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NUMERICAL SOLUTION OF STOCHASTIC
VOLTERRA-FREDHOLM INTEGRAL EQUATIONS USING

HAAR WAVELETS

Fakhrodin Mohammadi1

In this paper, we present a computational method for solving sto-
chastic Voltera- Fredholm integral equations which is based on the Haar
wavelets and their stochastic operational matrix. Convergence and error
analysis of the proposed method are worked out. Numerical results are com-
pared with the block pulse functions method for some non-trivial examples.
The obtained results reveal efficiency and reliability of the proposed method.
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1. Introduction

Random or stochastic integral equations are very important in the study
of many phenomena in physics, mechanics, medical, finance, sociology, biology,
etc. The study of problems in such fields are often dependent on a noise source,
on a Gaussian white noise, governed by certain probability laws. So, modeling
such phenomena naturally requires the use of various stochastic differential
equations, stochastic integral equations or stochastic integro-differential equa-
tions. In many cases it is difficult to derive an explicit form of the solution
for stochastic differential and integral equations. So, numerical approximation
becomes a practical way to face this difficulty. Many papers have been ap-
peared on the problem of approximate the solution of stochastic integral and
differential equations [1–12].

Recently, different orthogonal basis functions, such as block pulse func-
tions, Walsh functions, Fourier series, orthogonal polynomials and wavelets,
were used to estimate solutions of functional equations. As a powerful tool,
wavelets have been extensively used in signal processing, numerical analysis,
and many other areas. Wavelets permit the accurate representation of a variety
of functions and operators [13,14]. Haar wavelets have been widely applied in
system analysis, system identification, optimal control and numerical solution
of integral and differential equations [15–17].
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In this paper we consider the following stochastic Voltera-Fredholm in-
tegral equation

X(t) = f(t) +

∫ β

α

X(s)k1(s, t)ds+

∫ t

0

X(s)k2(s, t)ds

+

∫ t

0

X(s)k3(s, t)dB(s), s, t ∈ [0, T ), (1)

where X(t), f(t) and ki(s, t), i = 1, 2, 3 are the stochastic processes defined
on the same probability space (Ω, F, P ), and X(t) is unknown. Also B(t) is

a Brownian motion process and
∫ t

0
k3(s, t)X(s)dB(s) is the Itô integral [2,18].

We first describe Haar wavelets and their properties. Then a new stochastic
operational matrix for Haar is introduced. After that a computational method
is proposed for approximate solution of this stochastic Voltera-Fredholm inte-
gral equation.

This paper is organized as follows: In section 2 some basic properties
of the Haar wavelets are described. In section 3 stochastic operational ma-
trix for Haar wavelets and a general procedure for deriving this matrix are
introduced. In section 4 a new computational method based on stochastic op-
erational matrix for Haar wavelets are proposed for solving Voltera-Fredholm
integral equations. Section 5 presents the convergence and error analysis of
the proposed method. Numerical examples are presented in section 6. Finally,
a conclusion is given in section 7.

2. Haar wavelets and Block pulse functions

In this section we describe some basic properties of the Haar wavelets.
For this purpose we first introduce the block pulse functions (BPFs), function
approximation by BPFs and their operational matrices. Then the relations
between Haar wavelets and BPFs are investigated. Finally, we derive some
important formulas for Haar wavelets that are useful for the next sections.

2.1. Block pulse functions

BPFs have been studied by many authors and applied for solving different
problems. In this section we recall definition and some properties of the block
pulse functions [3, 8, 19].

The m-set of BPFs are defined as

bi(t) =

{
1 (i− 1)h ≤ t < ih
0 otherwise

(2)

in which t ∈ [0, T ), i = 1, 2, ...,m and h = T
m
. The set of BPFs are disjointed

with each other in the interval [0, T ) and

bi(t)bj(t) = δijbi(t), i, j = 1, 2, ...,m, (3)
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where δij is the Kronecker delta. The set of BPFs defined in the interval [0, T )
are orthogonal with each other, that is∫ T

0

bi(t)bj(t) = hδij, i, j = 1, 2, ...,m. (4)

