

STRONG CONVERGENCE THEOREMS FOR ϕ -BEST PROXIMITY POINTS OF NON-SELF NONEXTENSIVE MAPPINGS IN A BANACH SPACE

Priyanka Priyadarshini Behera¹, C. Nahak²

This study obtains strong convergence theorems for non-self nonextensive mappings in a Banach space, utilizing the new hybrid algorithmic techniques to address global minimization problems that pertain to common ϕ -best proximity points. Applying the generalized projection operator, we introduce the ϕ -proximal property and exhibit some existence results of ϕ -best proximity points. This serves as an imperative tool for establishing our strong convergence results.

Keywords: Generalized projection operator; ϕ -best proximity points; nonextensive mappings; ϕ_p -property; uniform convexity

1. Introduction

Let B be a real Banach space with norm $\|\cdot\|$ and B^* be its dual space. Let K be a nonempty, closed subset of B and $T : K \rightarrow K$ be a mapping. Let $F(T)$ symbolise the fixed point set of T , defined as $F(T) := \{x \in K : Tx = x\}$. We will use the notations $S_B = \{u \in B : \|u\| = 1\}$ for the unit sphere, $\langle \cdot, \cdot \rangle$ for the duality pair of B and B^* , and \rightarrow , \xrightarrow{w} and $\xrightarrow{w^*}$ for strong, weak and weak* convergence, respectively.

The duality mapping J from B to B^* is defined by

$$Ju = \{\zeta \in B^* : \langle u, \zeta \rangle = \|u\|^2 = \|\zeta\|^2\}, \text{ for every } u \in B.$$

J is single-valued in a smooth Banach space B and uniformly norm-to-norm continuous on each bounded subset of a uniformly smooth Banach space B (see [12, 17, 20] for more details). A Banach space B is said to be strictly convex if for any two distinct elements $u, v \in S_B$, $\|\frac{u+v}{2}\| < 1$ and uniformly convex if for any two sequences $\{u_n\}$ and $\{v_n\}$ in S_B with $\|\frac{u_n+v_n}{2}\| \rightarrow 1$, we have $\|u_n - v_n\| \rightarrow 0$ as $n \rightarrow \infty$. B is said to have property (KK) if the norm and weak convergence coincide on the unit sphere S_B . It has been proved that every uniformly convex Banach space is strictly convex, reflexive and satisfies property (KK) (see [17, 8]). B is said to be smooth if for every $u, v \in S_B$ and $t \in \mathbb{R}$, the limit $\lim_{t \rightarrow 0} \frac{\|u+tv\| - \|u\|}{t}$, exists and it is called uniformly smooth if the limit is attained uniformly. We recall that [8] the duality mapping J from a smooth Banach space B into B^* is said to be weakly sequentially continuous if $u_n \xrightarrow{w} u$ implies $Ju_n \xrightarrow{w^*} Ju$.

Let B be a smooth Banach space. We define the functional [22] $\phi : B \times B \rightarrow \mathbb{R}$ by

$$\phi(u, v) = \|u\|^2 - 2\langle u, Jv \rangle + \|v\|^2, \quad \forall u, v \in B. \quad (1)$$

Some properties of the functional ϕ are listed below (see [22, 24, 15, 16] for more details):

- (ϕ 1) $(\|u\| - \|v\|)^2 \leq \phi(u, v) \leq (\|u\| + \|v\|)^2$, $u, v \in B$.
- (ϕ 2) $\phi(u, v) = \phi(u, z) + \phi(z, v) + 2\langle u - z, Jz - Jv \rangle$, $u, v, z \in B$.
- (ϕ 3) [16, Remark 2.1] $\phi(u, v) = 0$ if and only if $u = v$, for u, v in a strictly convex and smooth Banach space B .

