
U.P.B. Sci. Bull., Series A, Vol. 79, Iss. 1, 2017 ISSN 1223-7027

BOUNDS INVOLVING GAUSS’S HYPERGEOMETRIC FUNCTIONS VIA
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In this paper, we consider the class of (p, h)-convex functions. We estab-
lish some new estimates for trapezoidal and midpoint type inequalities via differentiable
(p, h)-convex functions. We also discuss some special cases which can be deduced from

our main results.
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1. Introduction and Preliminaries

Recently much attention has been given to the theory of convexity due to its great
importance in other fields of pure and applied sciences. Another reason which makes theory
of convexity more fascinating is its strong relationship with the theory of inequalities. In past
few years a number of new generalizations of the classical convexity have been proposed, see
[3, 4, 12]. Resultantly many classical inequalities which were obtained via convex functions
have also been generalized for new classes of convex functions, see [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11]. The motivation of this article is to establish some new estimates for trapezoidal
and mid-point inequalities via (p, h)-convex functions. We also discuss special cases which
can be deduced from our main results. We expect that the ideas and techniques used in the
paper may motivate further research in the field.
Now we recall some previously known concepts.

Definition 1.1 ([12]). An interval I ⊂ R is said to be a p-convex set if

Mp(x, y; t) = [txp + (1− t)yp]
1
p ∈ I

for all x, y ∈ I, t ∈ [0, 1], where p = 2k + 1 or p = n
m , n = 2r + 1,m = 2t+ 1 and k, r, t ∈ N.

Definition 1.2 ([12]). Let I be a p-convex set. A function f : I → R is said to be p-convex
function or belongs to the class PC(I), if

f(Mp(x, y; t)) ≤ tf(x) + (1− t)f(y), ∀x, y ∈ I, t ∈ [0, 1].

It is obvious that for p = 1 Definition 1.2 reduces to the definition for classical convex
functions.
Note that for p = −1, we have the definition of harmonically convex functions.

Definition 1.3 ([4]). A function f : I ⊂ R \ {0} → R is said to be harmonically convex
function, if

f

(
xy

(1− t)x+ ty

)
≤ tf(x) + (1− t)f(y), ∀x, y ∈ I, t ∈ [0, 1].
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Also note that for t = 1
2 in Definition 1.2, we have Jensen p-convex functions or mid

p-convex functions.

f(Mp(x, y; 1/2)) ≤
f(x) + f(y)

2
, ∀x, y ∈ I, t ∈ [0, 1].

Recently Fang et al. [3] introduced a new class of convex functions, which is called as
(p, h)-convex functions.

Definition 1.4 ([3]). Let h : [0, 1] → R be a non-negative function. A function f : I → R
is said to be (p, h)-convex function, if

f(Mp(x, y; t)) ≤ h(t)f(x) + h(1− t)f(y), ∀x, y ∈ I, t ∈ [0, 1].

Note that for h(t) = t, we have the class of p-convex functions.
When h(t) = ts, then we have the class of Breckner type of (p, s)-convex functions, which is
defined as:

Definition 1.5. A function f : I → R is said to be Breckner type of (p, s)-convex function,
if

f(Mp(x, y; t)) ≤ tsf(x) + (1− t)sf(y), ∀x, y ∈ I, t ∈ [0, 1], s(0, 1].

When h(t) = t−s, then we have the class of Godunova-Levin type of (p, s) functions,
which is defined as:

Definition 1.6. A function f : I → R is said to be Godunova-Levin type of (p, s) function,
if

f(Mp(x, y; t)) ≤ t−sf(x) + (1− t)−sf(y), ∀x, y ∈ I, t ∈ (0, 1), s[0, 1].

When h(t) = 1, then we have the class of (p, P )-functions, which is defined as:

Definition 1.7. A function f : I → R is said to be (p, P ) function, if

f(Mp(x, y; t)) ≤ f(x) + f(y), ∀x, y ∈ I, t ∈ (0, 1).

The following results play an important role in establishing our main results.