If m→ ∞ the set of BPFs is a complete basis for L2[0, T ), so an arbitrary real
bounded function f(t), which is square integrable in the interval [0, T ), can be
expanded into a block pulse series as

f(t) ≃
m∑
i=1

fibi(t), (5)

where

fi =
1

h

∫ T

0

bi(t)f(t), i = 1, 2, ...,m. (6)

Rewritting Eq. (37) in the vector form we have

f(t) ≃
m∑
i=1

fibi(t) = F TΦ(t) = ΦT (t)F, (7)

in which

Φ(t) = [b1(t), b2(t), ...., bm(t)]
T ,

F = [f1, f2, ...., fm]
T . (8)

Morever, any two dimensional function k(s, t) ∈ L2 ([0, T1]× [0, T2]) can be
expanded with respect to BPFs such as

k(s, t) = ΦT (t)KΦ(s), (9)

where Φ(t) is the m-dimensional BPFs vectors and K is the m × m BPFs
coefficient matrix with (i, j)-th element

kij =
1

h1h2

∫ T1

0

∫ T2

0

k(s, t)bi(t)bj(s)dtds, i, j = 1, 2, ...,m, (10)

and h1 =
T1

m
and h2 =

T2

m
. Let Φ(t) be the BPFs vector, then we have

ΦT (t)Φ(t) = 1, (11)

and

Φ(t)ΦT (t) =


b1(t) 0 . . . 0

0 b2(t)
. . .

...
...

. . . . . . 0
0 . . . 0 bm(t)


m×m

. (12)

For an m-vector F we have

Φ(t)ΦT (t)F = F̃Φ(t), (13)
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where F̃ is an m×m diagonal matrix with the elements of the vector F on the
main diagonal. Also, it is easy to show that for an m×m matrix A

ΦT (t)AΦ(t) = ÂTΦ(t), (14)

where Â = diag(A) is an m-vector.

2.2. Haar wavelets

The orthogonal set of Haar wavelets hn(t) constitute a set of square waves
defined as follows [13,15,16]

hn(t) = 2
j
2ψ
(
2jt− k

)
, j ≥ 0, 0 ≤ k < 2j, n = 2j + k, n, j, k ∈ N, (15)

where

h0(t) = 1, 0 ≤ t < 1, ψ(t) =

 1, 0 ≤ t < 1
2

−1, 1
2
≤ t < 1

(16)

Each Haar wavelet hn(t) has the support
[
k
2j
, k+1

2j

)
, so that it is zero elsewhere

in the interval [0, 1). The Haar wavelets hn(t) are pairwise orthonormal in the
interval [0, 1) and ∫ 1

0

hi(t)hj(t)dt = δij, (17)

where δij is the Kronecker delta. Any square integrable function f(t) in the
interval [0, 1) can be expanded in terms of Haar wavelets as

f(t) = c0h0(t) +
∞∑
i=1

cihi(t), (18)

where ci is given by

ci =

∫ 1

0

f(t)hi(t)dt, (19)

The infinite series in Eq. (18) can be truncated after m = 2J terms (J is level
of wavelet resolution), that is

f(t) ≃ c0h0(t) +
m−1∑
i=1

cihi(t), i = 2j + k, j = 0, 1, ..., J − 1, 0 ≤ k < 2j, (20)

rewritting this equation in the vector form we have,

f(t) ≃ CTH(t) = H(t)TC, (21)

in which C and H(t) are Haar coefficients and wavelets vectors as

C = [c0, c1, ..., cm−1]
T , (22)
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H(t) = [h0(t), h1(t), ..., hm−1(t)]
T . (23)

Any two dimensional function k(s, t) ∈ L2[0, 1) × L2[0, 1) can be expanded
with respect to Haar wavelets as

k(s, t) = HT (t)KH(t), (24)

where H(t) is the Haar wavelets vector and K is the m × m Haar wavelets
coefficients matrix with (i, l)-th element can be obtained as

kil =

∫ 1

0

∫ 1

0

k(s, t)Hi(t)Hl(s)dtds, i, l = 1, 2, ...,m. (25)

2.3. Relation between the BPFs and Haar wavelets

In this section we will derive the relation between the BPFs and Haar
wavelets. It is worth mention that in this section we set T = 1 in definition of
BPFs.

