

A GENERALIZED CLASSIFICATION AND ENUMERATION OF ORBITS OF $Q^*(\sqrt{n})$ BY $PSL(2, Z)$

M. Khalid Mahmood¹, Yaser Daanial Khan²

Several attempts have been made to find orbits of invariant sets under the action of projective special linear groups using coset diagrams. We present a novel approach to resolve the problem for the enumeration of $PSL(2, Z)$ -orbits using its invariant set $Q^(\sqrt{n})$. The proposed technique is free from coset diagram and is less computationally intensive as compared to its existing techniques. Let $g = \prod_{i=1}^r p_i^{k_i}$, $k_i \geq 1$, where p_1, p_2, \dots, p_r are distinct odd primes. The cardinality of the set E_g , consisting of all classes $[a, b, c] \pmod{g}$, of the elements in $Q^*(\sqrt{n})$ has been determined and shown to be equal to $g^3 \prod_{i=1}^r (1 - \frac{1}{p_i^3})$. Finally, we use classification and propose algorithms to enumerate $PSL(2, Z)$ -orbits of $Q^*(\sqrt{n})$.*

Keywords: Classification, Quadratic congruence, G -Orbits./05C25, 11E04, 20G15.

MSC2010: 05C25, 11E04, 20G15.

1. Introduction

It is well known that every real quadratic irrational number $u + v\sqrt{m}$ of $Q(\sqrt{m})$ can be written uniquely as $\frac{a + \sqrt{n}}{c}$, where n is a non-square positive integer and $(a, b, c) = 1$, $b = \frac{a^2 - n}{c}$. Let $g > 1$ be a fixed integer. Two classes $\alpha(a, b, c)$ and $\alpha'(a', b', c')$ of $Q^*(\sqrt{n})$ are g -equivalent if and only if $a \equiv a' \pmod{g}$, $b \equiv b' \pmod{g}$ and $c \equiv c' \pmod{g}$, where $\alpha = \frac{a + \sqrt{n}}{c}$ is assigned by $\alpha(a, b, c)$. Since the congruence relation partitions set of integers into disjoint classes, so the equivalence classes $[a, b, c] \pmod{g}$ for each $g > 1$ can be determined. The set E_g denote the collection of all such classes $[a, b, c]$ modulo g and the set of all classes $[a, b, c] \pmod{g}$ of the elements of $Q^*(\sqrt{n})$ with $n \equiv i \pmod{g}$ is labeled by E_g^i (or E_g^n), where $i = 0, 1, \dots, g - 1$. Define the algebraic conjugate of α as $\bar{\alpha} = \frac{a - \sqrt{n}}{c}$. A number is called ambiguous if it is of opposite sign then its conjugate. These numbers play a significant role in studying the action of G on the field $Q(\sqrt{m})$.

Define the modular group $G = \langle x, y : x^2 = y^3 = 1 \rangle$ where, $x : \alpha \rightarrow \frac{-1}{\alpha}$ and $y : \alpha \rightarrow \frac{\alpha - 1}{\alpha}$ are the linear fractional transformations. Coset diagrams for $PSL(2, Z)$ -orbits of $Q^*(\sqrt{n})$ have been used earlier. In [4], an explicit formula to enumerate the finite ambiguous numbers in $Q^*(\sqrt{n})$, has been established. Further it is shown that the ambiguous numbers are the vertices of a closed path, the orbit α^G . A closed form expression as a function of n for the ambiguous numbers in $Q^*(\sqrt{n})$ has been given in [4]. In [3], the cardinality of the set E_p^r , $r \geq 1$ of the elements in $Q^*(\sqrt{n})$ and few of its G -subsets have been determined for a single prime power. The motivation behind the proposed research work is to generalize the results regarding the cardinality of the set E_n , corresponding to every odd

¹ Assistant Professor, Department of Mathematics, University of the Punjab, Lahore, Pakistan, e-mail: khalid.math@pu.edu.pk

² Assistant Professor, Faculty of Information Technology, University of Management and Technology, Lahore, Pakistan

integer n . Moreover, we note that the exposition of G -orbits through coset diagrams seemed to be strenuous and much more laborious. So an attempt is made to keep the elucidation at a consistently low level to get advantage in finding the desired orbits directly.

