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A GENERALIZED CLASSIFICATION AND ENUMERATION OF
ORBITS OF Q*(y/n ) BY PSL(2,Z)

M. Khalid Mahmood®, Yaser Daanial Khan?

Several attempts have been made to find orbits of invariant sets under the action
of projective special linear groups using coset diagrams. We present a novel approach
to resolve the problem for the enumeration of PSL(2,Z)-orbits using its invariant set
Q*(v/n). The proposed technique is free from coset diagram and is less computationally
intensive as compared to its existing techniques. Let g = [[i_, p?i, ki > 1, where
P1,D2, ..., Dr are distinct odd primes. The cardinality of the the set Eg, consisting of all
classes [a,b,c] mod g, of the elements in Q*(\/n ) has been determined and shown to
be equal to g3 - (- p%,) Finally, we use classification and propose algorithms to

enumerate PSL(2, Z)—orbizs of Q*(\/n ).
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1. Introduction

It is well known that every real quadratic irrational number u 4+ vy/m of Q(y/m) can

be written uniquely as ‘”C\/ﬁ, where n is a non-square positive integer and (a,b,¢) =1, b=
2
4= Let g > 1 be a fixed integer. Two classes a(a,b,c) and o/(a',V',c’) of Q*(y/n) are g-
equivalent if and only if @ = o’ (mod g), b = b/(mod g) and ¢ = ¢’ (mod g), where a = %
is assigned by a(a, b, ¢). Since the congruence relation partitions set of integers into disjoint
classes, so the equivalence classes [a, b, c| (mod g) for each g > 1 can be determined. The
set E, denote the collection of all such classes [a,b,c] modulo g and the set of all classes
[a,b,¢] (mod g) of the elements of Q*(y/n) with n =i (mod g) is labeled by E! (or EJ,)

where 1 = 0,1, ..., g— 1. Define the algebraic conjugate of a as & = % A number is called
ambiguous if it is of opposite sign then its conjugate. These numbers play a significant role
in studying the action of G on the field Q(v/m).

Define the modular group G = (z,y : 2> = y*> = 1) where, z : a —

Yo — aT_l are the linear fractional transformations. Coset diagrams for PSL(2, Z)-
orbits of @*(y/n) have been used earlier. In [4], an explicit formula to enumerate the finite
ambiguous numbers in Q*(y/n), has been established. Further it is shown that the ambigu-
ous numbers are the vertices of a closed path, the orbit a®. A closed form expression as a
function of n for the ambiguous numbers in @*(y/n) has been given in [4]. In [3], the cardi-
nality of the set £}, r > 1 of the elements in Q*(y/n ) and few of its G—subsets have been
determined for a single prime power. The motivation behind the proposed research work is

to generalize the results regarding the cardinality of the set F,,, corresponding to every odd
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integer n. Moreover, we note that the exposition of G-orbits through coset diagrams seemed
to be strenuous and much more laborious. So an attempt is made to keep the elucidation
at a consistently low level to get advantage in finding the desired orbits directly.

In this article, an account of classifications of the set Q*(y/n) in terms of finite number
of classes has been provided. Let g = H:lefi, k; > 1 and pq,po,...,p, are distinct odd
primes. The cardinality of the the set E,, consisting of all classes [a,b,c] mod g, of the
elements in Q*(y/n ) has been determined and shown to be equal to g3 [],_, (1 — I%) It

is shown that if g | n then |E}| < o(g)é(g), where ¢ is the Euler’s phi function and o

denote the sum of positive divisors of g = H:;lefi. As an application, the classes for
ambiguous numbers to study the G-orbits of Q*(y/n) has been scrutinized. Hence by using
these ambiguous numbers, enumeration for the orbits of Q*(y/n) under the action of the
modular group G have been resolved. Notations used in this paper are standard which

follow [1, 2, 3, 4] and [6]. In particular, (%) denotes the Legender of a modulo p.

2. Some Previous Results

In this section few of the previous results have been given so as to make this paper
self contained.
Theorem 2.1. [1] Let ¢ be a an odd prime, m any integer such that ¢ { m, and n any

positive integer. Then, 2 = m (mod p") has a solution if and only if (%) =1.