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India, Email priyanka.pb@iitkgp.ac.in

²Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India, Email cnahak@maths.iitkgp.ac.in

Let K be a nonempty, closed and convex subset of a strictly convex, reflexive and smooth Banach space B and $u \in B$. Then there exists a unique element $u_0 \in K$ such that $\phi(u, u_0) = \inf_{v \in K} \phi(u, v)$. We collect such element u_0 in $\Pi_K u$ and refer to Π_K as the generalized projection onto K . To get more insight on generalized projections, one may refer to [7, 15, 16, 19]. Alber et al. [23] introduced the notion of nonextensive mappings in a Banach space applying the generalized projection operator. Inspired by this, we say that a mapping $T : M \rightarrow N$ is non-self nonextensive if

$$\phi(Tu, Tv) \leq \phi(u, v), \text{ for all } u, v \in M. \quad (2)$$

Certainly, in a Hilbert space H , $\phi(u, v) = \|u - v\|^2$, for $u, v \in H$ and in such a case, nonextensive mappings coincide with the nonexpansive mappings.

A mapping $T : B \rightarrow B$ is said to possess a fixed point if the equation $Tu = u$ has atleast one solution. When considering a generalized projection operator, which may not behave like a metric, we define a fixed point of T as $\phi(u, Tu) = 0$, for $u \in B$. This simplifies the fixed point equation in a strictly convex and smooth Banach space. In the case of a non-self mapping T , the equation $\phi(u, Tu) = 0$ may not have a solution, resulting in $\phi(u, Tu) > 0$. More precisely, let us assume two nonempty subsets M, N of a smooth Banach space B such that $T : M \rightarrow N$ and $\phi(u, Tu) > 0, u \in M$. In such a case, it is our objective to find an element $u_0 \in M$ such that $\phi(u_0, Tu_0)$ attains its minimum value $\text{dist}_\phi(M, N)$. This point u_0 is referred to as a ϕ -best proximity point of the mapping T in M .

Researchers have devised and investigated numerous iterative approaches to approximate a common fixed point of nonexpansive mappings. In this direction, Nakajo and Takahashi [9] developed an iterative scheme for approximating fixed points of nonexpansive mappings in a Hilbert space. Matsushita and Takahashi [16] obtained a hybrid algorithm for obtaining a strong convergence theorem for relatively nonexpansive mappings in a Banach space. By modifying the hybrid method introduced in [16], Inoue et al. [4] proposed a modified shrinking projection technique for relatively nonexpansive mappings in a Banach space. This approach is based on the modifying shrinking projection method introduced by Takahashi et al. [21] in a Hilbert space.

Strong convergence theorems by hybrid methods for the best proximity point of a nonself nonexpansive mapping in Hilbert spaces were recently proposed by Jacob et al. [5]. A shrinking projection approach was developed by Suparatulatorn et al. [14] to solve the iterative scheme in a Hilbert space, with the aim of making computation easier. Recently, Suparatulatorn et al. [13] introduced the general Mann algorithm for nonself nonexpansive mappings and proved the convergence result in a Hilbert space. They improved upon previous results of [14] by utilizing an approximate best proximity point sequence for a mapping T instead of the demi-closedness principle. Motivated by all the above research findings, our objective is to obtain strong convergence theorems for non-self nonextensive mappings in Banach spaces. We propose hybrid algorithms for strong convergence results of common ϕ -best proximity points in a Banach space.

This article organizes its contents into four parts. The fundamental concepts are concisely outlined in Section 2. Section 3 introduces the notion of ϕ_p -property and some of its basic properties. In Section 4, we investigate the ϕ -proximal property and its associated findings. In Section 5, we employ the ϕ -proximal property for achieving strong convergence results by shrinking projection method for common ϕ -best proximity points in Banach spaces.

2. Preliminaries

Let M and N be two nonempty, closed, convex subsets of a smooth Banach space B . For the rest of the paper, unless otherwise stated, we denote M_0 and N_0 as follows:

$$\begin{aligned} M_0 &= \{u \in M : \phi(u, v) = \text{dist}_\phi(M, N), \text{ for some } v \in N\}, \\ N_0 &= \{v \in N : \phi(u, v) = \text{dist}_\phi(M, N), \text{ for some } u \in M\}, \end{aligned}$$

where $\text{dist}_\phi(M, N) = \inf\{\phi(u, v) : u \in M \text{ and } v \in N\}$. The pair (M_0, N_0) is referred to as the ϕ -best proximity pair associated with (M, N) . This pair is nonempty whenever (M, N) is a nonempty, compact pair of subsets in a Frechet smooth Banach space.