Lemma 1.1 ([11]). Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 (the
interior of I) with a < b. If f ′ ∈ L[a, b], then, we have

Rf (a, b; p) =
f(a) + f(b)

2
− p

bp − ap

∫ b

a

f(x)

x1−p
dx

=
bp − ap

2p

∫ 1

0

[tap + (1− t)bp]1−
1
p (1− 2t)f ′([tap + (1− t)bp]

1
p )dt.

Lemma 1.2 ([11]). Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with a < b.
If f ′ ∈ L[a, b], then, we have

Lf (a, b; p) =
p

bp − ap

∫ b

a

f(x)

x1−p
dx− f

([ap + bp

2

] 1
p
)

=
bp − ap

p

∫ 1

0

[tap + (1− t)bp]1−
1
pϑ(t)f ′([tap + (1− t)bp]

1
p )dt,

where

ϑ(t) =

{
t, [0, 1

2 ),
t− 1, [ 12 , 1].
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For the reader’s convenience we recall here the definitions of the Gamma function

Γ(x) =

∫ ∞

0

e−xtx−1dt, x > 0,

and the Beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
, x > 0, y > 0.

The integral form of the hypergeometric function is

2F1(x, y; c; z) =
1

B(y, c− y)

∫ 1

0

ty−1(1− t)c−y−1(1− zt)−xdt

for |z| < 1, c > y > 0.

2. Main Results

In this section, we derive our main results.

Theorem 2.1. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with 0 < a < b
and f ′ ∈ L[a, b]. If |f ′| is (p, h)-convex function, then, we have

|Rf (a, b; p)| ≤
bp − ap

2p
(θ1 |f ′(a)|+ θ2 |f ′(b)|) ,

where

θ1 =

∫ 1

0

|1− 2t|h(t)
[tap + (1− t)bp]

1
p−1

dt, (2.1)

and

θ2 =

∫ 1

0

|1− 2t|h(1− t)

[tap + (1− t)bp]
1
p−1

dt. (2.2)

Proof. Using Lemma 1.1 and the fact that |f ′| is (p, h)-convex function, we have

|Rf (a, b; p)|

=

∣∣∣∣bp − ap

2p

∫ 1

0

[tap + (1− t)bp]1−
1
p (1− 2t)f ′([tap + (1− t)bp]

1
p )dt

∣∣∣∣
≤ bp − ap

2p

1∫
0

[tap + (1− t)bp]1−
1
p |1− 2t||f ′([tap + (1− t)bp]

1
p )|dt

≤ bp − ap

2p

1∫
0

[tap + (1− t)bp]1−
1
p |1− 2t|[h(t)|f ′(a)|+ h(1− t)|f ′(b)|]dt

=
bp − ap

2p
(θ1 |f ′(a)|+ θ2 |f ′(b)|) .

This completes the proof. �

Now, we discuss some special cases for Theorem 2.1.

I. If h(t) = t in Theorem 2.1, then, we have Theorem 3.1 [11].
II. If h(t) = ts in Theorem 2.1, the, we have a new result for Breckner type of (p, s)-convex
functions.
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Corollary 2.1. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with 0 < a < b
and f ′ ∈ L[a, b]. If |f ′| is Breckner type of (p, s)-convex function, then, we have

|Rf (a, b; p)| ≤
bp − ap

2p
(θ3 |f ′(a)|+ θ4 |f ′(b)|) ,

where

θ3 =

∫ 1

0

|1− 2t| ts

[tap + (1− t)bp]
1
p−1

dt

= bp−1

[
2

s+ 2
2F1

(
1

p
− 1, s+ 2; s+ 3; 1− ap

bp

)
− 1

s+ 1
2F1

(
1

p
− 1, s+ 1; s+ 2; 1− ap

bp

)
+

2−s

(s+ 1)(s+ 2)
2F1

(
1

p
− 1, s+ 1; s+ 3;

1

2

(
1− ap

bp

))]
, (2.3)

and

θ4 =

∫ 1

0

|1− 2t| (1− t)s

[tap + (1− t)bp]
1
p−1

dt

= bp−1

[
2

(s+ 1)(s+ 2)
2F1

(
1

p
− 1, 2; s+ 3; 1− ap

bp

)