Theorem 2.2. [1] Let g(z) be a polynomial over integers, and suppose, N(q) is the number
of incongruent integers satisfying g(z) = 0 (mod ¢). If ¢ = ¢1g2 where (q1,¢2) = 1, then
N(q) = N(q1)N(ge). If ¢ =[] ¢} is the prime factorization of ¢, then N(q) = [[ N(¢g"").

Theorem 2.3. [1] Let m be a positive integer with canonical decomposition 2 [] p{*

and a any integer with (a,m) = 1. Then 22 = a (mod m) has a solution if and only if

22 = a (mod 2°) and 2% = a (mod p{*) are solvable.
Theorem 2.4. [2, 3] Let p be an odd prime, Then.
(i)
pz(kfl)(p2 _ 1), if
g7 = P e = 1), g;‘
P p(p+1), (2

(if) |UjZo Ef = p® — 1.

3. Classification of the elements of Q*(y/n)

The following lemma gives the cardinality of the classes [a, b, c] (mod g) where g is a
product of two distinct odd primes.

Lemma 3.1. Let p; and ps be distinct odd primes.

(P} —1)(p3 — 1), if p1 [ n and p; | n
pip2(p1 +1)(p2 + 1), = land (p%)
pip2(p1 — 1)(p2 — 1), n

. b1
| P1p2| = n
D1
n
p1

pip2(p1 + 1)(p2 — 1),
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The proof of the above Lemma is analogous to Theorem 2.3.

Let p1, pa, ..., pr be distinct odd primes and g = [],_, p . To find the cardinality | Ug ! Ep|,
where n = j (mod g) and j = 0,1,2,...,g — 1, we give the following theorems.

Theorem 3.1. Let p1,po be distinct odd primes and k = pips.
Let n = j (mod p1p2), where j =0,1,2,...,p1ps — 1. Then

pip2—1

U Bfl= -0 - .
j=0

Proof. Since the congruence relation is an equivalence relations, all the congruent
classes for n = j(mod p1p2), where j = 0,1,2,...,p1ps — 1 define a partition. This means
that there is an empty intersection between them.

Thus by Inclusion-Exclusion Principle, we have

pip2—1 p1p2—1
U B7i= 2 15
j=0 j=0

In view of Lemma 3.1, it is easy to see that there are 9 possible cases to find the number
| p1p2| where p; and py are distinct odd primes. Since for any odd prime ¢ there are %1
square residues and %1 are the square non-residues. Thus to find the sum of all cardinalities,

we multiply each of the nine cardinalities by their weights as under:
(1) Multiply by (P5— 1)(”2—1) if (p1p2> =41forall j=1,2,...,p1p2 — 1.
(2) Multiply by (%5 L) or by (2= P21y jf (pJT) = 41 or (pj—z) = +1 respectively for all

j =L2..,pip2 — 1.
(3) Multiply by integer 1 if none of (1) and (2) hold. Thus, |[JJX5~ ! E7|

p1—1,,p2—1
)

p1—1,,p2—1
5 (75 ) ()

2 2
p1—1,,p2— p1—1, p2—1

pi(p = D2~ D2 + D) + palpr + (2 — 1z + (2

pa(p2 + D) 4 (o1 + 1) (o1 — Dpalpz — 1)(

= pip2(p1 + 1)(p2 + 1)( )+ pip2(pr — 1) (p2 — 1)(

+ pipa(pr — 1)(p2 + 1)(

L) pipa(p1 + 1) (2 — 1)(
—1
)
pa—1
)

+

+ o+

~ 1% = 1+ (B2) (01 - 1’03 - 1)

P2 = 1%+ (51 — 1203 = D+ ()} — D3~ 1)

D@ - D3 -1+ ()0} - D2 = 1)+ (0 - D3 - )