In this article, an account of classifications of the set $Q^*(\sqrt{n})$ in terms of finite number of classes has been provided. Let $g = \prod_{i=1}^r p_i^{k_i}$, $k_i \geq 1$ and p_1, p_2, \dots, p_r are distinct odd primes. The cardinality of the the set E_g , consisting of all classes $[a, b, c] \pmod{g}$, of the elements in $Q^*(\sqrt{n})$ has been determined and shown to be equal to $g^3 \prod_{i=1}^r (1 - \frac{1}{p_i^3})$. It is shown that if $g \mid n$ then $|E_g^n| \leq \sigma(g)\phi(g)$, where ϕ is the Euler's phi function and σ denote the sum of positive divisors of $g = \prod_{i=1}^r p_i^{k_i}$. As an application, the classes for ambiguous numbers to study the G -orbits of $Q^*(\sqrt{n})$ has been scrutinized. Hence by using these ambiguous numbers, enumeration for the orbits of $Q^*(\sqrt{n})$ under the action of the modular group G have been resolved. Notations used in this paper are standard which follow [1, 2, 3, 4] and [6]. In particular, $\left(\frac{a}{p}\right)$ denotes the Legender of a modulo p .

2. Some Previous Results

In this section few of the previous results have been given so as to make this paper self contained.

Theorem 2.1. [1] Let q be a an odd prime, m any integer such that $q \nmid m$, and n any positive integer. Then, $x^2 \equiv m \pmod{p^n}$ has a solution if and only if $\left(\frac{m}{q}\right) = 1$.

Theorem 2.2. [1] Let $g(x)$ be a polynomial over integers, and suppose, $N(q)$ is the number of incongruent integers satisfying $g(x) \equiv 0 \pmod{q}$. If $q = q_1 q_2$ where $(q_1, q_2) = 1$, then $N(q) = N(q_1)N(q_2)$. If $q = \prod q_i^{\alpha_i}$ is the prime factorization of q , then $N(q) = \prod N(q_i^{\alpha_i})$.

Theorem 2.3. [1] Let m be a positive integer with canonical decomposition $2^{e_0} \prod p_i^{e_i}$ and a any integer with $(a, m) = 1$. Then $x^2 \equiv a \pmod{m}$ has a solution if and only if $x^2 \equiv a \pmod{2^{e_0}}$ and $x^2 \equiv a \pmod{p_i^{e_i}}$ are solvable.

Theorem 2.4. [2, 3] Let p be an odd prime, Then.

(i)

$$|E_{p^k}^n| = \begin{cases} p^{2(k-1)}(p^2 - 1), & \text{if } p \mid n \\ p^{2(k-1)}p(p-1), & \left(\frac{n}{p}\right) = -1 \\ p^{2(k-1)}p(p+1), & \left(\frac{n}{p}\right) = 1 \end{cases}$$

(ii) $|\bigcup_{j=0}^{p-1} E_j^n| = p^3 - 1$.

3. Classification of the elements of $Q^*(\sqrt{n})$

The following lemma gives the cardinality of the classes $[a, b, c] \pmod{g}$ where g is a product of two distinct odd primes.

Lemma 3.1. Let p_1 and p_2 be distinct odd primes.

$$|E_{p_1 p_2}^n| = \begin{cases} (p_1^2 - 1)(p_2^2 - 1), & \text{if } p_1 \mid n \text{ and } p_2 \mid n \\ p_1 p_2 (p_1 + 1)(p_2 + 1), & \left(\frac{n}{p_1}\right) = 1 \text{ and } \left(\frac{n}{p_2}\right) = 1 \\ p_1 p_2 (p_1 - 1)(p_2 - 1), & \left(\frac{n}{p_1}\right) = -1 \text{ and } \left(\frac{n}{p_2}\right) = -1 \\ p_1 p_2 (p_1 + 1)(p_2 - 1), & \left(\frac{n}{p_1}\right) = 1 \text{ and } \left(\frac{n}{p_2}\right) = -1 \end{cases}$$

The proof of the above Lemma is analogous to Theorem 2.3.

