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NUMERICAL SOLUTION OF STOCHASTIC
VOLTERRA-FREDHOLM INTEGRAL EQUATIONS USING
HAAR WAVELETS

Fakhrodin Mohammadi®

In this paper, we present a computational method for solving sto-
chastic Voltera- Fredholm integral equations which is based on the Haar
wavelets and their stochastic operational matriz. Convergence and error
analysis of the proposed method are worked out. Numerical results are com-
pared with the block pulse functions method for some non-trivial examples.
The obtained results reveal efficiency and reliability of the proposed method.
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1. Introduction

Random or stochastic integral equations are very important in the study
of many phenomena in physics, mechanics, medical, finance, sociology, biology,
etc. The study of problems in such fields are often dependent on a noise source,
on a Gaussian white noise, governed by certain probability laws. So, modeling
such phenomena naturally requires the use of various stochastic differential
equations, stochastic integral equations or stochastic integro-differential equa-
tions. In many cases it is difficult to derive an explicit form of the solution
for stochastic differential and integral equations. So, numerical approximation
becomes a practical way to face this difficulty. Many papers have been ap-
peared on the problem of approximate the solution of stochastic integral and
differential equations [[-17].

Recently, different orthogonal basis functions, such as block pulse func-
tions, Walsh functions, Fourier series, orthogonal polynomials and wavelets,
were used to estimate solutions of functional equations. As a powerful tool,
wavelets have been extensively used in signal processing, numerical analysis,
and many other areas. Wavelets permit the accurate representation of a variety
of functions and operators [[I3,[4]. Haar wavelets have been widely applied in
system analysis, system identification, optimal control and numerical solution
of integral and differential equations [I5-17].
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In this paper we consider the following stochastic Voltera-Fredholm in-
tegral equation

B t
X(t) :f(t)+/ X(s)k:l(s,t)ds+/0 X (s)ka(s,t)ds

+ /OtX(s)kig(s,t)dB(s), s,t €10,7), (1)

where X (t), f(t) and k;(s,t),i = 1,2,3 are the stochastic processes defined
on the same probability space (2, F, P), and X(t) is unknown. Also B(t) is
a Brownian motion process and fot ks(s,t) X (s)dB(s) is the Ito integral [7,I]].
We first describe Haar wavelets and their properties. Then a new stochastic
operational matrix for Haar is introduced. After that a computational method
is proposed for approximate solution of this stochastic Voltera-Fredholm inte-
gral equation.

This paper is organized as follows: In section 2 some basic properties
of the Haar wavelets are described. In section 3 stochastic operational ma-
trix for Haar wavelets and a general procedure for deriving this matrix are
introduced. In section 4 a new computational method based on stochastic op-
erational matrix for Haar wavelets are proposed for solving Voltera-Fredholm
integral equations. Section 5 presents the convergence and error analysis of
the proposed method. Numerical examples are presented in section 6. Finally,
a conclusion is given in section 7.

2. Haar wavelets and Block pulse functions

In this section we describe some basic properties of the Haar wavelets.
For this purpose we first introduce the block pulse functions (BPFs), function
approximation by BPFs and their operational matrices. Then the relations
between Haar wavelets and BPFs are investigated. Finally, we derive some
important formulas for Haar wavelets that are useful for the next sections.

2.1. Block pulse functions

BPFs have been studied by many authors and applied for solving different
problems. In this section we recall definition and some properties of the block
pulse functions [3,8,19].

The m-set of BPF's are defined as

{1 (i—1)h <t<ih

0 otherwise

bi(t) = (2>

in which ¢ € [0,T), i = 1,2,...,m and h = L. The set of BPFs are disjointed
with each other in the interval [0,7") and

bl(t)b](t) = (Sz]bz(t),l,j = 17 2, e,y (3)
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where 6;; is the Kronecker delta. The set of BPFs defined in the interval [0,T)
are orthogonal with each other, that is

T
0

If m — oo the set of BPFs is a complete basis for L2[0,T'), so an arbitrary real
bounded function f(t), which is square integrable in the interval [0,7"), can be
expanded into a block pulse series as

f(t) ~ Z fibi(t), (5)

where

fi= E/o bi(t)f(t), i=1,2,...,m. (6)