= B0 - @ - D+ G- 17+ 6 - 0} + (B - VHED - 1)
+ (B =12+ 0} - D} + 03 = LD - D) + (5o = 12 + (0 - 1)}

= (e -0+ E e -1+ 0 - DHE G -1 + B2~ 1 + (03 - 1)
= (i -Dp;-1). O

|
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=
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Theorem 3.2. Let p1,ps, ..., p, be distinct odd primes and g = [];_, pf
Let ¢ denote the Euler-¢ function. Then

o(g*) [Ti—1 (1 + i) if TTi_ipiln
|E;| = b(9?) if (Jr)=—1 forall i

i

g Ilio 1+ 5) if (;-)=1 forall i

Proof. We apply induction on r. Let r = 1, then, g = p¥. For, if g divides n then p;
divides n, Also

1
En _ p2k1 1+7
|2y | B(py™)( pl)
I (et S [ (A
D1
2(k1—1
= Vet - ). (1)

Py p1

Next, we take (%) = 1. That is, (Lﬁ) = 1. Then by Theorem 2.1, <£> =1. Also

r

n 1
‘Eg I = 92 H(l + *)
i=1 pi
_ ity
b1
ki1—
= " pp+1). (2)
Similarly, it can be seen that
mn ky— n
Ep| = 6(g%) = pi™ " Vp(p - 1), (291) -t (3)

Hence by equations (1) to (3) and by Lemma 3.1, we see that our result is true for r = 1.
Let [ = H:;ll pF and suppose,

SUHTLZ (L+5), ifln
B =1 6(?), (2) =1
PILS+3),  (3)=1

Take g = Ip¥r. Since (I,p,) = (H::_ll pi,pr) = 1, hence by Theorem 2.2 and Lemma 3.1, we
obtain,
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B = |EED,
= H) :Hllu oD 1)
- ¢<F>iﬂi<1 )G+ )
— o) }1(1 4=, as o(mn) = 6(m).9(n), (m, ) = 1
- ¢<g2>lﬁl<l+;>.

The rest of the cases can be proved in a similar technique. [

Corollary 3.1. Let pq,po,...,pr be distinct odd primes and o denote the sum of positive
divisors of g = []/_, p¥*. If g | n then £y < a(g)9(9)-

Proof. Let g = []/_, p¥*, then it is easy to see that 0 < [d(g)] < 1 where,
ki=lip2_q
dg) =TTy Pt

For the proof of the above corollary, we first see that,

e e WP "p? -1
OO | [ — g e ] | %
i i=1

k
i=1 p;

- - ?H_l —1 (p]'c" _ ’?i—l)p?i_l(pzz —1)
i1 Pi— 1 ‘ ! pfﬁ_l —1
- 1
= o [[+-)
i1 Pi
= |Eg| (4)

But by the choice of d(g), we have,

a(g)¢(g9)d(g) < a(g)p(9)-
Hence, by (4), |Eg| < o(g9)¢(g). U

The following theorem is the generalization of Theorem 3.1 for an odd modulus.

Theorem 3.3. Let p1, po,...,p, be distinct odd primes and g = H:=1 pf’
Let n = j (mod g), where, j =0,1,2,...,g — 1. Then

g—1 T 1
U E=¢T]0- ).
j=0 i=1 Db;

Proof. We apply induction on 7. Let r = 1, then g = p% = pF(say). We know
that amongst the ¢(p*) integers from Reduced Residue System (RRS) (mod p*), half are
quadratic residues and half are quadratic non-residues. So each of them is $p*~*(p — 1) in
numbering. Since there are p* integers in Complete Residue system (CRS) (mod p*), so

k_ok—=1(p 1) — pk—1; k—2 : : :
pi—p"tp-1)=p integers namely, 0, p, 2p, ..., p"~°p, are neither quadratic residue nor
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quadratic non residue of p¥. Then by Theorem 3.1, we obtain,

g—1 k—1 k-1
_ 1., pp—1) L. p"(p—1)
En — k—1 2k 1 - 2k‘1 - 2k
I_L:J0 Flo= PO+ )+ T (1 )+ ™)
3k—3/.2 1 3k—2 2 1 3k—2/ 2
= p"(p —1)+§p (p—1) + 5P (r°—-1)
= PP -0+ p-1)
= P38 1
1
= P3k(1—2§)
- Pa-). (5)
b1