Theorem 2.1. Let H(x) and Φ(x) be the m-dimensional Haar wavelets and
BPFs vector respectively, the vector H(x) can be expanded by BPFs vector
Φ(x) as

H(t) = QΦ(t), m = 2J , (26)

where Q is an m×m matrix and

Qil = hi−1

(
2l − 1

2m

)
, i, l = 1, 2, ...m, i− 1 = 2j + k, 0 ≤ k < 2j, (27)

Proof. Let Hi(t), i = 1, 2, ...,m be the i-th element of Haar wavelets vector.
Expanding Hi(t) into an m-term vector of BPFs, we have

Hi(t) =
m∑
l=1

Qilbl(t) = QT
i B(t), i = 1, 2, ...,m, (28)

where Qi is the i-th column and Qil is the (i, l)-th element of matrix Q. By
using the orthogonality of BPFs we have

Qil =
1

h

∫ 1

0

Hi(t)bl(t)dt =
1

h

∫ l
m

l−1
m

Hi(t)dt = m

∫ l
m

l−1
m

hi−1(t)dt, (29)

by using mean value theorem for integrals in the last equation we can write

Qil = m

(
l

m
− l − 1

m

)
hi−1(ηl) = hi−1(ηl), ηl ∈

(
l − 1

m
,
l

m

)
, (30)

As hi−1(t) is constant on the interval
(
l−1
m
, l
m

)
we can choose ηl =

2l−1
2m

so we
have

Qil = hi−1

(
2l − 1

2m

)
, i, l = 1, 2, ...m. (31)

and this proves the desired result. �
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For an example the matrix Q8×8 has the following form

Q8×8 =



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1
√
2

√
2 −

√
2 −

√
2 0 0 0 0

0 0 0 0
√
2

√
2 −

√
2 −

√
2

2 −2 0 0 0 0 0 0

0 0 2 −2 0 0 0 0

0 0 0 0 2 −2 0 0

0 0 0 0 0 0 2 −2


. (32)

Remark 2.1. According to the definition of matrix Q in (26) it is easy to see
that

Q−1 =
1

m
QT . (33)

The following Remark is the consequence of relations (13), (14) and The-
orem 2.1.

Remark 2.2. For an m-vector F we have

H(t)HT (t)F = F̃H(t), (34)

in which F̃ is an m×m matrix as

F̃ = QF̄Q−1, (35)

where F̄ = diag (Q−1F ). Moreover, it can be easy to show that for an m×m
matrix A

HT (t)AH(t) = ÂTH(t), (36)

where ÂT = UQ−1 and U = diag(QTAQ) is a m-vector.

3. Stochastic integration operational matrix of Haar wavelets

In this section we obtain the stochastic integration operational matrix for
Haar wavelets. For this purpose we remind some useful results for BPFs [3,8].

Lemma 3.1. [3] Let Φ(t) be the BPFs vector defined in (8), then integration
of this vector can be derived as∫ t

0

Φ(s)ds ≃ PΦ(t), (37)
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where Pm×m is called the operational matrix of integration for BPFs and is
given by

P =
h

2


1 2 2 . . . 2
0 1 2 . . . 2

0 0 1
...

...
...

...
...

. . . 2
0 0 0 . . . 1


m×m

. (38)

Lemma 3.2. [3] Let Φ(t) be the BPFs vector defined in (8), the Itô integral
of this vector can be derived as∫ t

0

Φ(s)dB(s) ≃ PsΦ(t), (39)

where Ps is called the stochastic operational matrix of integration for BPFs
and is given by

Ps =


B
(
h
2

)
B (h) B (h) . . . B (h)

0 B
(
3h
2

)
−B (h) B (2h)−B(h) . . . B (2h)−B(h)

0 0 B
(
5h
2

)
−B (2h) . . . B (3h)−B(2h)

...
...

...
. . .

...

0 0 0 . . . B
(
(2m−1)h

2

)
−B ((m− 1)h)


Now we are ready to derive a new operational matrix of stochastic inte-

gration for the Haar wavelets basis. For this end we use BPFs and the matrix
Q introduced in (26).