Rewritting Eq. (84) in the vector form we have

=D fibilt) = FTo(t) = 0T (1)F, (7)
in which )
(L) = [by(t), ba(t), .o, b ()],

F=1[f1,far s fn] " (8)

Morever, any two dimensional function k(s,t) € L2 ([0, T3] x [0,T3]) can be
expanded with respect to BPFs such as

k(s t) = " (t) KD(s), (9)
where ®(t) is the m- dimensional BPFs vectors and K is the m x m BPFs
coefficient matrix with (7, j)-th element

T T
ki = h1h2/ / (s,0)bi(t)bj(s)dtds, 1,7 =1,2,...,m, (10)
and hy = T1 and he . Let ®(t) be the BPFs vector, then we have
T()®(t) =1, (11)
and
bi(t) 0O 0
ey = | 1 0 (12)
. 0
0 0 b)) .0

For an m-vector F' we have

d()PT(t)F = Fd(2), (13)
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where F is an m x m diagonal matrix with the elements of the vector F on the
main diagonal. Also, it is easy to show that for an m x m matrix A

T (1) AD(t) = ATd(1), (14)

where A = diag(A) is an m-vector.

2.2. Haar wavelets

The orthogonal set of Haar wavelets h,,(t) constitute a set of square waves
defined as follows [[3, 15, 6]

ha(t) =250 (Pt —k), >0, 0<k <2 n=2 4k njkeN, (15)
where
1, 0<t<1

ho(t) =1, 0< £ <1, (t) = (16)
-1, ;<t<1

Each Haar wavelet h,(t) has the support [2%, %), so that it is zero elsewhere

in the interval [0, 1). The Haar wavelets h,,(t) are pairwise orthonormal in the

interval [0, 1) and

/ he(Oh ()t = 6 (17)

where §;; is the Kronecker delta. Any square integrable function f(¢) in the
interval [0, 1) can be expanded in terms of Haar wavelets as

f(t) = cohol(t +ZCZ@ (18)

_ /0 CFOhi(tyt, (19)

The infinite series in Eq. (I¥) can be truncated after m = 27 terms (J is level
of wavelet resolution), that is

where ¢; is given by

F(t) ~ coholt —I—Zc,, ), i=2+k j=01,...J -1, 0<k<2, (20)

rewritting this equation in the vector form we have,
f(t) = CTH(t) = H@)'C, 21)
in which C' and H (t) are Haar coefficients and wavelets vectors as

C = [Co,Cl,...,Cm_l]T, (22)
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H(t) = [ho(t), hi(t), ..., b1 (D)]" . (23)
Any two dimensional function k(s,t) € L*[0,1) x L?*[0,1) can be expanded
with respect to Haar wavelets as

k(s,t) = H  (t)KH(t), (24)

where H(t) is the Haar Wavelets vector and K is the m x m Haar wavelets
coefficients matrix with (i,[)-th element can be obtained as

ky = / / (s,t)H;(t)Hy(s)dtds, i,1 =1,2,...,m. (25)

2.3. Relation between the BPFs and Haar wavelets

In this section we will derive the relation between the BPFs and Haar
wavelets. It is worth mention that in this section we set T' = 1 in definition of
BPFs.

Theorem 2.1. Let H(x) and ®(x) be the m-dimensional Haar wavelets and
BPFs wvector respectively, the vector H(x) can be expanded by BPFs vector
d(x) as

H(t) = Qa(t), m =27, (26)
where Q) is an m X m matriz and
20— 1 : .
Qi = hi—1 (2—) ,,l=1,2,.m, i—1=2+Fk 0< k<2, (27)
m

Proof. Let H;(t),i = 1,2,...,m be the i-th element of Haar wavelets vector.
Expanding H;(t) into an m-term vector of BPFs, we have

t) = f: Qabi(t) = QI B(t), i=1,2,...,m, (28)
=1

where @); is the i-th column and @ is the (7,)-th element of matrix (). By
using the orthogonality of BPFs we have