Let p_1, p_2, \dots, p_r be distinct odd primes and $g = \prod_{i=1}^r p_i^{k_i}$. To find the cardinality $|\bigcup_{j=0}^{g-1} E_g^n|$, where $n \equiv j \pmod{g}$ and $j = 0, 1, 2, \dots, \overline{g-1}$, we give the following theorems.

Theorem 3.1. Let p_1, p_2 be distinct odd primes and $k = p_1 p_2$.

Let $n \equiv j \pmod{p_1 p_2}$, where $j = 0, 1, 2, \dots, \overline{p_1 p_2 - 1}$. Then

$$|\bigcup_{j=0}^{p_1 p_2 - 1} E_j^n| = (p_1^3 - 1)(p_2^3 - 1).$$

Proof. Since the congruence relation is an equivalence relations, all the congruent classes for $n \equiv j \pmod{p_1 p_2}$, where $j = 0, 1, 2, \dots, \overline{p_1 p_2 - 1}$ define a partition. This means that there is an empty intersection between them.

Thus by Inclusion-Exclusion Principle, we have

$$|\bigcup_{j=0}^{p_1 p_2 - 1} E_j^n| = \sum_{j=0}^{p_1 p_2 - 1} |E_j^n|.$$

In view of Lemma 3.1, it is easy to see that there are 9 possible cases to find the number $|E_{p_1 p_2}^n|$, where p_1 and p_2 are distinct odd primes. Since for any odd prime q there are $\frac{q-1}{2}$ square residues and $\frac{q-1}{2}$ are the square non-residues. Thus to find the sum of all cardinalities, we multiply each of the nine cardinalities by their weights as under:

- (1) Multiply by $(\frac{p_1-1}{2})(\frac{p_2-1}{2})$ if $(\frac{j}{p_1 p_2}) = \pm 1$ for all $j = 1, 2, \dots, \overline{p_1 p_2 - 1}$.
- (2) Multiply by $(\frac{p_1-1}{2})$ or by $(\frac{p_2-1}{2})$ if $(\frac{j}{p_1}) = \pm 1$ or $(\frac{j}{p_2}) = \pm 1$ respectively for all $j = 1, 2, \dots, \overline{p_1 p_2 - 1}$.
- (3) Multiply by integer 1 if none of (1) and (2) hold. Thus, $|\bigcup_{j=0}^{p_1 p_2 - 1} E_j^n|$

$$\begin{aligned}
&= p_1 p_2 (p_1 + 1)(p_2 + 1) \left(\frac{p_1 - 1}{2} \right) \left(\frac{p_2 - 1}{2} \right) + p_1 p_2 (p_1 - 1)(p_2 - 1) \left(\frac{p_1 - 1}{2} \right) \left(\frac{p_2 - 1}{2} \right) \\
&+ p_1 p_2 (p_1 - 1)(p_2 + 1) \left(\frac{p_1 - 1}{2} \right) \left(\frac{p_2 - 1}{2} \right) + p_1 p_2 (p_1 + 1)(p_2 - 1) \left(\frac{p_1 - 1}{2} \right) \left(\frac{p_2 - 1}{2} \right) \\
&+ p_1 (p_1 - 1)(p_2 - 1)(p_2 + 1) \left(\frac{p_1 - 1}{2} \right) + p_1 (p_1 + 1)(p_2 - 1)(p_2 + 1) \left(\frac{p_1 - 1}{2} \right) \\
&+ (p_1 + 1)(p_1 - 1)p_2 (p_2 + 1) \left(\frac{p_2 - 1}{2} \right) + (p_1 + 1)(p_1 - 1)p_2 (p_2 - 1) \left(\frac{p_2 - 1}{2} \right) \\
&+ (p_1 + 1)(p_1 - 1)(p_2 + 1)(p_2 - 1) \\
&= \left(\frac{p_1 p_2}{4} \right) (p_1^2 - 1)(p_2^2 - 1) + \left(\frac{p_1 p_2}{4} \right) (p_1 - 1)^2 (p_2 - 1)^2 + \left(\frac{p_1 p_2}{4} \right) (p_1 - 1)^2 (p_2^2 - 1) \\
&+ \left(\frac{p_1 p_2}{4} \right) (p_1^2 - 1)(p_2 - 1)^2 + \left(\frac{p_1}{2} \right) (p_1 - 1)^2 (p_2^2 - 1) + \left(\frac{p_2}{2} \right) (p_1^2 - 1)(p_2^2 - 1) \\
&+ \left(\frac{p_1}{2} \right) (p_1^2 - 1)(p_2^2 - 1) + \left(\frac{p_2}{2} \right) (p_1^2 - 1)(p_2 - 1)^2 + (p_1^2 - 1)(p_2^2 - 1) \\
&= \left(\frac{p_2}{2} \right) (p_2^2 - 1) \left\{ \left(\frac{p_1}{2} \right) (p_1^2 - 1) + \left(\frac{p_1}{2} \right) (p_1 - 1)^2 + (p_1^2 - 1) \right\} + \left(\frac{p_2}{2} \right) (p_2 - 1)^2 \left\{ \left(\frac{p_1}{2} \right) (p_1^2 - 1) \right. \\
&\quad \left. + \left(\frac{p_1}{2} \right) (p_1 - 1)^2 + (p_1^2 - 1) \right\} + (p_2^2 - 1) \left\{ \left(\frac{p_1}{2} \right) (p_1^2 - 1) + \left(\frac{p_1}{2} \right) (p_1 - 1)^2 + (p_1^2 - 1) \right\} \\
&= \left\{ \left(\frac{p_1}{2} \right) (p_1^2 - 1) + \left(\frac{p_1}{2} \right) (p_1 - 1)^2 + (p_1^2 - 1) \right\} \left\{ \left(\frac{p_2}{2} \right) (p_2^2 - 1) + \left(\frac{p_2}{2} \right) (p_2 - 1)^2 + (p_2^2 - 1) \right\} \\
&= (p_1^3 - 1)(p_2^3 - 1). \quad \square
\end{aligned}$$