Let us denote $\text{Best}_M^\phi(T)$ as the set of ϕ -best proximity points of T on M , where

$$\text{Best}_M^\phi(T) = \{u \in M : \phi(u, Tu) = \text{dist}_\phi(M, N)\}.$$

It is easy to see that the set $\text{Best}_M^\phi(T)$ is contained in M_0 .

The following findings are essential for exhibiting the main theorems that will be presented in subsequent sections.

Lemma 2.1. (Kamimura and Takahashi [15]) *Let B be a uniformly convex and smooth Banach space and let $\{u_n\}$ and $\{v_n\}$ be two sequences in B . If $\phi(u_n, v_n) \rightarrow 0$ and either of $\{u_n\}$ or $\{v_n\}$ is bounded, then $u_n - v_n \rightarrow 0$ as $n \rightarrow \infty$.*

Lemma 2.2. (Alber [22], Alber and Reich [24], Kamimura and Takahashi [15]) *Let K be a nonempty, closed, convex subset of a smooth Banach space B and $u \in B$. Then $u_0 = \Pi_K u$ if and only if $\langle u_0 - v, Ju - Ju_0 \rangle \geq 0$, for all $v \in K$.*

Lemma 2.3. (Alber [22], Kamimura and Takahashi [15]) *Let B be a reflexive, strictly convex and smooth Banach space and let K be a nonempty, closed, convex subset of B and $u \in B$. Then $\phi(v, \Pi_K u) + \phi(\Pi_K u, u) \leq \phi(v, u)$, $\forall v \in K$.*

Lemma 2.4. (Xu [6], Zălinescu [3]) *Let B be a uniformly convex Banach space and let $r > 0$. Then there exists a strictly increasing, continuous and convex function $\psi : [0, \infty) \rightarrow [0, \infty)$ with $\psi(0) = 0$ and $\|\eta u + (1 - \eta)v\|^2 \leq \eta\|u\|^2 + (1 - \eta)\|v\|^2 - \eta(1 - \eta)\psi(\|u - v\|)$, for all $u, v \in B_r = \{z \in B : \|z\| \leq r\}$ and $\eta \in [0, 1]$.*

3. ϕ_p -property

We now introduce a concept called the ϕ_p -property, which generalizes the previously defined P -property in [18]. While the P -property relies on a metric, the ϕ_p -property utilizes the functional ϕ in a smooth Banach space.

Definition 3.1. [ϕ_p -property] *Let (M, N) be a pair of non-empty subsets of a smooth Banach space B with M_0 is non-empty. Then (M, N) is said to have the ϕ_p -property if and only if*

$$\begin{cases} \phi(u_1, v_1) = \text{dist}_\phi(M, N) \\ \phi(u_2, v_2) = \text{dist}_\phi(M, N) \end{cases} \Rightarrow \phi(u_1, u_2) = \phi(v_1, v_2),$$

for $u_1, u_2 \in M_0$ and $v_1, v_2 \in N_0$.

Lemma 3.1. *Any pair (M, N) of non-empty, closed, convex subsets of a real Hilbert space H satisfies the ϕ_p -property.*