Qu =+ /H ()bi(t /H t)dt = m/ hia( (29)

by using mean value theorem for integrals in the last equation we can write

Qu=m (L - l_—l) hi—1(m) = hi—1(m), m € <l_—1> i) : (30)

m m m 'm
As h;_1(t) is constant on the interval (7, %) we can choose 1, = Qé—m SO we
have
21 -1 )
Qir = hi—1 (W) , 1L, 0=1,2,...m. (31)

and this proves the desired result. O
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For an example the matrix (Jgxs has the following form

1 1 1 1 1 1 1 1 7

1 1 1 1 -1 -1 -1 —1

V2 V2 —V2 V2 0 0 0 0

O = 0 0 0 0 V2 V2 V2 —V2 (32)

2 -2 0 O 0 0 0 0

o 0 2 -2 0 0 0 0

0 0 0 2 -2 0 0

0 0 o 0 2 -2

Remark 2.1. According to the definition of matrixz () in (20) it is easy to see
that

Lor, (33)

m

Q=

The following Remark is the consequence of relations (I3), () and The-
orem P,

Remark 2.2. For an m-vector F' we have
HtH (t)F = FH(t), (34)
in which F is an m x m matriz as
F=QFQ, (35)

where F' = diag (Q™'F). Moreover, it can be easy to show that for an m x m
matriz A

HY(t)AH(t) = ATH(t), (36)

where AT = UQ™! and U = diag(QT AQ) is a m-vector.

3. Stochastic integration operational matrix of Haar wavelets

In this section we obtain the stochastic integration operational matrix for
Haar wavelets. For this purpose we remind some useful results for BPF's [3,8].

Lemma 3.1. [3] Let ®(t) be the BPF's vector defined in (8), then integration
of this vector can be derived as

/ " B(s)ds ~ PO(), (37)
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where Py, wm 15 called the operational matriz of integration for BPFs and is
given by

1 2 2 . 2
o1 2 . 2
h
P=2]0 01 (38)
)
000 ... 1
L 4 mXm

Lemma 3.2. [3] Let ®(t) be the BPFs vector defined in (18), the Ité integral
of this vector can be derived as

/0 t O(s)dB(s) ~ P,o(t), (39)

where Py is called the stochastic operational matriz of integration for BPFs
and 1s given by

[ B(%) B (h) B (h) B (h)
0 B(%)-B(h) B@2h)-BMh) .. B (2h) — B(h)
p=| VY 0 B(%)-B(2h) ... B (3h) — B(2h)
i O 0 O B(W)—B((m—l)h)

Now we are ready to derive a new operational matrix of stochastic inte-
gration for the Haar wavelets basis. For this end we use BPFs and the matrix
() introduced in (28).

Theorem 3.1. Suppose H(t) be the Haar wavelets vector defined in (23), the
integral of this vector can be derived as

/ t H(s)ds ~ %QPQTH(t) = AH (1), (40)

where A is called the operational matriz for BPF's, Q is introduced in (28) and
P is the operational matriz of integration for BPFs derived in (138).

Proof. Let H(t) be the Haar wavelets vector, by using Theorem 1 and Lemma
B0 we have

/OtH(S)ds 2/: QP(s)ds =Q /Otfb(s)ds = QPY(1), (41)

now, Theorem 1 and Remark 21 give

/ t H(s)ds ~QP®(t) = %QPQTH(t) = AH(t), (42)

and this complete the proof. ([l
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Theorem 3.2. Suppose H(t) be the Haar wavelets vector defined in (Z3), the
1to integral of this vector can be derived as

/0 H(s)dB(s) ~ %QPSQTH(t) = AH(t), (43)

where Ay is called stochastic operational matrix for Haar wavelets, Q) is in-
troduced in (Z8) and Py is the stochastic operational matriz of integration for
BPF's derived in (139).