Theorem 3.2. Let p_1, p_2, \dots, p_r be distinct odd primes and $g = \prod_{i=1}^r p_i^{k_i}$. Let ϕ denote the Euler- ϕ function. Then

$$|E_g^n| = \begin{cases} \phi(g^2) \prod_{i=1}^r (1 + \frac{1}{p_i}) & \text{if } \prod_{i=1}^r p_i \mid n \\ \phi(g^2) & \text{if } \left(\frac{n}{p_i}\right) = -1 \text{ for all } i \\ g^2 \prod_{i=1}^r (1 + \frac{1}{p_i}) & \text{if } \left(\frac{n}{p_i}\right) = 1 \text{ for all } i \end{cases}$$

Proof. We apply induction on r . Let $r = 1$, then, $g = p_1^k$. For, if g divides n then p_1 divides n , Also

$$\begin{aligned} |E_g^n| &= \phi(p_1^{2k_1}) \left(1 + \frac{1}{p_1}\right) \\ &= \frac{(p_1^{2k_1} - p_1^{2k_1-1})(p_1 + 1)}{p_1} \\ &= p_1^{2(k_1-1)} (p_1^2 - 1). \end{aligned} \tag{1}$$

Next, we take $\left(\frac{n}{g}\right) = 1$. That is, $\left(\frac{n}{p_1^{k_1}}\right) = 1$. Then by Theorem 2.1, $\left(\frac{n}{p_1}\right) = 1$. Also

$$\begin{aligned} |E_g^n| &= g^2 \prod_{i=1}^r \left(1 + \frac{1}{p_i}\right) \\ &= \frac{p_1^{2k_1} (p_1 + 1)}{p_1} \\ &= p_1^{2(k_1-1)} p(p + 1). \end{aligned} \tag{2}$$

Similarly, it can be seen that

$$|E_g^n| = \phi(g^2) = p_1^{2(k_1-1)} p(p - 1), \left(\frac{n}{p_1}\right) = -1. \tag{3}$$

Hence by equations (1) to (3) and by Lemma 3.1, we see that our result is true for $r = 1$. Let $l = \prod_{i=1}^{r-1} p_i^{k_i}$ and suppose,

$$|E_l^n| = \begin{cases} \phi(l^2) \prod_{i=1}^{r-1} \left(1 + \frac{1}{p_i}\right), & \text{if } l \mid n \\ \phi(l^2), & \left(\frac{n}{l}\right) = -1 \\ l^2 \prod_{i=1}^{r-1} \left(1 + \frac{1}{p_i}\right), & \left(\frac{n}{l}\right) = 1 \end{cases}$$