Theorem 3.1. Suppose H(t) be the Haar wavelets vector defined in (23), the
integral of this vector can be derived as∫ t

0

H(s)ds ≃ 1

m
QPQTH(t) = ΛH(t), (40)

where Λ is called the operational matrix for BPFs, Q is introduced in (26) and
P is the operational matrix of integration for BPFs derived in (38).

Proof. LetH(t) be the Haar wavelets vector, by using Theorem 2.1 and Lemma
3.1 we have∫ t

0

H(s)ds ≃
∫ t

0

QΦ(s)ds =Q

∫ t

0

Φ(s)ds = QPΦ(t), (41)

now, Theorem 2.1 and Remark 2.1 give∫ t

0

H(s)ds ≃QPΦ(t) = 1

m
QPQTH(t) = ΛH(t), (42)

and this complete the proof. �
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Theorem 3.2. Suppose H(t) be the Haar wavelets vector defined in (23), the
Itô integral of this vector can be derived as∫ t

0

H(s)dB(s) ≃ 1

m
QPsQ

TH(t) = ΛsH(t), (43)

where Λs is called stochastic operational matrix for Haar wavelets, Q is in-
troduced in (26) and Ps is the stochastic operational matrix of integration for
BPFs derived in (39).

Proof. LetH(t) be the Haar wavelets vector, by using Theorem 2.1 and Lemma
3.2 we have∫ t

0

H(s)dB(s) ≃
∫ t

0

QΦ(s)dB(s) =Q

∫ t

0

Φ(s)dB(s) = QPsΦ(t), (44)

now, by Theorem 2.1 and Remark 2.1 we have∫ t

0

H(s)dB(s) =QPsΦ(t) =
1

m
QPsQ

TH(t) = ΛsH(t), (45)

and this complete the proof. �

4. Solving stochastic Voltera-Fredholm integral equations

In this section, we apply the stochastic operational matrix of Haar wavelets
for solving stochastic Voltera-Fredholm integral equation. Consider the follow-
ing stochastic Voltera-Fredholm integral equation

X(t) = f(t) +

∫ β

α

X(s)k1(s, t)ds+

∫ t

0

X(s)k2(s, t)ds

+

∫ t

0

X(s)k3(s, t)dB(s), t ∈ [0, T ), (46)

where X(t), f(t) and ki(s, t), i = 1, 2, 3 are the stochastic processes defined
on the same probability space (Ω, F, P ), and X(t) is unknown. Also B(t) is

a Brownian motion process and
∫ t

0
k3(s, t)X(s)dB(s) is the Itô integral [2,18].

For sake of simplicity and without loss of generality we set (α, β) = (0, 1). Now,
by using the stochastic operational matrix of Haar wavelets, we approximate
X(t), f(t) and ki(s, t), i = 1, 2, 3 in terms of Haar wavelets as follows

f(t) = F TH(t) = HT (t)F, (47)

X(t) = XTH(t) = HT (t)X, (48)

ki(s, t) = HT (s)KiH(t) = HT (t)KT
i H(s), i = 1, 2, 3, (49)

where X and F are Haar wavelets coefficients vector, and Ki, i = 1, 2, 3 are
Haar wavelets coefficient matrices defined in Eqs. (23) and (24). Substituting
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above approximations in Eq. (46), we have

XTH(t) = F TH(t) +XT

(∫ 1

0

H(s)HT (s)

)
K1H(t)

+HT (t)KT
2

(∫ t

0

H(s)HT (s)Xds

)
+HT (t)KT

3

(∫ t

0

H(s)HT (s)XdB(s)

)
,

using relation
∫ 1

0
H(s)HT (s)ds = Im×m and Remark 2.2 we get

XTH(t) = F TH(t) +XTK1H(t) +HT (t)KT
2

(∫ t

0

X̃H(s)ds

)
+HT (t)KT

3

(∫ t

0

X̃H(s)dBi(s)

)
,

where X̃ is an m ×m matrix. Now applying the operational matrices Λ and
Λs for Haar wavelets derived in Eqs. (40) and (43) we have