Proof. Let H(t) be the Haar wavelets vector, by using Theorem P11 and Lemma
B2 we have

/H )dB(s /QCD )dB(s Q/ = QP®(t),  (44)

now, by Theorem 21 and Remark 271 we have

[ BB =apain) = ZQRQTH®) = AH ), (45)

and this complete the proof. 0

4. Solving stochastic Voltera-Fredholm integral equations

In this section, we apply the stochastic operational matrix of Haar wavelets
for solving stochastic Voltera-Fredholm integral equation. Consider the follow-
ing stochastic Voltera-Fredholm integral equation

- /BX(S)h(S,t)dS + /tX(S)k2(57t)d5

+ /tX(S)l{?g(S,t)dB(S), tef0,7), (46)

where X(t), f(t) and k;(s,t),i = 1,2,3 are the stochastic processes defined
on the same probability space (2, F, P), and X(t) is unknown. Also B(t) is
a Brownian motion process and fot k3(s,t) X (s)dB(s) is the It6 integral [2,18].
For sake of simplicity and without loss of generality we set (a, 8) = (0,1). Now,
by using the stochastic operational matrix of Haar wavelets, we approximate
X(t), f(t) and k;(s,t),i = 1,2,3 in terms of Haar wavelets as follows

f(t)=FTH(t)=H"(t)F, (47)
Xt)=XTH(@t)=H"(t)X, (48)
ki(s,t) = HY (s)K;H(t) = H' (1)K H(s),i =1,2,3, (49)

where X and F' are Haar wavelets coefficients vector, and K;,7 = 1,2,3 are
Haar wavelets coefficient matrices defined in Eqgs. (IZE) and (E4). Substituting
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above approximations in Eq. (E8), we have

XTH(t)=FTH(t)+ X7 ( /O 1 H(S)HT(8)> K H(t)

t t

+ HT()KT < / H(s)HT(s)de) + HT (KT ( / H(s)HT(s)XdB(s)) |
0 0

using relation fol H(s)H"(s)ds = IL,xm and Remark 222 we get

XTH(t)=FTH(t) + XTK H(t)+ H' (t) KT ( / t XH(s)ds)

+ HT(0)KT ( / t XH(s)dBi(s)) ,
0
where X is an m X m matrix. Now applying the operational matrices A and
A, for Haar wavelets derived in Eqgs. (E0) and (B3) we have
XTH(t)=F'H(t)+ XTK\H(t) + H' () KT XAH(t) + H (t) KT XA H (t)(50)
by setting Y, = KZTXA, Y; = K;{XAS and using Remark 222 we derive
XTH(t) - XTK\H(t) - Y H(t) - VP H(t) = FTH(t), (51)

in which YQ and 173 are m X m matrices and they are linear functions of vector
X. This equation is hold for all ¢ € [0,1), so we can write

XT - XTK, -Y/ —v] =FT, (52)

Since Y, and Yj are linear function of X, Eq. (B2) is a linear system of equations
for unknown vector X. By solving this linear system and determining X, we
can approximate solution of stochastic Voltera-Fredholm integral equation (EB)
by substituting obtained vector X in Eq. (ES).

5. Error Analysis

In this section, we investigate the convergence and error analysis of the
presented method for solving stochastic Voltera-Fredholm integral equations.

Theorem 5.1. Suppose that f(t) € L?[0,1) is an arbitrary function with
m—1

bounded first derivative, |f'(t)| < M, and e, (t) = f(t) — >_ fihi(t), then
i=0

M
V3m’

that means the Haar wavelets series will be convergent.

lem (Bl < (53)
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Proof. By definition of the error e,,(t) we have

om0l = [ <me )dtzsz, (54)

where i =2/ +k, m =27, J >0 and

(k+3)2-9 (k+1)2—7
( [ st /( . f(t)dt) ,

by the mean value theorem for integrals there are n;; € (k277 (k+ 1) 27)

and njs € ((k+3) 277, (k+1)277) such that

1 CH e
o= [ oo =2 <f<’7ﬂ> N dt_f("ﬂ)/(w dt>

2% (f(nj1> Kk T %) 2= m_]} ~ /) {(k o (k : %> 2_]})

=275 (f(nyn) — flng) = 27

this results

len(®llz = ZF Zzﬂnﬂ—nﬂ (£ ) 22”2 AL

k.