Proof. In a Hilbert space $\phi(u, v) = \|u - v\|^2$. Let us take $u_1, u_2 \in M_0$ and $v_1, v_2 \in N_0$ satisfying $\begin{cases} \phi(u_1, v_1) = \text{dist}_\phi(M, N), \\ \phi(u_2, v_2) = \text{dist}_\phi(M, N). \end{cases}$ This gives, $\|u_1 - v_1\|^2 = \text{dist}_\phi(M, N)$ and $\|u_2 - v_2\|^2 = \text{dist}_\phi(M, N)$. Then, by the uniqueness of generalized projection operator ϕ on H , we get $v_1 = \Pi_N(u_1)$ and $v_2 = \Pi_N(u_2)$. Also, $\|u_1 - v_2\| = \|u_2 - v_1\|$. Hence, $\|u_1 - v_2\|^2 = \|u_1 - u_2\|^2 + \text{dist}_\phi(M, N)$; and $\|u_2 - v_1\|^2 = \|v_1 - v_2\|^2 + \text{dist}_\phi(M, N)$. Therefore, $\|u_1 - u_2\|^2 = \|v_1 - v_2\|^2$. So, $\phi(u_1, u_2) = \phi(v_1, v_2)$. Hence H satisfies the ϕ_p -property. \square

Lemma 3.2. *Let B be a strictly convex and smooth Banach space and (M, N) be a pair of non-empty subsets of B with M_0 being non-empty. Then, (M, N) satisfies the ϕ_p -property whenever $\text{dist}_\phi(M, N) = 0$.*

Proof. Let us consider $\phi(u_1, v_1) = 0 = \phi(u_2, v_2)$; for $u_1, u_2 \in M_0$ and $v_1, v_2 \in N_0$. Then, $u_1 = v_1$ and $u_2 = v_2$. Hence, $\phi(u_1, u_2) - \phi(v_1, v_2) = 0$. So, $\phi(u_1, u_2) = \phi(v_1, v_2)$. \square

Remark 3.1. It is noted that if B is a uniformly convex and smooth Banach space and M_0 is non-empty, then according to Lemma 3.2, the pair (M, N) satisfies the ϕ_p -property, when the ϕ -distance function $\text{dist}_\phi(M, N)$ equals 0. However, if $\text{dist}_\phi(M, N) \neq 0$, then a non-empty pair of subsets need not satisfy the ϕ_p -property, even if the space is uniformly smooth and uniformly convex. This is shown in the following example.

Example 3.1. Let us consider $(\mathbb{R}^3, \|\cdot\|_3)$, where the norm is defined by

$$\|x\|_3 = (|x_1|^3 + |x_2|^3 + |x_3|^3)^{\frac{1}{3}}, \quad x = (x_1, x_2, x_3) \in \mathbb{R}^3.$$

Let us take

$$M = \{(x_1, x_2, x_3) : 0 \leq x_1 \leq 1, x_2^3 + x_3^3 = 1\} \text{ and } N = \{(0, 0, 0)\}.$$

Then both M and N are compact subsets of \mathbb{R}^3 . Here $\text{dist}_\phi(M, N) = 1$ and $M_0 = \{(0, 1, 0), (0, 0, 1)\}$ and $N_0 = N$. Now, $\phi((0, 1, 0), (0, 0, 0)) = 1 = \phi((0, 0, 1), (0, 0, 0))$; but $\phi((0, 1, 0), (0, 0, 1)) \neq \phi((0, 0, 0))$. So, (M, N) fails to satisfy the ϕ_p -property.

Remark 3.2. Any pair (M, N) of nonempty subsets of a smooth Banach space B with $\text{dist}_\phi(M, N) \neq 0$ may not satisfy the ϕ_p -property if one of the sets is singleton.

Lemma 3.3. Let B be a strictly convex and smooth Banach space and (M, N) be a pair of non-empty, closed, convex subsets of B with M_0 being non-empty and (M, N) satisfies the ϕ_p -property. Then, the generalized projection Π_{M_0} restricted to N_0 is an ϕ -isometry.

Proof. For elements $v_1, v_2 \in N_0$, there exists $u_1, u_2 \in M_0$ such that $\phi(u_i, v_i) = \text{dist}_\phi(M, N)$, for $i = 1, 2$. i.e., $\Pi_{M_0}(v_i) = u_i, i = 1, 2$. By the ϕ_p -property, $\phi(\Pi_{M_0}(v_1), \Pi_{M_0}(v_2)) = \phi(v_1, v_2) = \phi(u_1, u_2)$. Thus, Π_{M_0} is an ϕ -isometry. \square

The subsequent conclusions are essential for proving the main findings.