XTH(t) = F TH(t) +XTK1H(t) +HT (t)KT
2 X̃ΛH(t) +HT (t)KT

3 X̃ΛsH(t)(50)

by setting Y2 = KT
2 X̃Λ, Y3 = KT

3 X̃Λs and using Remark 2.2 we derive

XTH(t)−XTK1H(t)− Ŷ T
2 H(t)− Ŷ T

3 H(t) = F TH(t), (51)

in which Ŷ2 and Ŷ3 are m×m matrices and they are linear functions of vector
X. This equation is hold for all t ∈ [0, 1), so we can write

XT −XTK1 − Ŷ T
2 − Ŷ T

3 = F T , (52)

Since Ŷ2 and Ŷ3 are linear function ofX, Eq. (52) is a linear system of equations
for unknown vector X. By solving this linear system and determining X, we
can approximate solution of stochastic Voltera-Fredholm integral equation (46)
by substituting obtained vector X in Eq. (48).

5. Error Analysis

In this section, we investigate the convergence and error analysis of the
presented method for solving stochastic Voltera-Fredholm integral equations.

Theorem 5.1. Suppose that f(t) ∈ L2 [0, 1) is an arbitrary function with

bounded first derivative, |f ′(t)| ≤M , and em(t) = f(t)−
m−1∑
i=0

fihi(t), then

∥em(t)∥2 ≤
M√
3m

, (53)

that means the Haar wavelets series will be convergent.
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Proof. By definition of the error em(t) we have

∥em(t)∥22 =
∫ 1

0

(
∞∑

i=m

fihi(t)

)2

dt =
∞∑

i=m

f 2
i , (54)

where i = 2j + k, m = 2J , J > 0 and

fi =

∫ 1

0

hi(t)f(t)dt = 2
j
2

(∫ (k+ 1
2)2−j

k2−j

f(t)dt−
∫ (k+1)2−j

(k+ 1
2)2−j

f(t)dt

)
,

by the mean value theorem for integrals there are ηj1 ∈
(
k2−j,

(
k + 1

2

)
2−j
)

and ηj2 ∈
((
k + 1

2

)
2−j, (k + 1) 2−j

)
such that

fi =

∫ 1

0

hi(t)f(t)dt = 2
j
2

(
f(ηj1)

∫ (k+ 1
2)2−j

k2−j

dt− f(ηj2)

∫ (k+1)2−j

(k+ 1
2)2−j

dt

)

2
j
2

(
f(ηj1)

[(
k +

1

2

)
2−j − k2−j

]
− f(ηj2)

[
(k + 1) 2−j −

(
k +

1

2

)
2−j

])
= 2−

j
2
−1 (f(ηj1)− f(ηj2)) = 2−

j
2
−1 (ηj1 − ηj2) f

′
(ηj), ηj1 < ηj < ηj2, (55)

this results

∥em(t)∥22 =
∞∑

i=m

f 2
i =

∞∑
i=m

2−j−2 (ηj1 − ηj2)
2
(
f

′
(ηj)

)2
≤

∞∑
i=m

2−j−22−2jM2

=
M2

4

∞∑
j=J

2j−1∑
k=0

2−3j =
M2

4

∞∑
j=J

2−3j

2j−1∑
k=0

1

 =
M2

4

∞∑
j=J

2−2j =
M2

3
2−2J , (56)

since m = 2J , we have

∥em(t)∥2 ≤
M√
3m

. (57)

�
Theorem 5.2. Suppose that f(s, t) ∈ L2 ([0, 1)× [0, 1)) is a function with

bounded partial derivative,
∣∣∣ ∂2f
∂s∂t

∣∣∣ ≤M , and em(s, t) = f(s, t)−
m−1∑
i=0

m−1∑
j=0

fijhi(s)hj(t)

then

∥em(s, t)∥2 ≤
M

3m2
. (58)

Proof. By definition of error em(s, t) we have

∥em(s, t)∥22 =
∫ 1

0

(
∞∑

i=m

∞∑
l=m

filhi(s)hl(t)

)2

dt =
∞∑

i=m

∞∑
l=m

f 2
il,
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where i = 2j + k, l = 2j
′
+ k, m = 2J , J > 0 and

fij =

∫ 1

0

∫ 1

0

hi(s)hl(t)f(s, t)dsdt,

from Theorem 5.1 there are ηj, ηj1, ηj2, ηj′ , ηj′1 and ηj′2 such that

fij =

∫ 1

0

hi(s)