− 1

s+ 1
2F1

(
1

p
− 1, 1; s+ 2; 1− ap

bp

)
+

1

2
2F1

(
1

p
− 1, 1; 3;

1

2

(
1− ap

bp

))]
. (2.4)

III. If h(t) = t−s in Theorem 2.1, the, we have a new result for Godunova-Levin type of
(p, s)-convex functions.

Corollary 2.2. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with 0 < a < b
and f ′ ∈ L[a, b]. If |f ′| is Godunova-Levin type of (p.s)-convex function, then, we have

|Rf (a, b; p)| ≤
bp − ap

2p
(θ5 |f ′(a)|+ θ6 |f ′(b)|) ,

where

θ5 =

∫ 1

0

|1− 2t| t−s

[tap + (1− t)bp]
1
p−1

dt

= bp−1

[
2

2− s
2F1

(
1

p
− 1, 2− s; 3− s; 1− ap

bp

)
− 1

1− s
2F1

(
1

p
− 1, 1− s; 2− s; 1− ap

bp

)
+

2−s

(1− s)(2− s)
2F1

(
1

p
− 1, 1− s; 3− s;

1

2

(
1− ap

bp

))]
, (2.5)
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and

θ6 =

∫ 1

0

|1− 2t| (1− t)−s

[tap + (1− t)bp]
1
p−1

dt

= bp−1

[
2

(1− s)(2− s)
2F1

(
1

p
− 1, 2; 3− s; 1− ap

bp

)

− 1

1− s
2F1

(
1

p
− 1, 1; 2− s; 1− ap

bp

)
+

1

2
2F1

(
1

p
− 1, 1; 3;

1

2

(
1− ap

bp

))]
. (2.6)

IV. If h(t) = 1 in Theorem 2.1, the, we have a new result for (p, P )-functions.

Corollary 2.3. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with 0 < a < b
and f ′ ∈ L[a, b]. If |f ′| is (p, P )-function, then, we have

|Rf (a, b; p)| ≤
(bp − ap)θ7

2p
(|f ′(a)|+ |f ′(b)|) ,

where

θ7 =

∫ 1

0

|1− 2t|
[tap + (1− t)bp]

1
p−1

dt

= bp−1

[
2F1

(
1

p
− 1, 2; 3; 1− ap

bp

)

− 2F1

(
1

p
− 1, 1; 2; 1− ap

bp

)
+ 2F1

(
1

p
− 1, 1; 3;

1

2

(
1− ap

bp

))]
. (2.7)

Theorem 2.2. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with 0 < a < b
and f ′ ∈ L[a, b]. If |f ′|q is (p, h)-convex function, where q ≥ 1, then, we have

|Rf (a, b; p)| ≤ b1−p · b
p − ap

2p
θ
1− 1

q

7

{
θ1 |f ′(a)|q + θ2 |f ′(b)|q

} 1
q .

where θ1, θ2 and θ7 are given by (2.1), (2.2) and (2.7).
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Proof. Using Lemma 1.1, the fact that |f ′| is (p, h)-convex function and power mean’s in-
equality, we have

|Rf (a, b; p)|

=

∣∣∣∣bp − ap

2p

∫ 1

0

[tap + (1− t)bp]1−
1
p (1− 2t)f ′([tap + (1− t)bp]

1
p )dt

∣∣∣∣
≤ bp − ap

2p

( 1∫
0

[tap + (1− t)bp]1−
1
p |1− 2t|dt

)1− 1
q

×

( 1∫
0

[tap + (1− t)bp]1−
1
p |1− 2t||f ′([tap + (1− t)bp]

1
p )|qdt

) 1
q

≤ bp − ap

2p

( 1∫
0

[tap + (1− t)bp]1−
1
p |1− 2t|dt

)1− 1
q

×

( 1∫
0

[tap + (1− t)bp]1−
1
p |1− 2t|[h(t)|f ′(a)|q + h(1− t)|f ′(b)|q]dt

) 1
q

= bp−1 · b
p − ap

2p
θ
1− 1

q

7

{
θ1 |f ′(a)|q + θ2 |f ′(b)|q

} 1
q .