fi= [ s =2

NS,

(i —mi2) £ (), mp <y < my2, (55)

oo 21—-1 S 27 -1

2 s M o0
——ZJkZOZ:SJ— ZJQ 37 kzo _TZJ 7 (56)
J j= -

since m = 27, we have

Jen(®)l, < <. 67)
U
Theorem 5.2. Suppose that f(s,t) € L?([0,1) x [0,1)) is a function with
bounded partial derivative, a (s,t) = f(s,t)— mzl mzjl fijhi(s)h;(t)
then -
len(s, Dl < oy (59)

Proof. By definition of error e,,(s,t) we have

bttt = [ (S5 o) =355
i=m l=m i=m l=m
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where i =29+ k, [ =2/ +k m=27,J >0 and

_ /01 /01 h(s)ha(t) £ (s, t)dsdt,

from Theorem B there are 7;,7;1, 72,7, 1 and 7n;; such that

£ = /01 ha(s) (/01 hl(t)f(s,t)dt) ds — /01 ha(s) [2—2'—1 (1 — ) W} ds,

i Yo f(s,ny i 9% f(nj,ny)
27z 1(77j1—77j;)/0 %hi(s)z 27272 (g — ) (g, — mjy) — =25,

dtos
this means
o] 2 2
iy 2 2|0 f(’?jﬂ?j’)
lem(s,t) = ;n;@ ;;2 T (g =)™ (g, = M) —ot0s
<SS arias
i=m l=m
by using Eq.(B8) we can derive
) ' S 3 M2
2 2 —3j—2 —3j'—2 _
lem(s,Olls < M3 27272 277 =
in other words
M
lem(s, O)ll; < 5. (59)
O

Theorem 5.3. Suppose X (t) is the exact solution of (@) and X,,(t) is its
Haar wavelets approzimate solution whose coeffcients are obtained by (I3).
Also assume that

a) X <p, tel01], (60)
b) ||ki(s,t)|| < M;, s,t €[0,1] x [0,1],i=1,2,3, (61)
C) (,B — CY) (Ml + Flm) + (MQ + Fzm) + ||B(t)|| (Mg + Fgm) < 1, (62)

then
T+ p (B =) i+ Tom + | B[ Taim)

X(t) - X, < )
X =Xl < T [ = 0) (3 + Tom) + (Mo & Tam) + 1B(O)] (M5 + T
where
f@) 1 ki(s,t)|
T,, = su | , Dim = —= su —— 2, 1=1,23. 63
te[OPl} V3m 3m? s,tE[(I)),l] dsot (63)
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Proof. From (M) we have

8
X(t) = Xn(t) = f(t) — fm(t) + / (k1(s, 1) X (5) = kim(s,1) Xim(s)) ds

t t
/ (o (5, £) X (5) — Foam (5, )Xo (5)) ds + / (g (5, £) X (5) — Figm (5, ) Xon(5)) dB(5),
0 0
so, by the mean value theorem, we can write

X (@) = X @l < 1F () = SO + (8 — @) [(k1(s,8) X (5) = Fim (s, £) Xin(s))|(64)

+ [ (Ra(s, ) X (s) = kam(s, 6) Xm ()| + B(£) || (ks(s,8) X (5) — Kgm(s,£) X ()]
now by using Theorems bl and b2 we have

[(Ki(s, ) X (5) = Kim (s, 8) Xon ()| < [lRi(s, DI X (X) = X (8)]
+ [ (Ri(s, ) = Kam (s, DI NX @+ N[ (Ris, 8) = K (s, )X () = X (D)

< (M + Do) [| X (8) = X (D] + pLim, @ =1,2,3, (65)
substituting (63) in (64), we get
1X(#) = Xon (D] < T + (8 = @) [(My + Ta) [ X(E) = Xin (8[| + L1

+[(Mz A+ Tom) [ X () = X ()] + pL2m]

+ B(t) [(Ms + Tsp) | X(2) = X (8[| + pT'3m] (66)
as assumption (c¢) holds we get the inequality
Yo+ p((8 = @) Ty + Tom + || B(H)]| Tsm)
X () = X (@) € 7—7— :
1= [(8 =) (M1 + i) + (M + Do) + [ B(4)[| (Mz + )]
and this proves the desired result. 0]

6. Numerical examples

In this section, we consider some nontrivial numerical examples to illus-
trate the efficiency and reliability of the Haar wavelets operational matrices in
solving stochastic Volterra-Fredholm integral equation.