Take $g = lp_r^{k_r}$. Since $(l, p_r) = (\prod_{i=1}^{r-1} p_i, p_r) = 1$, hence by Theorem 2.2 and Lemma 3.1, we obtain,

$$\begin{aligned}
|E_g^n| &= |E_l^n| |E_{p_r^{k_r}}^n| \\
&= \phi(l^2) \prod_{i=1}^{r-1} \left(1 + \frac{1}{p_i}\right) (p_r^{2(k_r-1)} (p_r^2 - 1)) \\
&= \phi(l^2) \prod_{i=1}^{r-1} \left(1 + \frac{1}{p_i}\right) (\phi(p_r^{2k_r}) (1 + \frac{1}{p_r})) \\
&= \phi(l^2 p_r^{2k_r}) \prod_{i=1}^r \left(1 + \frac{1}{p_i}\right), \text{ as } \phi(mn) = \phi(m).\phi(n), (m, n) = 1 \\
&= \phi(g^2) \prod_{i=1}^r \left(1 + \frac{1}{p_i}\right).
\end{aligned}$$

The rest of the cases can be proved in a similar technique. \square

Corollary 3.1. Let p_1, p_2, \dots, p_r be distinct odd primes and σ denote the sum of positive divisors of $g = \prod_{i=1}^r p_i^{k_i}$. If $g \mid n$ then $|E_g^n| \leq \sigma(g)\phi(g)$.

Proof. Let $g = \prod_{i=1}^r p_i^{k_i}$, then it is easy to see that $0 < \lfloor d(g) \rfloor \leq 1$ where,

$$d(g) = \prod_{i=1}^r \frac{p_i^{k_i-1}(p_i^2-1)}{p_i^{k_i+1}-1}.$$

For the proof of the above corollary, we first see that,

$$\begin{aligned}
\sigma(g)\phi(g)d(g) &= \prod_{i=1}^r \frac{p_i^{k_i+1}-1}{p_i-1} \prod_{i=1}^r (p_i^{k_i} - p_i^{k_i-1}) \prod_{i=1}^r \frac{p_i^{k_i-1}(p_i^2-1)}{p_i^{k_i+1}-1} \\
&= \prod_{i=1}^r \frac{p_i^{k_i+1}-1}{p_i-1} (p_i^{k_i} - p_i^{k_i-1}) \frac{p_i^{k_i-1}(p_i^2-1)}{p_i^{k_i+1}-1} \\
&= \phi(g^2) \prod_{i=1}^r \left(1 + \frac{1}{p_i}\right) \\
&= |E_g^n|.
\end{aligned} \tag{4}$$

But by the choice of $d(g)$, we have,

$$\sigma(g)\phi(g)d(g) \leq \sigma(g)\phi(g).$$

Hence, by (4), $|E_g^n| \leq \sigma(g)\phi(g)$. \square

The following theorem is the generalization of Theorem 3.1 for an odd modulus.

Theorem 3.3. Let p_1, p_2, \dots, p_r be distinct odd primes and $g = \prod_{i=1}^r p_i^{k_i}$. Let $n \equiv j \pmod{g}$, where, $j = 0, 1, 2, \dots, \overline{g-1}$. Then

$$|\bigcup_{j=0}^{g-1} E_j^n| = g^3 \prod_{i=1}^r \left(1 - \frac{1}{p_i^2}\right).$$

Proof. We apply induction on r . Let $r = 1$, then $g = p_1^{k_1} = p^k$ (say). We know that amongst the $\phi(p^k)$ integers from Reduced Residue System (RRS) $(\pmod{p^k})$, half are quadratic residues and half are quadratic non-residues. So each of them is $\frac{1}{2}p^{k-1}(p-1)$ in numbering. Since there are p^k integers in Complete Residue system (CRS) $(\pmod{p^k})$, so $p^k - p^{k-1}(p-1) = p^{k-1}$ integers namely, $0, p, 2p, \dots, p^{k-2}p$, are neither quadratic residue nor