(∫ 1

0

hl(t)f(s, t)dt

)
ds =

∫ 1

0

hi(s)

[
2−

j′
2
−1
(
ηj′1 − ηj′2

) δf(s, ηj′)
δt

]
ds,

2−
j′
2
−1
(
ηj′1 − ηj′2

) ∫ 1

0

δf(s, ηj′)

δt
hi(s) = 2−

j
2
− j′

2
−2
(
ηj′1 − ηj′2

)
(ηj1 − ηj2)

∂2f(ηj, ηj′)

∂t∂s
,

this means

∥em(s, t)∥22 =
∞∑

i=m

∞∑
l=m

f 2
il =

∞∑
i=m

∞∑
l=m

2−j−j′−4
(
ηj′1 − ηj′2

)2
(ηj1 − ηj2)

2

∣∣∣∣∂2f(ηj, ηj′)∂t∂s

∣∣∣∣2

≤
∞∑

i=m

∞∑
l=m

M22−3j−3j′−4,

by using Eq.(56) we can derive

∥em(s, t)∥22 ≤M2

∞∑
i=m

2−3j−2

∞∑
l=m

2−3j′−2 =
M2

(3m2)2
,

in other words

∥em(s, t)∥2 ≤
M

3m2
. (59)

�
Theorem 5.3. Suppose X(t) is the exact solution of (1) and Xm(t) is its
Haar wavelets approximate solution whose coeffcients are obtained by (19).
Also assume that

a) ∥X(t)∥ ≤ ρ, t ∈ [0, 1] , (60)

b) ∥ki(s, t)∥ ≤Mi, s, t ∈ [0, 1]× [0, 1] , i = 1, 2, 3, (61)

c) (β − α) (M1 + Γ1m) + (M2 + Γ2m) + ∥B(t)∥ (M3 + Γ3m) < 1, (62)

then

∥X(t)−Xm(t)∥ ≤ Υm + ρ ((β − α) Γ1m + Γ2m + ∥B(t)∥Γ3m)

1− [(β − α) (M1 + Γ1m) + (M2 + Γ2m) + ∥B(t)∥ (M3 + Γ3m)]
,

where

Υm = sup
t∈[0,1]

∣∣f ′
(t)
∣∣

√
3m

, Γim =
1

3m2
sup

s,t∈[0,1]

∣∣∣∣∂2ki(s, t)∂s∂t

∣∣∣∣ , i = 1, 2, 3. (63)
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Proof. From (1) we have

X(t)−Xm(t) = f(t)− fm(t) +

∫ β

α

(k1(s, t)X(s)− k1m(s, t)Xm(s)) ds∫ t

0

(k2(s, t)X(s)− k2m(s, t)Xm(s)) ds+

∫ t

0

(k3(s, t)X(s)− k3m(s, t)Xm(s)) dB(s),

so, by the mean value theorem, we can write

∥X(t)−Xm(t)∥ ≤ ∥f(t)− fm(t)∥+ (β − α) ∥(k1(s, t)X(s)− k1m(s, t)Xm(s))∥(64)

+ t ∥(k2(s, t)X(s)− k2m(s, t)Xm(s))∥+B(t) ∥(k3(s, t)X(s)− k3m(s, t)Xm(s))∥ ,
now by using Theorems 5.1 and 5.2 we have

∥(ki(s, t)X(s)− kim(s, t)Xm(s))∥ ≤ ∥ki(s, t)∥ ∥X(t)−Xm(t)∥

+ ∥(ki(s, t)− kim(s, t))∥ ∥X(t)∥+ ∥(ki(s, t)− kim(s, t))∥ ∥X(t)−Xm(t)∥

≤ (Mi + Γim) ∥X(t)−Xm(t)∥+ ρΓim, i = 1, 2, 3, (65)

substituting (65) in (64), we get

∥X(t)−Xm(t)∥ ≤ Υm + (β − α) [(M1 + Γ1m) ∥X(t)−Xm(t)∥+ ρΓ1m]

+ t [(M2 + Γ2m) ∥X(t)−Xm(t)∥+ ρΓ2m]