Lemma 3.4. Let (M, N) be a pair of nonempty, closed, convex subsets of a smooth Banach space B . Then $\phi(u, \Pi_N u) = \text{dist}_\phi(M, N)$, $\forall u \in M_0$ and $\phi(\Pi_M v, v) = \text{dist}_\phi(M, N)$, $\forall v \in N_0$.

Proof. Let $u \in M_0$, then we can find an element $z \in N$ such that $\phi(u, z) = \text{dist}_\phi(M, N)$. Using the definition of $\Pi_N u$, we ascertain that

$$\phi(u, \Pi_N u) = \inf_{\hat{u} \in N} \phi(u, \hat{u}) \leq \phi(u, z) = \text{dist}_\phi(M, N).$$

Thus, $\phi(u, \Pi_N u) = \text{dist}_\phi(M, N)$. The other claim follows likewise. \square

Lemma 3.5. Let (M, N) be a pair of nonempty subsets of a strictly convex and smooth Banach space B with M being closed and convex. Let $T : M \rightarrow N$ be a mapping satisfying $T(M_0) \subseteq N_0$ and that (M, N) has the ϕ_p -property. Then $F(\Pi_M \circ T|_{M_0}) = F(\Pi_M \circ T) \cap M_0 = \text{Best}_M^\phi(T)$.

Proof. Let $u \in F(\Pi_M \circ T) \cap M_0$. Since $u \in F(\Pi_M \circ T)$, it implies that $\Pi_M \circ Tu = u$. Then,

$$\begin{aligned} \phi(u, Tu) &= \phi(u, \Pi_M \circ Tu) + \phi(\Pi_M \circ Tu, Tu) + 2\langle u - \Pi_M \circ Tu, J\Pi_M \circ Tu - JT u \rangle \\ &= \phi(\Pi_M \circ Tu, Tu) \\ &= \text{dist}_\phi(M, N). \text{ (by Lemma 3.4)} \end{aligned}$$

This shows that $u \in \text{Best}_M^\phi(T)$.

Conversely, let $u \in \text{Best}_M^\phi(T)$. Clearly, $u \in M_0$ and $\phi(u, Tu) = \text{dist}_\phi(M, N)$. Also, by Lemma 3.4, we deduce that $\phi(\Pi_M \circ Tu, Tu) = \text{dist}_\phi(M, N)$. Since (M, N) has the ϕ_p -property, we obtain that $\phi(u, \Pi_M \circ Tu) = 0$. i.e., $u \in F(\Pi_M \circ T)$ and as a result, $u \in F(\Pi_M \circ T) \cap M_0$. \square

Lemma 3.6. *Let (M, N) be a pair of nonempty subsets of a smooth and strictly convex Banach space B with N being closed and convex. Let $T : M \rightarrow N$ be a mapping that satisfies $T(M_0) \subseteq N_0$. Then, $Tu = \Pi_N u$, $\forall u \in \text{Best}_M^\phi(T)$.*

Proof. Let $u \in \text{Best}_M^\phi(T)$. i.e., $\phi(u, Tu) = \text{dist}_\phi(M, N)$. Now, since $\text{Best}_M^\phi(T) \subseteq M_0$ and $\phi(u, \Pi_N u) = \text{dist}_\phi(M, N)$ (by Lemma 3.4); using ϕ_p -property, we deduce that

$$\phi(Tu, \Pi_N u) = 0.$$

Hence, by $(\phi 3)$, $Tu = \Pi_N u$. \square

4. ϕ -proximal property

In this section, we study the ϕ -proximal property, which is an encompassing term derived from [11] in the context of a generalized projection.

Definition 4.1. *[A ϕ -BPS] Let (M, N) be a nonempty pair of subsets of a smooth Banach space B and $T : M \rightarrow N$ be a non-self mapping. A sequence $\{u_n\}$ in M is said to be an approximate ϕ -best proximity point sequence (A ϕ -BPS) for T if and only if $\lim_{n \rightarrow \infty} \phi(u_n, Tu_n) = \text{dist}_\phi(M, N)$.*

It is noteworthy that in a Hilbert space, this notion is analogous to the idea of an approximate best-proximity point sequence as studied in [11]. The following lemma ensures the existence of an (A ϕ -BPS) for a non-self nonextensive mapping.