quadratic non residue of p^k . Then by Theorem 3.1, we obtain,

$$\begin{aligned}
 \left| \bigcup_{j=0}^{g-1} E_j^n \right| &= p^{k-1} \phi(p^{2k}) \left(1 + \frac{1}{p}\right) + \frac{p^{k-1}(p-1)}{2} p^{2k} \left(1 + \frac{1}{p}\right) + \frac{p^{k-1}(p-1)}{2} \phi(p^{2k}) \\
 &= p^{3k-3}(p^2-1) + \frac{1}{2} p^{3k-2}(p-1)^2 + \frac{1}{2} p^{3k-2}(p^2-1) \\
 &= p^{3k-3}(p^2-1) + p^{3k-1}(p-1) \\
 &= p^{3k-3}(p^3-1) \\
 &= p^{3k} \left(1 - \frac{1}{p^3}\right) \\
 &= g^3 \left(1 - \frac{1}{p_1^3}\right).
 \end{aligned} \tag{5}$$

Next we take $l = \prod_{i=1}^{r-1} p_i^{k_i}$ and we let,

$$\left| \bigcup_{j=0}^{l-1} E_j^n \right| = l^3 \prod_{i=1}^{r-1} \left(1 - \frac{1}{p_i^3}\right). \tag{6}$$

Write $g = lp_r^{k_r}$, where $l = \prod_{i=1}^{r-1} p_i^{k_i}$. Thus $(l, p_r^{k_r}) = 1$. Hence, by Theorem 2.2, we have,

$$\left| \bigcup_{j=0}^{g-1} E_j^n \right| = \left| \bigcup_{j=0}^{l-1} E_j^n \right| \left| \bigcup_{j=0}^{p_r^{k_r}-1} E_{j+1}^n \right|. \tag{7}$$

Substituting the values of (5) and (6) in (7), we get,

$$\begin{aligned}
 \left| \bigcup_{j=0}^{g-1} E_j^n \right| &= l^3 \prod_{i=1}^{r-1} \left(1 - \frac{1}{p_i^3}\right) p_r^{3k_r} \left(1 - \frac{1}{p_r^3}\right) \\
 &= g^3 \prod_{i=1}^r \left(1 - \frac{1}{p_i^3}\right). \quad \square
 \end{aligned}$$

4. G -Orbits of $Q^*(\sqrt{n})$

We propose algorithms to enumerate the $PSL(2, \mathbb{Z})$ -orbits of $Q^*(\sqrt{n})$. The notion of the algorithms is elaborated as follows.

We organize the elements of the infinite set $Q^*(\sqrt{n})$ in term of finite classes of the form $[a, b, c]$ modulo n , where n is a non-square positive integer and $(a, b, c) = 1$, provided $bc = a^2 - n$. We use theorems given in Section 3, to find the classes for a given integer m . Recall that if $\alpha\bar{\alpha} < 0$, then α is called an ambiguous number. After finding the classes of the elements of $Q^*(\sqrt{n})$, we use Algorithm 4.1, to find all ambiguous numbers related to classes for the given integer m . In Algorithm 4.2, we label a key to In function. This key will confirm whether a number selected in Algorithm 4.1, is an ambiguous number? A closed path under some element $(xy)^{n_1}(xy^2)^{n_2} \dots (xy)^{n_k}$ of the group G is called an orbit of G if the path is traversed from ambiguous to ambiguous (for detail see [6]). In Algorithm 4.3, we find G -orbits of $Q^*(\sqrt{n})$ under the action of the modular group $PSL(2, \mathbb{Z})$ together with the mapping, the element of the G which fix the first vertex of that path. Finally, we use Algorithm 4.4 to find the length of that path or the ambiguous length.

4.1. Algorithm (Finding Ambiguous Numbers)

g : List of Classes

q : Number of Classes

$j=0$;

```

for i = 0 to q - 1 do
Alpha =  $\frac{g[i].a + \sqrt{n}}{g[i].c}$ 
Alpha Conjugate =  $\frac{g[i].a - \sqrt{n}}{g[i].c}$ 
If ( Alpha * Alpha Conjugate < 0)
Ambiguous [j ++] = Alpha
end for

```

4.2. Algorithm (Ambiguous, Key)

```

In ( Ambiguous, Key)
for i = 0 to Ambiguous.length-1
If key == Ambiguous[i]
return true
else
return false
end for

