U.P.B. Sci. Bull., Series C, Vol. 87, Iss. 4, 2025 ISSN 2286-3540

FIREWALLING BASED ON KERNEL-ASSISTED
APPLICATION IDENTITY MONITORING

Radu Mantu', Nicolae Tapus?

In this paper we introduce AppScout, a kernel-based application
identity monitoring solution. AppScout can instrument common kernel ex-
ecution paths for operations such as memory mapping executable binary
sections. By doing so, it can directly analyze the virtual address space of all
processes and account for runtime changes. We use this system as the foun-
dation for a firewalling solution based on application identity, implemented
as an iptables plugin with negligible overhead. We note that our solution
can be integrated at runtime, without requiring any kernel modification.

Keywords: Process Identity, Network Security, Firewalling.

1. Introduction

In 2003, Gartner Research marked the transition from classic firewalls
to what they coined as Next Generation Firewalls (NGFW) [1]. Prior to this,
firewalls used to analyze just the network and transport layer headers. This
was sufficient due to a strong correlation between port numbers and services.
However, the rapid diversification of said services and web applications gave
rise to a new class of more potent adversaries that the previous generation
of stateful firewalls could not contend with. As a result, NGFWs were devel-
oped for the purpose of achieving application awareness through deep packet
inspection.

Although current firewalling technologies need to contend with new chal-
lenges such as micro-segmentation [2] or the advancing dissolution of network
demarcations, the core tenets established by Gartner back in 2003 still hold
true today. However, a concerted effort dating back over ten years (e.g., Google
site ranking, Let’s Encrypt, etc.) rapidly lead to the widespread adoption of
HTTPS in the Internet. While undoubtedly a change for the better, traffic
encryption has the downside of rendering deep packet inspection ineffective.

!Research Assistant, Faculty of Automatic Control and Computers, National
University of Science and Technology POLITEHNICA Bucharest, Romania, e-mail:
radu.mantu@upb.ro

2Professor, Faculty of Automatic Control and Computers, National University of Science
and Technology POLITEHNICA Bucharest, Romania, email: nicolae.tapus@upb.ro

65

66 Radu Mantu, Nicolae Tapus

Unfortunately, efforts towards obtaining an encrypted traffic classifier
have not yet yielded a sufficiently accurate solution [3]|. In lieu of better alter-
natives, firewall manufacturers decided to adopt SSL/TLS decryption [4], thus
sacrificing user privacy in exchange for overall network security. For outgoing
connections, this is achieved via a forward proxy. Each new TLS connection
to an external server can be intercepted by the firewall. Next, the firewall
would emit a certificate with the Distinguished Name of the external server
but signed by the Certification Authority (CA) of the local organization. Since
this CA is configured a priori on all internal network hosts, the TLS connec-
tion succeeds and the firewall can access the plaintext application data, then
forward it to the intended endpoint via a separate TLS connection of its own.
For incoming connections, the firewall is assumed to have access to the private
key used by the internal server for decryption.

Although there are heuristic-based approaches such as Cisco’s Encrypted
Traffic Analytics (ETA) [5] or Palo Alto’s App-ID [6] that rely on metrics in-
cluding packet length, packet source or transmission rate, these are usually ap-
plied when encountering proprietary encryption protocols (i.e., protocols other
than SSL/TLS or SSH). Furthermore, application identification on plaintext
traffic is usually achieved via traffic fingerprinting. Both Cisco’s Network-
Based Application Recognition (NBAR) [7] and App-ID compare the payload
against a database of application-specific features called signatures.

Considering these common practices in the industry today, we issue the
following research questions:

RQ1: Can application awareness be achieved without sacrificing
user privacy? Historically, firewalling was accomplished by placing a physical
firewall on the network perimeter [8]. This decision was made for pragmatic
reasons: configuring software firewalls on each individual host posed an admin-
istrative challenge. Moreover, there was no guarantee that bad actors within
the network would apply the configured ruleset. Consequently, enforcing the
security policies on the network egress points could be considered a sound
resolution. However, due to recent BYOD [9] and remote work policies [10],
these assumptions no longer hold true. We consider that adapting to these
new conditions requires distributing part of the responsibility onto individ-
ual hosts [11|. This creates a unique opportunity to shift the overreliance on
private user data for application identification purposes towards OS assistance.