This completes the proof. �
Now, we discuss some special cases for Theorem 2.2.

I. If h(t) = t in Theorem 2.2, then, we have Theorem 3.2 [11].
II. If h(t) = ts in Theorem 2.2, the, we have a new result for Breckner type of (p, s)-convex
functions.

Corollary 2.4. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with 0 < a < b
and f ′ ∈ L[a, b]. If |f ′|q is Breckner type of (p, s)-convex function, where q ≥ 1, then, we
have

|Rf (a, b; p)| ≤ b1−p · b
p − ap

2p
θ
1− 1

q

7

{
θ3 |f ′(a)|q + θ4 |f ′(b)|q

} 1
q .

where θ3, θ4, θ7 are given by (2.3) and (2.4) and (2.7) respectively.

III. If h(t) = ts in Theorem 2.2, the, we have a new result for Breckner type of (p, s)-convex
functions.

Corollary 2.5. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with 0 < a < b
and f ′ ∈ L[a, b]. If |f ′|q is Godunova-Levin type of (p, s)-convex function, where q ≥ 1, then,
we have

|Rf (a, b; p)| ≤ b1−p · b
p − ap

2p
θ
1− 1

q

7

{
θ5 |f ′(a)|q + θ6 |f ′(b)|q

} 1
q .

where θ5, θ6, θ7 are given by (2.5) and (2.6) and (2.7) respectively.

IV. If h(t) = 1 in Theorem 2.2, then, we have a new result for (p, P )-functions.

Corollary 2.6. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with 0 < a < b
and f ′ ∈ L[a, b]. If |f ′|q is (p, P )-function, where q ≥ 1, then, we have

|Rf (a, b; p)| ≤ b1−p · b
p − ap

2p
θ7
{
|f ′(a)|q + |f ′(b)|q

} 1
q .

where θ7 is given by (2.7).
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Theorem 2.3. Let f : I = [a, b] ⊂ R → R be a differentiable function on I0 with 0 < a < b
and f ′ ∈ L[a, b]. If |f ′| is (p, h)-convex function, then, we have

|Lf (a, b; p)|

≤ bp − ap

p

[
{ϕ1 + ϕ2}|f ′(a)|+ {ϕ3 + ϕ4}|f ′(b)|

]
,

where

ϕ1 =

∫ 1
2

0

t[tap + (1− t)bp]1−
1
ph(t)dt,

ϕ2 =

∫ 1

1
2

(1− t)[tap + (1− t)bp]1−
1
ph(t)dt,

ϕ3 =

∫ 1
2

0

t[tap + (1− t)bp]1−
1
ph(1− t)dt,

and

ϕ4 =

∫ 1

1
2

(1− t)[tap + (1− t)bp]1−
1
ph(1− t)dt,

respectively.

Proof. Using Lemma 1.2 and the fact that |f ′| is (p, h)-convex function, we have

|Lf (a, b; p)|

=

∣∣∣∣∣bp − ap

p

∫ 1
2

0

t[tap + (1− t)bp]1−
1
p f ′([tap + (1− t)bp]

1
p )dt

+
bp − ap

p

∫ 1

1
2

(t− 1)[tap + (1− t)bp]1−
1
p f ′([tap + (1− t)bp]

1
p )dt

∣∣∣∣∣
≤ bp − ap

p

[∫ 1
2

0

t[tap + (1− t)bp]1−
1
p |f ′([tap + (1− t)bp]

1
p )|dt

+

∫ 1

1
2

(1− t)[tap + (1− t)bp]1−
1
p |f ′([tap + (1− t)bp]

1
p )|dt

]

≤ bp − ap

p

[∫ 1
2

0

t[tap + (1− t)bp]1−
1
p [h(t)|f ′(a)|+ h(1− t)|f ′(b)|]dt

+

∫ 1

1
2

(1− t)[tap + (1− t)bp]1−
1
p [h(t)|f ′(a)|+ h(1− t)|f ′(b)|]dt

]
.

This completes the proof. �
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