+B(t) [(M3 + Γ3m) ∥X(t)−Xm(t)∥+ ρΓ3m] , (66)

as assumption (c) holds we get the inequality

∥X(t)−Xm(t)∥ ≤ Υm + ρ ((β − α) Γ1m + Γ2m + ∥B(t)∥Γ3m)

1− [(β − α) (M1 + Γ1m) + (M2 + Γ2m) + ∥B(t)∥ (M3 + Γ3m)]
,

and this proves the desired result. �

6. Numerical examples

In this section, we consider some nontrivial numerical examples to illus-
trate the efficiency and reliability of the Haar wavelets operational matrices in
solving stochastic Volterra-Fredholm integral equation.

Example 6.1. Consider the following stochastic Volterra-Fredholm integral
equation [8]

X(t) = f(t) +

∫ 1

0

cos(s+ t)X(s)ds+

∫ t

0

(s+ t)X(s)ds

+

∫ t

0

e−3(s+t)X(s)dB(s), s, t ∈ [0, 1] ,
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in which f(t) = t2 + sin(1 + t)− 2 cos(1 + t)− 2 sin(t)− 7t4

12
+ 1

40
B(t), X(t) is

an unknown stochastic process defined on the probability space (Ω,z, P ) and
B(t) is a Brownian motion process. This stochastic Volterra-Fredholm integral
equation is solved by using the Haar wavelets stochastic operational matrix and
the proposed method in section 4 for different values of m = 2J . In Fig. 6.1
the approximate solution for m = 27 is presented. A comparison between the
numetrical solutions given by the Haar wavelets method (HWM) and the BPFs
method proposed in [8] is shown in Table 2.

Figure 1. The approximate solution and exact solution for m = 27.

t

m = 25 m = 26

HWM BPFs [8] HWM BPFs [8]

0.1 0.01894037 0.01991100 0.018461086 0.01551376
0.3 0.10263681 0.11746767 0.10332699 0.05832510
0.5 0.24699817 0.27412074 0.24627347 0.27753509
0.7 0.46248377 0.51447080 0.46447317 0.48867600
0.9 0.76428458 0.76857228 0.76405099 0.82223316

Table 1. Numerical results of Example 1 for different values of m.

Example 6.2. Consider the following stochastic Volterra-Fredholm integral
equation [8]

X(t) = f(t) +

∫ 1

0

(s+ t)X(s)ds+

∫ t

0

(s− t)X(s)ds

+
1

125

∫ t

0

sin(s+ t)X(s)dB(s), s, t ∈ [0, 1] ,
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where f(t) = 2 − cos(1) − (1 + t) sin(1) + 1
250

sin (B(t)), X(t) is an unknown
stochastic process defined on the probability space (Ω,z, P ) and B(t) is a Brow-
nian motion process. The proposed method in section 4 is used for approximate
solution of this stochastic Volterra-Fredholm integral equation for different val-
ues of m = 2J . In Fig. 6.2 the approximate solution for m = 27 is presented.
A comparison between the numetrical solutions given by the Haar wavelets
method (HWM) and the BPFs method proposed in [8] are shown in Table ??.

Figure 2. The approximate solution and exact solution for m = 27.

t

m = 25 m = 26

HWM BPFs [8] HWM BPFs [8]

0.1 0.95261751 0.99832325 0.95351151 0.99586771
0.3 0.90442995 0.94271558 0.90583308 0.96183409
0.5 0.81494616 0.89309254 0.81603608 0.85038394
0.7 0.69226490 0.76959231 0.69438254 0.75669689
0.9 0.54802651 0.69244110 0.54967133 0.61203566

Table 2. Numerical results of Example 2 for different values of m.

7. Conclusion

A numerical method based on Haar wavelets and their stochastic oper-
ational matrix are proposed for solving stochastic Volterra-Fredholm integral
equations. The main characteristic of this method is that it reduces these
stochastic integral equations to those of solving a linear system of algebraic
equations, thus greatly simplifying the problem and speeds up the compu-
tation. The convergence and error analysis of this method are investigated.
Non-trivial examples demonstrate the efficiency and accuracy of the proposed
method.
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