RQ2: Is there a better method for representing application
signatures? In a 2021 App-ID tech brief [12], it was revealed that the ap-
plication signature database was being extended with 10-20 new entries every
month. The choice of applications was based on customer feedback and in-
dustry trends. This revelation is indicative of two issues. First, a scalability
issue when considering the myriad applications that can be used to generate
network traffic. Second, an accuracy issue due to application versioning and

Firewalling based on kernel-assisted application identity monitoring 67

polymorphic runtime behaviour. We consider whether these problems can be
addressed by leveraging local OS knowledge of its running processes.

To address these questions we present AppScout, a Linux Kernel Module
(LKM) capable of monitoring system-wide events such as memory mapping
executable binary sections or modifying permissions at runtime. AppScout
uses these sources of information to build persistent profiles for each process.
These profiles contain information that can be used to identify each executable
code section that was available to any process during their entire runtime.
Additionally, we created an iptables extension that can utilize these profiles
to achieve application awareness. Finally, we integrated a rudimentary Netlink
subsystem into AppScout in order for userspace applications to query its profile
database.

We claim the following contributions:

e The implementation of AppScout!, an application identity monitoring
LKM.

e The development of an iptables extension that itegrates with AppScout.

e An analysis of our integration effort into live systems, without necessitat-
ing a kernel recompilation.

The remainder of this paper is organized as follows. In Section 2 we
describe the architecture and threat model of our proposed system. In Section
3 we provide implementation details. Section 4 illustrates the performance
impact of AppScout on both user-grade hardware and servers with 1Gbps and
10Gbps NICs respectively. Section 5 provides a comparison between AppScout
and similar available solutions. Section 6 concludes this paper.

2. Architecture

In this section we describe the architecture of AppScout. Figure 1 offers a
high-level overview of the modules that comprise our firewalling solution (i.e.,
the primary use case) and how they interact with other systems.

. match query update i i
netfilter — > xt_scout ——> app-scout —> pmce’:z (;:fnt'ty
€ €
s s
E £
2 2
return J ? return @ return
£ £
sendmsg() socket() exit() mmap()
entry entry entry
KS
us

F1G. 1. AppScout architecture for traffic filtering.

1Code available at https://github.com/RaduMantu/AppScout

68 Radu Mantu, Nicolae Tapus

2.1. System overview

app-scout instruments certain kernel functions that are invoked during
the life cycle of a process. During its initial setup phase, the dynamic linker
(i.e., 1d-linux) maps the necessary shared objects into virtual memory, one
section at a time, with the appropriate permissions (e.g., r-x for .text, rw-
for .data, etc.) These, along with any other objects that may be dynamically
loaded on demand after control is ceded to the base binary, are accounted for
by this module and attributed to their respective process. This information
can either be relinquished after the termination of said process (i.e. on pro-
cessing the exit () system call), or persist until the module is unloaded. The
former alternative is preferable for memory-constrained systems, or when the
identity of a process becomes unnecessary after its termination (e.g., network
traffic filtering). The latter alternative is preferable when CPU resources are
indispensable. Either way, at any point during the lifetime of the aforemen-
tioned process, our module will have a complete record of executable memory
areas that were available to it during runtime. This information comprises the
"process identity model”.

xt_scout is the kernel segment of an iptables extension that we devel-
oped for matching packets based on the identity of their originating process.
Since app-scout is the only module with access to the process identity model,
it also implements the lookup mechanism for the identity of a certain process.
However, it is not immediately clear from the perspective of a Netfilter match
callback what that process should be. In newer kernel versions, the socket
no longer contains information regarding the process that created it. While
it still retains knowledge of user and group ownership in order not to break
compatibility with the owner extension in iptables, this data is insufficient
for our purposes. As a result, the xt_scout module instruments the creation
of new sockets by userspace tasks (through the system call socket()) and
attributes them a process ownership. This relation between a socket and its
owner process is then leveraged during the evaluation of an iptables rule to
query the app-scout module and in turn, the "process identity model”. This
enables the user to match network traffic to specific code objects that have
at any point been accessible to the endpoint application without performing
Deep Packet Inspection.

