider that the system is of finite dimension, time invariant, and
can be put in a normal form:

1. such that it has a well defined relative degrees vector and the zero dynamics is
stable (the system is of minimum phase) — Isidori approach in [18] or

2. as described in (9).

The regulator is supposed to be of the form:

l/./ =o(y,y) (16)
u=y,y)
with:y € R" the regulator state and the functions ¢(y, y) and y(w,y) of class
c
The initial conditions for the regulator can vary on a compact set /(0) e E.
The system (14), (15) and (16) in closed loop form is:

w=s(w)
).C = f(W, X, }/(l//a k(W, X))) (17)

v =y, k(w,x))

e=h(w,x)
Consider that X is a compact subset of X;, the regulator (16) solves the output
regulation problem if the positive trajectory on WxXxZ is bounded
andlime(¢) =0, uniformly on W x X xZ (when the system is in steady state).

t—w
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The form of the regulator, its initial conditions set and its proprieties are to be
determined. In the context of the output regulation problem as presented in [7],
[14] with the notations and lemmas of [7] the trajectories of the system in closed
loop are supposed to be bounded.

This leads to the conclusion that the @ limit set @(W x X xE) is not empty,
compact and invariant, and uniformly attracts the trajectories of the system in
closed loop and the steady state error is O if and only if:

o(WxXx2)c {(w,x,t//) :h(w, x) :0}

4. Necessary conditions for solving the output regulation problem
MIMO nonlinear systems

4. 1. The system can be written in the normal form (4)
In this case the system with the exosystem (15) has the form:

z=fy(z,w)+ fi(z,e,w)e

e=q(z,e,w)+M(z,w)u
with: initial conditions in the set Z x ExW where Z is fixed and compact and E
is bounded and the functions fy, f;, g, s, M are smooth enough.
The coupling matrix M(z,w) is considered invertible (in the SISO systems case
the condition is that b(w,z,e,...,e,) #0). This means that system (18) has a

vector of relative degrees: {1/,1,...1} between the control input » and the
regulated output e. A system with the relative degrees vector {r,...r,} can
always be transformed into the form (18).
Considering that a controller of the form (16) solves the problem of output
regulation and applying lemma 2 [7] the steady state locus of the system in
closed loop (17) must be a subset of the set for which the error is zero (e=0).
If system (8) is in steady state the following conditions are fulfilled:

- the steady state locus of the system in closed loop @(W xZx ExZ) isa

subset of: R* x R"™" x{0}x R"
- the restriction of the system in closed loop to the steady state locus
o(W xZ x ExZ) is (with the zero dynamics given by the first two relations)

,i=1,m (18)

w=s(w)
z=fy(w,2); cue=0

v =o(y,0)
-V w,2,0,...,0,p) e o(Wx Zx ExE)
0=q(z,0,w)+M(z,w)y(r,0)<=>0=g(z,0,w) + M (z, w)u
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It was considered that the positive trajectory of the exosystem (15) on W is
bounded if the trajectories asymptotically approach «(W). This assumption

does not diminish the generality of the problem because it can be considered that
W= (W) which means that the exosystem is in steady state.

Assumption 1 MIMO

The set W < R" is compact and invariant under (15).
If the positive orbit of the set W xZx ExZ under (14), (15) and (16), then the
system dynamics in closed loop is the graph of a function defined on the whole

of W parts.
Noting
A, ={(w,2)|(»,z,0,...,0,p) e (W xZx ExE),yy € R"} (19)
and considering the function
u,:A, > R"

(w,2) = —M *(w, z)q(w, z,0)
by construction the set described by (19) is the codomain of a function defined
on the whole of W, which is invariant under the zero dynamics of the system in
the normal form (4) and the exosystem:

Wzs(w)

z=fy(w,z)
The function ug, is the control law that forces the system to evolve on 4.
In conclusion, if the controller (16) solves the output regulation problem for the
system in normal form with the exosystem, then there is a function defined on
the whole of W which has the codomaine A, and A, is invariant under (20).

Moreover, for each (w,,z,) € 4,3y, € R"such that the integral curve of (20) is
exactly the integral curve of

(20)

v =p(y.0)
starting in y, and satisfying

u, (w(1), 2(1)) = 7 (v (1),0), Vi € R.
In other words, one can build a controller that reproduces the input for steady
stare such that the regulated error is O (internal model for nonlinear system).
Considering this approach it can be observed that Assumption I MIMO can be
considered only if the coupling matrix M is invertible. The invertibility implies
two aspects:
1. the system is square
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2. the inverse of M must be formally computed — which represents a major
drawback for real implementation cases. This is probably why no
publication follows the article giving this solution in [18].

4.2 Recent normal form
Following the above reasoning, we consider that the system is written in the
normal form (12) with the exosystem (15):

w=s(w)

Z‘:f;(Z,W)

. i-1

Sij :é,j+1+z5i,j,z(zawyf)vnjzl’qi -1
=1

fi,qi = vi

Yi= gz,l;i =1, m,
Assumption | MIMO takes the following form:

Assumption 1 MIMO N

The set W < R" is compact and invariant under (5).

If the positive orbit of the set W xZ x E xZ under (12), (15) and (16), the system
dynamics in closed loop is the graph of a function defined on the whole of W
parts.

If we note:

A" ={(w,z)|(w,z,0,....0,y) e 0(WxZx ExE),yy € R"} (21)
and if in relation (13) ¢, <1 we can consider the function:
u',tA', >R"
—a,(w,z,0)/b,(w,z,0)
(w,z) > fp(u'1,..,u'p71,a1(w,z,O),...,
a, (wz0),b(w,z0),..5b,,(wz0)

By construction, the set described by (21) is the codomain of a function defined
on the whole of W, which is invariant under the zero dynamics of the system in
the normal form (12) and the exosystem (15):

w=s(w)

z=f(z0)

The function u’ is the control law that forces the system to evolve on 4.
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The “triangular” properties of the new normal form (12) lead to a feasible
solution for writing the necessary conditions for the output regulation problem in
a real case, without formally inverting the coupling matrix.

5. Conclusions

In the light of recent advancements on normal forms we consider that a
more suitable approach for solving the nonlinear output regulation problem in
the case of square MIMO systems is to use the normal form proposed in [22]. In
this case the conditions under which the problem of output regulation is solvable
are more relaxed from the following points of view: the relative degrees vector
is not required; there is no assumption that implies the fact that the coupling M
matrix is to be inverted explicitly, which means that nonsquare MIMO systems
could be considered for control too; the assumptions needed for the normal form
of [22] are less restrictive than the ones for the normal form of [21].
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