Lemma 4.1. *Let (M, N) be a pair of nonempty, convex subsets of a smooth and uniformly convex Banach space that satisfies the ϕ_p -property. Let $T : M \rightarrow N$ be a non-self nonextensive mapping satisfying $T(M_0) \subseteq N_0$, then there exists an (A ϕ -BPS) for T in M .*

Proof. It is evident that M_0 is a convex subset of M . Let $u_0 \in M_0$. Since $T(M_0) \subseteq N_0$, there exists an element $u_1 \in M_0$ such that $\phi(u_1, Tu_0) = \text{dist}_\phi(M, N)$. Now, since $u_1 \in M_0$ and by using the fact that $T(M_0) \subseteq N_0$, it is guaranteed to find an element $u_2 \in M_0$ such that $\phi(u_2, Tu_1) = \text{dist}_\phi(M, N)$. By proceeding in this way, we can identify a sequence $\{u_n\}$ in M_0 such that

$$\phi(u_{n+1}, Tu_n) = \text{dist}_\phi(M, N), \text{ for each } n \in \mathbb{N} \cup \{0\}. \quad (3)$$

Since (M, N) satisfies the ϕ_p -property and T is nonextensive, it follows that $\phi(u_n, u_{n+1}) = \phi(Tu_{n-1}, Tu_n) \leq \phi(u_{n-1}, u_n)$. As a result, $\{\phi(u_n, u_{n+1})\}$ is a decreasing, bounded sequence and so it converges. Consequently, we find that as n approaches infinity, $\phi(u_n, u_{n+1}) \rightarrow 0$ and Proposition 2.1 gives

$$\lim_{n \rightarrow \infty} \|u_n - u_{n+1}\| = 0. \quad (4)$$

Therefore, we conclude that

$$\phi(u_n, Tu_n) = \phi(u_n, u_{n+1}) + \phi(u_{n+1}, Tu_n) + 2\langle u_n - u_{n+1}, Ju_{n+1} - Ju_n \rangle. \quad (5)$$

Employing (3) and (4) in (5), we get $\lim_{n \rightarrow \infty} \phi(u_n, Tu_n) = \text{dist}_\phi(M, N)$. This proves the claim. \square

Motivated by [11] and [20], the subsequent definition is provided.

Definition 4.2. *[ϕ -proximal property] Let (M, N) be a pair of nonempty subsets of a smooth Banach space B . A non-self mapping $T : M \rightarrow N$ is said to satisfy the ϕ -proximal property if and only if for each sequence $\{u_n\}$ in M such that $u_n \xrightarrow{w} u_0 \in M$ and $\lim_{n \rightarrow \infty} \phi(u_n, Tu_n) = \text{dist}_\phi(M, N)$, we have $\phi(u_0, Tu_0) = \text{dist}_\phi(M, N)$.*

Note that if $\text{dist}_\phi(M, N) = 0$ and B is smooth and strictly convex, then the ϕ -proximal property reduces to the demi-closedness principle of $I - T$ at 0, where I is the identity operator on M . Recall that the map $I - T : M \rightarrow B$ is demi-closed at 0 if whenever $\{u_n\}$ is a sequence in M such that $u_n \xrightarrow{w} u_0 \in M$ and $(I - T)u_n \rightarrow 0$ as $n \rightarrow \infty$; then $(I - T)u_0 = 0$.

The following theorem asserts the existence of ϕ -best proximity points for non-self nonextensive mappings in a uniformly convex Banach space.

Theorem 4.1. *Let (M, N) be a pair of nonempty, convex subsets of a smooth and uniformly convex Banach space B with M being weakly compact and that (M, N) satisfies the ϕ_p -property. Suppose $T : M \rightarrow N$ be a non-self nonextensive mapping satisfying $T(M_0) \subseteq N_0$ and M_0 is nonempty. Then T has a ϕ -best proximity point if one of the following condition hold.*

- (1) J is weakly sequentially continuous and T is weakly continuous.
- (2) T satisfies the ϕ -proximal property.