2.2. Security considerations

In order to facilitate the easy adoption of AppScout we decided against
modifying the kernel source and instead implementing it as a collection of
loadable modules. A consequence of this decision is that the process state
prior to their insertion into the kernel cannot be accounted for. Thus, we
recommend that the AppScout modules be included in the initial ramdisk of
the system and be loaded prior to the init process pivoting the root filesystem.

Firewalling based on kernel-assisted application identity monitoring 69

In this scenario, we consider the initramfs to be part of the Trusted Computing
Base (TCB) of the system.

In order to guarantee the authenticity and integrity of the modules, we
suggest employing the module signing facility of the kernel (based on X.509
ITU-T standard certificates). In lieu of this option, the entire initial ramdisk
should be verified by its bootloader. E.g., on ARM systems that adhere to the
ARM Trusted Firmware Design and use U-Boot as BL.33, the Firmware pulmage
Package that contains the kernel and ramdisk can be signed by the developer
and verified at boot time. The public key used in the signature verification can
either be hardcoded in the U-Boot binary or loaded from its Flattened Device
Tree, both being themselves verified by the Original Equipment Manufacturer
(OEM) bootloader.

In our threat model, we consider the attacker capable of gaining access
to the system but require that the AppScout modules had already been loaded
at that time. If the attacker is considered to be able of escalating his privilege
level to that of root, we require that the kernel be put in lockdown via securityfs
immediately after loading the AppScout modules. Otherwise, the attacker can
either reload the app-scout module or interfere with it via a module of his
own, with the purpose of obfuscating his intrusion attempt during auditing or
staging further attacks.

3. Implementation
3.1. An argument for instrumentation

It was clear from the outset that in order to build a system-wide, long-
term process identity model, we needed to collect certain information at run-
time. This information is not always readily accessible (i.e., stored in kernel
structures, but instead transient - in the local context of a call frame) and
must be obtained and indexed before the process state change that it repre-
sents propagates to userspace. For example, if a process maps a file in its
virtual address space, our solution must intercept this operation and analyze
the contents of the mapped file before said process has a chance to acknowledge
that the operation finalized successfully and potentially modify the memory,
or unmap it.

There are two approaches to this problem: either manually adding hooks
in certain key functions, or instrumentation. While the former is a valid ap-
proach (e.g., the integration method of the Netfilter system into the Linux
kernel), unless merged into upstream it will deter adoption of this system, pri-
marily by teams that develop their own Linux fork; a fairly common practice in
the embedded industry. Consequently, an instrumentation-oriented approach
would be preferable.

Initially, kprobes were computationally expensive due to the use of soft-
ware interrupts to trap the execution of certain kernel code regions. Inciden-
tally, this approach is also used by debuggers via the ptrace() system call.

70 Radu Mantu, Nicolae Tapus

However, debuggers are required to employ it due to their inferiors (i.e., pro-
grams under test) being separate processes. In 2010, a patchset by the author
of Djprobe [13] implemented the jump optimization for kprobes, reducing their
overhead to almost negligible margins. At the time of writing, this optimiza-
tion is available on x86, ARM and PowerPC. Taking into consideration the
fact that over ten years later, improvements are still being researched [14],
we surmised that kprobes are a viable choice for runtime data collection via
instrumentation.

3.2. Construction of process identity

The goal of the app-scout module is to gradually create a process iden-
tity model based on data obtained from instrumentation. This model is or-
ganized as an associative array using process IDs as keys for easy retrieval.
Ideally, the process identity information would have been stored in its respec-
tive task_struct instance. However, this structure has very few fields that
could be repurposed and doing so could very well interfere with other mech-
anisms. E.g., the security field would be a prime candidate if not for the
fact that it is reserved for LSMs such as Tomoyo. Moreover, the task_struct
instance is released after the termination of the process, meaning that the ref-
erence to the process identity information would have been unavailable for tha
analysis of delayed packets.