```

4.3. Algorithm (Finding Mappings)

```

Array Map; j = 0
k = 0;
Initial Alpha = Alpha = Ambiguous [0]
do {
If ( k mod 2 == 0)
r = 0;
{ do {
temp1 = Mapx( $\alpha$ )
temp2 = Mapy( $\alpha$ )
r = ++
while ( ! In (Ambiguous, temp1*temp2)
Map[j]= r
j++;
k++;
Alpha = temp1*temp2
}
else
{ r = 0 do
{ temp1 = Mapx( $\alpha$ )
temp2 = Mapy( $\alpha$ )
r ++
}
while ( ! In (Ambiguous, temp1*temp2*temp2)
Alpha = temp1*temp2*temp2
Map[j]=r
j++;
k++; } }
while (Alpha ! In = initial Alpha)
return Map
}

```

4.4. Algorithm (Ambiguous length)

```

temp = 0
{ for i = 0 to Map.lenth-1
{ temp = temp + Map[i];
}
return temp
}

```

5. Conclusion

The intricacy of a typical method for finding orbits of an invariant set using projective special linear group, $PSL(2, \mathbb{Z})$ is based on coset diagram. This ordinary technique is seemed to be strenuous and laborious. In this piece of work we have suggested a novel technique that drastically reduces the complexity for the computations and enumeration of G –orbits, where G is $PSL(2, \mathbb{Z})$. Additionally the method developed is an explicit technique which does not require any sort of coset diagrams for finding orbits of $Q^*(\sqrt{n})$ under G . Therefore, the technique developed in this paper perform much faster in contrast with existing techniques. Particularly, the cardinality of the the set E_g , consisting of all classes $[a, b, c] \bmod g$, of the elements in $Q^*(\sqrt{n})$ has been determined and shown to be equal to $g^3 \prod_{i=1}^r (1 - \frac{1}{p_i^3})$. The algorithm developed for the enumeration of orbits using classification of the elements in $Q^*(\sqrt{n})$ efficiently validates the correctness of the formal technique discussed in this article. The numerical productions of the algorithm were coherent with the analytical findings.

REFERENCES

- [1] *I.N. Herbert S. Zuckerman*, An introduction to the Theory of Numbers, John wiley & sons, Inc., 2005.
- [2] *M. Aslam Malik and M. Asim Zafar*, Real Quadratic Irrational Numbers and Modular Group Action. Southeast Asian Bulletin of Mathematics, **35** (2011), No. 3, 439-445.
- [3] *M. Aslam Malik and M. Asim Zafar*, G -subsets of an Invariant subset $Q^*(\sqrt{k^2m})$ of $Q(\sqrt{m}) \setminus Q$ Under the Modular Group Action, Utilitas Mathematica, **91** (2013), 377-387.
- [4] *S. M. Husnine, M. Aslam Malik and A. Majeed*, On Ambiguous Numbers of an invariant subset $Q^*(\sqrt{k^2m})$ of $Q(\sqrt{m})$ under the action of the Modular Group $PSL(2, \mathbb{Z})$. Studia Scientiarum Mathematicarum Hungarica, **42** (2005), No. 4, 401-412.
- [5] *M. Aslam Malik and M. Khalid Mahmood*, Some Invariant Subsets of $Q^*(\sqrt{n})$ Under the Action of $PSL(2, \mathbb{Z})$. International Mathematical Forum, **6** (2011), No. 32, 1557-1565.
- [6] *Q. Mushtaq*, On word structure of the Modular Group over finite and real quadratic fields. Discrete Mathematics, **179** (1998), 145-154.
- [7] *Shin-Ichi Katayama et al.*, Orbit of Quadratic Irrationals Modulo p by the Modular Group, Gomal University Journal of Research, **25** (2009), No. 1, 1-5.
- [8] *G. Higman and Q. Mushtaq*, Coset Diagrams and Relations for $PSL(2, \mathbb{Z})$. Gulf J.Sci. Res., **1** (1983), 159-164.
- [9] *I. Kousser, S.M. Husnine and A. Majeed*, A classification of the elements of $Q^*(\sqrt{p})$ and a partition of $Q^*(\sqrt{p})$ Under the Modular Group Action, PUJM., **31** (1998), 103-118.