Next we take I = []/—; pI* and we let,

-1 r—1
Uep-r]lo- ) (©

Write g = Ipkr, where | = []/Z} p¥. Thus (I, pfr) = 1. Hence, by Theorem 2.2, we have,
g—1 -1 pir—1
UE=TUE U Ejl (7)
3=0 §=0 3=0

Substituting the values of (5) and (6) in (7), we get,

g—1 1

UEN = 13H 7 =)
par o
3H

Nc,o’_'

4. G- Orbits of Q*(1/n)

We propose algorithms to enumerate the PSL(2, Z)-orbits of @*(y/n ). The notion
of the algorithms is elaborated as follows.
We organize the elements of the infinite set Q*(y/n ) in term of finite classes of the form
[a, b, c] modulo n, where n is a non-square positive integer and (a,b,c) = 1, provided be =
a? —n. We use theorems given in Section 3, to find the classes for a given integer m. Recall
that if aa@ < 0, then « is called an ambiguous number. After finding the classes of the
elements of Q*(y/n ), we use Algorithm 4.1, to find all ambiguous numbers related to classes
for the given integer m. In Algorithm 4.2, we label a key to In function. This key will
confirm whether a number selected in Algorithm 4.1, is an ambiguous number? A closed
path under some element (xy)" (zy?)"2...(xy)"™* of the group G is called an orbit of G if the
path is traversed from ambiguous to ambiguous (for detail see [6]). In Algorithm 4.3, we
find G—orbits of Q*(y/n ) under the action of the modular group PSL(2,Z) together with
the mapping, the element of the G which fix the first vertex of that path. Finally, we use
Algorithm 4.4 to find the length of that path or the ambiguous length.

4.1. Algorithm (Finding Ambiguous Numbers)

g: List of Classes
q: Number of Classes
j=0;
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fori=0togq—1do
Alpha = gli-atsartn)

gli].c
Alpha Conjugate = %

If ( Alpha * Alpha Conjugate < 0)
Ambiguous [j + 4] = Alpha
end for

4.2. Algorithm (Ambiguous, Key)

In ( Ambiguous, Key)

for i = 0 to Ambiguous.length-1
If key = = Ambiguous]i]

return true

else

return false

end for

4.3. Algorithm (Finding Mappings)

Array Map; j =0

k=0;

Initial Alpha = Alpha = Ambiguous [0]
do {

If ( k mod2==0)

r =0;

{ do{

templ = Mapz(«)

temp2 = Mapy(a)

r=++}

while (! In (Ambiguous, temp1*temp2)
Mapl[j]=r

i+t

k++;

Alpha = temp1*temp2

}

else

{r=0do

{ templ = Mapz(«)

temp2 = Mapy(a)

r++

¥

while (! In (Ambiguous, templ*temp2*temp2)
Alpha = templ*temp2*temp?2
Maplj]=r

J++

k++; 1}

while (Alpha ! In = initial Alpha)
return Map

}
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4.4. Algorithm (Ambiguous length)

temp = 0
{ for i = 0 to Map.lenth—1
{ temp = temp + Mapli;

}

return temp

}

5. Conclusion

The intricacy of a typical method for finding orbits of an invariant set using projective
special linear group, PSL(2, Z) is based on coset diagram. This ordinary technique is seemed
to be strenuous and laborious. In this piece of work we have suggested a novel technique that
drastically reduces the complexity for the computations and enumeration of G—orbits, where
G is PSL(2,Z). Additionally the method developed is an explicit technique which does not
require any sort of coset diagrams for finding orbits of Q*(y/n ) under G. Therefore, the
technique developed in this paper perform much faster in contrast with existing techniques.
Particularly, the cardinality of the the set Egy, consisting of all classes [a,b,c] mod g, of
the elements in @*(y/n ) has been determined and shown to be equal to g3 []/_, (1 — p%,)
The algorithm developed for the enumeration of orbits using classification of the clements in
Q*(y/n ) efficiently validates the correctness of the formal technique discussed in this article.
The numerical productions of the algorithm were coherent with the analytical findings.
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