Example 6.1. Consider the following stochastic Volterra-Fredholm integral
equation [8]

X(t) = f(t) +/0 cos(s +t) X (s)ds+ /Ot(s +t) X (s)ds

t
+/ e 3T X (5)dB(s), s,t € [0,1],
0
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in which f(t) =t*+sin(1 +¢) — 2cos(1 +t) — 2sin(t) — % + 5B(t), X(t) is
an unknown stochastic process defined on the probability space (2, F, P) and
B(t) is a Brownian motion process. This stochastic Volterra-Fredholm integral
equation is solved by using the Haar wavelets stochastic operational matriz and
the proposed method in section [ for different values of m = 27. In Fig.
the approzimate solution for m = 27 is presented. A comparison between the
numetrical solutions given by the Haar wavelets method (HWM) and the BPFs
method proposed in [8] is shown in Table .

0.94 -
0.8 *

0.7 *

0.6 “
0.54 *
0.4+ *

0.3 **

0.2 *

4 *
0.1 *

FIGURE 1.

T T T
0.6 0.8 1

The approximate solution and exact solution for m = 27.

m = 2°

m =26

t HWM  BPFs[§]

HWM  BPFs [§]

0.1 0.01894037 0.01991100
0.3 0.10263681 0.11746767
0.5 0.24699817 0.27412074
0.7 0.46248377 0.51447080
0.9 0.76428458 0.76857228

0.018461086 0.01551376
0.10332699 0.05832510
0.24627347 0.27753509
0.46447317 0.48867600
0.76405099 0.82223316

TABLE 1. Numerical results of Example 1 for different values of m.

Example 6.2. Consider the following stochastic Volterra-Fredholm integral

equation [8]
X(t)

t

L]
125 J,

f(t) + /0 (s + t)X(s)ds—i—/O (s —t)X(s)ds

sin(s + ¢) X (s)dB(s), s,t €[0,1],
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where f(t) = 2 — cos(1) — (1 4 ¢)sin(1) + 55 sin (B(t)), X(t) is an unknown
stochastic process defined on the probability space (0, F , P) and B(t) is a Brow-
nian motion process. The proposed method in section [ s used for approximate
solution of this stochastic Volterra-Fredholm integral equation for different val-
ues of m = 27. In Fig. the approzimate solution for m = 27 is presented.
A comparison between the numetrical solutions given by the Haar wavelets

method (HWM) and the BPFs method proposed in [8] are shown in Table 77.

F¥ %%
T kok
* %

T,
Fx
0.9+ x4

*

0.8
0.79
0.6

0.5+

0.4
t

FIGURE 2. The approximate solution and exact solution for m = 27.

m = 2° m = 26

HWM BPFs [8] HWM BPFs [8]

14

0.1
0.3
0.5
0.7
0.9

0.95261751 0.99832325 0.95351151 0.99586771
0.90442995 0.94271558 0.90583308 0.96183409
0.81494616 0.89309254 0.81603608 0.85038394
0.69226490 0.76959231 0.69438254 0.75669689
0.54802651 0.69244110 0.54967133 0.61203566

TABLE 2. Numerical results of Example 2 for different values of m.

7. Conclusion

A numerical method based on Haar wavelets and their stochastic oper-
ational matrix are proposed for solving stochastic Volterra-Fredholm integral
equations. The main characteristic of this method is that it reduces these
stochastic integral equations to those of solving a linear system of algebraic
equations, thus greatly simplifying the problem and speeds up the compu-
tation. The convergence and error analysis of this method are investigated.
Non-trivial examples demonstrate the efficiency and accuracy of the proposed
method.
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