The data associated to each PID in our model consists primarily of a list
of SHA256 digests computed based on the contents of each executable memory-
mapped region. Writable data sections have been excluded based on their
volatile nature. While an argument could be made in favor of including .rodata
sections in our model, we consider that the .text sections are sufficient for
demonstrating the capabilities of this prototype. Furthermore, we acknowledge
the possibility of encountering writable, non-file-backed executable sections in
processes that implement JI'T compilers or translators. Efficiently labeling a
continuously mutating memory region at any given time is in and of itself a
non-trivial task, let alone tracking its change history during the runtime of
the process. Other solutions such as Dymo [15] reason that code generated by
a trusted binary should itself be trusted. Based on these considerations, we
decided to take a similar stance and deem the identification of JIT-ed code
outside the scope of this paper.

In order to retrieve the aforementioned data, we instrumented the
vm_mmap_pgoff () function as part of the synchronous and asynchronous mmap ()
common path. In the pre-call probe, we exclude kernel threads from our anal-
ysis and ensure that the region is supposed to be mapped with execute permis-
sions. In the post-call probe, we determine the virtual address where a known
number of pages have been mapped. Having obtained this address does not
necessarily mean that the actual data resides in memory. Consequently, we pin
those pages in memory, forcing the kernel to fault them into RAM if any are

Firewalling based on kernel-assisted application identity monitoring 71

missing. Herein lies a problem: depending on the underlying filesystem driver
or backing storage device driver, this operation can force the current task to
yield its remaining CPU time. We have first observed this behavior in our
development environment, using the Plan 9 filesystem protocol. Because the
kprobe instrumentation callbacks are invoked in atomic context, we were re-
quired to re-enable preemption for the duration of this operation. We reasoned
that as opposed to classical kprobes (i.e., those that are based on software in-
terrupts), the jump-optimized version that we use should be able to safely
execute even outside an atomic context. As a precautionary measure, we arbi-
trarily increased the maximum number of concurrently active kprobe instances
for this function. At the time of writing, we are still debating reimplementing
this functionality as deferred work to preempt any unforeseen bugs. After all
pages are guaranteed to be present in main memory, we calculate the SHA256
sum and store it alongside the name of the backing file in our data structure.
Finally, the memory pin is released in order to prevent an unsustainable growth
of the Resident Set Size.

3.3. Xtables integration

The iptables extension consists of two components. One is the shared
object 1ibxt_scout.so that implements the necessary functionality for the
userspace tool (e.g., argument parsing, rule printing, etc.) iptables loads this
plugin on demand from certain well known paths (e.g., /usr/lib/xtables) or
from the paths stored in the XTABLES_LIBDIR environment variable.

The second component is the xt_scout kernel module. This module
implements the checkentry() and match() callbacks for the Xtables frame-
work. The former performs sanity checks on newly inserted rules. The latter
is invoked as part of a potentially larger rule evaluation on a specific packet or
rather, a sk_buff object. In Section 2 we mentioned that this socket buffer in-
stance can be linked back to the socket that it belongs to. However, that socket
is not itself linked to any given process in newer kernel versions. Nonetheless,
there is a mechanism in place for this.

A process can be assigned as the owner of socket in order for the kernel
to send signals under certain conditions. One of the more relevant exam-
ples is being notified when urgent data is available as part of a TCP stream.
Nonetheless, even Urgent Pointers are largely unsupported in modern appli-
cations, many TCP/IP network stacks preferring to handle urgent data in the
same queue as normal data instead of implementing a fast path. As a result,
the xt_scout module instruments the soc_alloc_file() function. This func-
tion is invoked after the successful instantiation of a socket in order to allocate
a file structure and bind the socket to a file descriptor. In our instrumen-
tation callback, we initialize the ownership field with the PID of the current
process (i.e., the one that created the socket). Thus, we create a persistent
link between a socket object and a process entry in our app-scout model.