Proof. It is apparent from Lemma 4.1 that there exists a $(A\phi$ -BPS) sequence $\{u_n\}$ in M_0 . i.e., $\lim_{n \rightarrow \infty} \phi(u_n, Tu_n) = \text{dist}_\phi(M, N)$. Now, since T is weakly compact, we may assume that $u_n \xrightarrow{w} u_0 \in M$.

- (1) If T is weakly continuous; then $Tu_n \xrightarrow{w} Tu_0$, and since J is weakly sequentially continuous, $JTu_n \xrightarrow{w^*} JT u_0$. Therefore,

$$\begin{aligned} \phi(u_0, Tu_0) &\leq \liminf_{n \rightarrow \infty} \phi(u_n, Tu_0) = \lim_{n \rightarrow \infty} \phi(u_n, Tu_n) + \|Tu_0\|^2 - \|Tu_n\|^2 + 2\langle u_n, JT u_n - JT u_0 \rangle \\ &= \text{dist}_\phi(M, N). \end{aligned}$$

- (2) If T satisfies the ϕ -proximal property, we obtain from the Definition 4.2 that $\phi(u_0, Tu_0) = \text{dist}_\phi(M, N)$.

□

Motivated by the Property (UC), studied in [1], we introduce the notion of property $(\phi\text{-UC})$ in a Banach space.

Definition 4.3. *[Property $(\phi\text{-UC})$] A pair (M, N) of nonempty subsets of a smooth Banach space B is said to have the property $(\phi\text{-UC})$ if for any sequences $\{u_n\}, \{v_n\}$ in M and $\{t_n\}$ in N ,*

$$\left. \begin{aligned} \lim_{n \rightarrow \infty} \phi(u_n, t_n) &= \text{dist}_\phi(M, N) \\ \lim_{n \rightarrow \infty} \phi(v_n, t_n) &= \text{dist}_\phi(M, N) \end{aligned} \right\} \Rightarrow \lim_{n \rightarrow \infty} \phi(u_n, v_n) = 0.$$

We now state another version of Theorem 4.1 for a uniformly convex Banach space.

Theorem 4.2. *Let (M, N) be a pair of nonempty, convex subsets of a uniformly convex and Frechet smooth Banach space B with N being compact and M is closed and bounded. Assume that $T : M \rightarrow N$ is a non-self nonextensive mapping with $T(M_0) \subseteq N_0$ and that (M, N) satisfies the property $(\phi\text{-UC})$. Then T has a ϕ -best proximity point in M .*

Proof. Lemma 4.1 gives a sequence $\{u_n\}$ in M_0 satisfying $\lim_{n \rightarrow \infty} \phi(u_n, Tu_n) = \text{dist}_\phi(M, N)$. Since M is bounded and N is compact, it follows that $u_n \xrightarrow{w} u_0 \in M_0$ and $Tu_n \rightarrow v_0 \in N$. Therefore,

$$\begin{aligned} \phi(u_0, v_0) &\leq \liminf_{n \rightarrow \infty} \phi(u_n, v_0) = \lim_{n \rightarrow \infty} \phi(u_n, Tu_n) + \phi(Tu_n, v_0) + 2\langle u_n - Tu_n, JT u_n - Jv_0 \rangle \\ &= \text{dist}_\phi(M, N), \end{aligned} \tag{6}$$

which follows using the fact that $JTu_n - Jv_0 \rightarrow 0$ as $n \rightarrow \infty$ in a Frechet smooth Banach space. On the other hand, for each $n \in \mathbb{N}$, we have $\lim_{n \rightarrow \infty} \phi(u_n, v_0) = \text{dist}_\phi(M, N)$. Since (M, N) satisfies the property $(\phi\text{-UC})$; it follows that $\lim_{n \rightarrow \infty} \phi(u_n, u_0) = 0$. Consequently, by Proposition 2.1, $\lim_{n \rightarrow \infty} \|u_n - u_0\| = 0$. As a result, $\phi(v_0, Tu_0) = 0$; which implies that $v_0 = Tu_0$. Thus, $\phi(u_0, Tu_0) = \text{dist}_\phi(M, N)$. □

5. Algorithms and strong convergence results

This section commences some strong convergence results of the iterate sequence to the ϕ -best proximity point of non-self nonextensive mappings using hybrid algorithms. We start with proving the strong convergence theorem using the shrinking projection method in a Banach space.