ST W N

72 Radu Mantu, Nicolae Tapus

The benefit of integrating app-scout with the Xtables framework is that
all other iptables extensions are readily available to the user. For example,
Listing 1 illustrates a rule that makes use of the conntrack module to block
the creation of a new connection based on application identity. Without it, the
match callback function in xt_scout would be invoked for every single outgoing
packet, even though the verdict is predictable and should be memoized. Note
however that the order in which the modules are loaded is more important
than the order in which the match criteria is specified. The only reason why
the scout module is not invoked on subsequent packets is that the ctstate

check failed beforehand.

$ iptables \
-m conntrack -m scout ‘# load extension modules <\
-I OUTPUT ‘# insert on OUTPUT chain ¢ \
-j DROP ‘# DROP verdict on match C N\
--digest 9986...7ae7 ‘# SHA256 digest (abridged) ¢ \
--ctstate NEW ‘# new connection ¢

LISTING 1. iptables rule with scout and conntrack modules

4. Evaluation
4.1. Experimental setup

The experiments described in this section have been carried out on the
following hardware:

e Intel NUC: Intel Core i7-7567U CPU @3.50GHz, Intel 1219-V 1-Gigabit
Ethernet Controller, 8GB DDR4 memory @2400MT/s.

e IBM System x3550 M4: Intel Xeon E5-2650Lv2 CPU @1.70GHz, Intel
82599ES 10-Gigabit SFP+ Ethernet Controller, 32GB DDR3 memory
@1600MT/s.

The reported throughput was derived from the iperf3 output and was
based on the application data transfer, excluding any headers. Both systems
are running a minimal installation of Arch Linux with kernel version 6.11.0.

4.2. Throughput impact

Our throughput evaluation of AppScout consists of iperf3 tests per-
formed between directly linked systems. For each testing campaign we have
varied the Maximum Transmission Unit (MTU) between 100 and the maxi-
mum value supported by the NIC. For each iperf3 experiment, we have used
the reported average data transfer rate over a TCP connection lasting ten sec-
onds. The reported values do not include the header lengths of the underlying
network layers.

Figure 2 consists of three campaigns of tests, illustrating the impact of
adding one iptables rule consisting of strictly one xt_scout match function
invocation. The match argument was selected so that each query to app-scout

Firewalling based on kernel-assisted application identity monitoring 73

— baseline — AppScout - - - lin. regression

59,436]
9,435
9,434 |
9,433 |-
9,432 | :

Throughput [M

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8000 9,000
MTU |bytes|

F1G. 2. AppScout throughout on IBM system.

would parse the executable sections record in its entirety, thus simulating a
worse case scenario. For iperf3, this record consists of 13 entries. Because
the average throughput difference between the baseline and the filtered case is
exceedingly low (0.15 Mbps) within the MTU range 1500-9710, we performed
a moving average with a window of 30 samples, equating to 300 bytes. This
was necessary in order to demonstrate that the low overhead was not coin-
cidental. Moreover, we observe a tendency of the AppScout throughput to
grow and converge towards the baseline for increasingly higher MTU values
(see the linear regression of the raw data in the 1500-9710 MTU range). This
phenomenon can be motivated by a decrease in the number of Packets Per
Second (PPS). For example, a six-fold increase over the default MTU size of
1500 translates results in a similar decrease in the number of packets necessary
to saturate the network controller. Because the process identity inference cost
does not depend on the packet size, it stands to reason that the AppScout
overhead should also decrease sixfold.

Y — baseline — AppScout

2 956.5 ‘ ‘ ‘

% 956

Z. 955.5

e

2 955

= 9545

= QQ QQ QQ QQ QQ QQ QQ
N R O O P

MTU |bytes|

F1G. 3. AppScout throughout on Intel NUC.

Similarly, Figure 3 illustrates the same experiment performed on the In-
tel NUC system, with a 1Gbps NIC. Although less noisy due to the lower

74 Radu Mantu, Nicolae Tapus

throughput, the same moving average window was used for consistency. De-
spite a number of anomalies that can for the most part be attributed to the
e1000e driver, we notice that the reduced number of Packets Per Second (PPS)
in relation to the core count as well as the increase base CPU frequency con-
tribute to further reduce the overhead of xt_scout.

4.3. System tuning based on processor resources

During our experiments, we encountered an issue where AppScout caused
the network device watchdog timer to trigger, leading to cascading resets of
the NIC. Normally, this problem is caused by faulty hardware that is unable
to service the transmission queue in a reasonably timely manner. However,
this bug can also be triggered on Intel network controllers by setting a high
value for the InterruptThrottleRate driver argument. This command line
kernel argument is used to limit the number of interrupts generated by the
NIC in situations where most of the CPU time is dedicated to network traffic
processing. In our case, the process identity lookup operation introduced a
delay that had the same effect as the throttle mechanism. We identified three
solutions to this problem:

(1) Adjust the frequency governor: When we first triggered this bug, the
effective CPU frequency was set to approx. 1.1GHz. By setting the scal-
ing governor to performance mode, we increased it to a mostly constant
2.1GHz, thus compensating for the identity lookup delay.

(2) Disable garbage collection: Avoiding scheduling more delayed work
in the bottom half is a good method of freeing up clock cycles. While
still using the default userspace scaling governor, we noticed an approx.
80% decrease in watchdog timer triggers. While this was not a permanent
solution in our testing environment, it can have a greater impact on servers
with high system load and many short-lived processes.

(3) Employ conntrack: The conntrack module can be used to improve the
efficiency of iptables by reducing the number of match callback invo-
cations based on the state of each connection. This type of optimization
is widely used in both hardware and software firewalls and can have a
greater impact than any of the previous solutions.

4.4. Identity auditing using the Netlink protocol

Traditionally, arbitrary communication between a userspace process and
a specific kernel module was done via the Virtual File System (VFS) layer.
Lately, this functionality has been partially duplicated via Netlink sockets,
with specific modules exposing different subsystems as protocols in the AF_NETLINK
domain. For example, netstat is superseded by ss which uses the Netlink
Socket Diagnostics subsystem. Similarly, nftables uses the Netlink Netfil-
ter subsystem which was backported to the iptables backend to maintain
compatibility. As a result, we decided to implement support for a new Netlink

Firewalling based on kernel-assisted application identity monitoring 75

subsystem in the app-scout module. We offer probe_appscout as a userspace
application capable of querying the kernel module for information regarding a
certain process, based on its PID.

5. Related Work

VMWall [16] is a Xen-based application firewall first introduced in 2008.
In their architecture, dom0 is the driver domain (i.e., the VM that controls
the actual hardware) and all other VMs access the networks through dom0
via a Virtual Network Interface (VNI). Their firewall comes in the form of
a kernel module that attaches itself to the network bridge between the VNI
backend and the NIC driver in dom0. This module performs Virtual Machine
Introspection (VMI) to access the kernel memory of other VMs, iterate over
the list of active processes, and find the one that has access to the socket that
is related to a specific low. The process information that it retrieves for use
in filtration rules consists of PID, process name and the full path of the base
executable. Although VMWall ensures better isolation to its kernel module
by means of hardware virtualization extensions, AppScout provides more fine-
grained identity matching criteria with significantly lower overhead (approx.
1.065E-5 vs 1-7%).

Released in 2011, Dymo [15] is a Windows XP kernel module that imple-
ments a dynamic code identity primitive. By subscribing to the N'T kernel
notification system for memory allocation, file mapping and memory permis-
sion changes, Dymo identifies all memory regions that could be executed. By
leveraging this information in an instrumented Page Fault handler, it tracks
all pages that contain code that was actually executed and labels them using
cryptographic hashes of their content. While similar in that it also computes
cryptographic hashes over virtual memory ranges, AppScout faults in the mem-
ory mapped executable section in order to reduce variability due to runtime
execution paths. Another important distinction between the two solutions
stems from their intended applications. E.g., AppScout implements long-term
retention of the process identity in order to contribute to audits following se-
curity incidents.

6. Conclusion

In this paper we explored a method of attaining application awareness
without sacrificing user privacy (RQ1). To this end, we have implemented a
kernel module that collects SHA256 message digests of all executable sections
that were at any time accessible to any given process during its lifetime. This
approach allows a user to match network traffic based not on the content of
each packet (i.e. DPI) but instead on the relationship between its endpoint
socket and the process that created it. Consequently, traffic can be either
blocked or allowed based on whether the endpoint application was "tainted" by
a specific binary (identified by its SHA256) or library version. The identity of

76

Radu Mantu, Nicolae Tapus

the application is established without requiring knowledge of the protocols that
it implements (RQ2), as is usually the case in contemporary solutions based
on protocol dissectors. To illustrate this functionality, we have implemented
an iptables extension that presents negligible overhead (i.e., less than 2Mbps
slowdown on a 10Gbps link) in both desktop and server-grade environments

1
2]

3]

4]

]

(6]

7]
18]

9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

REFERENCES

Stiennon R., “Four paths to true network security,” Commentary COM-20-0571, Gart-
ner Research, Tech. Rep., 2003.

Sheikh, Nabeel and Pawar, Mayur and Lawrence, Victor, “Zero trust using network
micro segmentation,” in IEEE INFOCOM 2021-IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS). IEEE, 2021, pp. 1-6.

Husdk, Martin and Cermdk, Milan and Jirsik, Tomd$ and Celeda, Pavel, “Https traffic
analysis and client identification using passive ssl/tls fingerprinting,” EURASIP Journal
on Information Security, vol. 2016, pp. 1-14, 2016.

Radivilova, Tamara and Kirichenko, Lyudmyla and Ageyev, Dmytro and Tawalbeh,
Mazim and Bulakh, Vitalii, “Decrypting ssl/tls traffic for hidden threats detection,” in
2018 IEEE 9th International Conference on Dependable Systems, Services and Tech-
nologies (DESSERT). IEEE, 2018, pp. 143-146.

Manning, Derek and Li, Peilong and Wu, Xiaoban and Luo, Yan and Zhang, Tong and
Li, Weigang, “Aceta: Accelerating encrypted traffic analytics on network edge,” in ICC
2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020, pp.
1-6.

Malmgren, Andreas and Persson, Simon, “A comparative study of palo alto networks
and juniper networks next-generation firewalls for a small enterprise network,” 2016.
Headquarters, Americas, “Classifying network traffic using nbar,” cit. on, p. 13, 2006.
Keromytis, Angelos D and Prevelakis, Vassilis, “Designing firewalls: A survey,” Network
Security: Current Status and Future Directions, pp. 33—49, 2007.

Morrow, Bill, “Byod security challenges: control and protect your most sensitive data,”
Network Security, vol. 2012, no. 12, pp. 5-8, 2012.

Malecki, Florian, “Overcoming the security risks of remote working,” Computer fraud
& security, vol. 2020, no. 7, pp. 10-12, 2020.

Toannidis, Sotiris and Keromytis, Angelos D and Bellovin, Steve M and Smith,
Jonathan M, “Implementing a distributed firewall,” in Proceedings of the 7th ACM
conference on Computer and communications security, 2000, pp. 190-199.

“App-id tech brief,” Palo Alto Networks, Tech. Rep., 2021.

Hiramatsu, Masami and Oshima, Satoshi, “Djprobe—kernel probing with the smallest
overhead,” in Linux Symposium, 2007, p. 189.

Jia, Jinghao and Le, Michael V and Ahmed, Salman and Williams, Dan and Jamjoom,
Hani and Xu, Tianyin, “Fast (trapless) kernel probes everywhere,” in 2024 USENIX
Annual Technical Conference (USENIX ATC 24), 2024, pp. 379-386.

Gilbert, Bob and Kemmerer, Richard and Kruegel, Christopher and Vigna, Giovanni,
“Dymo: Tracking dynamic code identity,” in Recent Advances in Intrusion Detection:
14th International Symposium, RAID 2011, Menlo Park, CA, USA, September 20-21,
2011. Proceedings 14. Springer, 2011, pp. 21-40.

Srivastava, Abhinav and Giffin, Jonathon, “Tamper-resistant, application-aware block-
ing of malicious network connections,” in Recent Advances in Intrusion Detection: 11th
International Symposium, RAID 2008, Cambridge, MA, USA, September 15-17, 2008.
Proceedings 11. Springer, 2008, pp. 39-58.