Theorem 5.1. Let (M, N) be a pair of nonempty, closed, convex subsets of a uniformly convex and uniformly smooth Banach space B that satisfies the ϕ_p -property. Let $T : M \rightarrow N$ be a non-self nonextensive mapping satisfying $T(M_0) \subseteq N_0$ and that T has the ϕ -proximal property. Let us consider the sequence $\{u_n\}$ generated by

$$\begin{cases} u_1 = \Pi_{M_0} u, u \in B \text{ be arbitrary,} \\ H_1 = M_0, \\ v_n = J^{-1}(\alpha_n Ju_n + (1 - \alpha_n) J \Pi_M T u_n), n \in \mathbb{N}, \\ H_{n+1} = \{z \in H_n : \phi(z, v_n) \leq \phi(z, u_n)\}, \\ u_{n+1} = \Pi_{H_{n+1}} u, \end{cases} \quad (7)$$

for each $n \in \mathbb{N}$, where $\alpha_n \in [0, a]$, for some $a \in [0, 1)$. If $\text{Best}_M^\phi(T)$ is nonempty, then the sequence $\{u_n\}$ strongly converges to $u^* = \Pi_{\text{Best}_M^\phi(T)} u$.

Proof. From the definition of H_n , it is obvious that H_n is closed. The convexity of H_n is inferred from the inequality $\phi(z, v_n) \leq \phi(z, u_n)$, which is equivalent to $2\langle z, Ju_n - Jv_n \rangle + \|v_n\|^2 - \|u_n\|^2 \leq 0$. Next, we show by induction that the set $\text{Best}_M^\phi(T)$ is contained in H_n , for each $n \in \mathbb{N}$. For $n = 1$, $\text{Best}_M^\phi(T) \subset H_1 = M_0$. Let us assume that $\text{Best}_M^\phi(T) \subset H_k$, for some $k \in \mathbb{N}$ and $p \in \text{Best}_M^\phi(T) \subset H_k$. Then

$$\begin{aligned} \phi(p, v_k) &= \phi(p, J^{-1}(\alpha_k Ju_k + (1 - \alpha_k) J \Pi_M T u_k)) \\ &\leq \|p\|^2 - 2\alpha_k \langle p, Ju_k \rangle - 2(1 - \alpha_k) \langle p, J \Pi_M T u_k \rangle + \alpha_k \|u_k\|^2 + (1 - \alpha_k) \|\Pi_M T u_k\|^2 \\ &= \alpha_k \phi(p, u_k) + (1 - \alpha_k) \phi(p, \Pi_M T u_k). \end{aligned} \quad (8)$$

By Lemma 3.4, it follows that $\phi(\Pi_M T u_k, Tu_k) = \text{dist}_\phi(M, N)$ and $\phi(p, Tp) = \text{dist}_\phi(M, N)$. By using the ϕ_p -property and the fact that T is nonextensive mapping, we deduce that

$$\phi(p, \Pi_M T u_k) = \phi(Tp, Tu_k) \leq \phi(p, u_k). \quad (9)$$

So, (8) reduces to, $\phi(p, v_k) \leq \phi(p, u_k)$; indicating that $p \in H_{k+1}$. Therefore, it follows that $\text{Best}_M^\phi(T) \subset H_n$, for all $n \in \mathbb{N}$. This also proves that $\{u_n\}$ is well-defined.

On the other hand, from the definition H_n , $u_n = \Pi_{H_n} u$. Applying Proposition 2.3, we get

$$\phi(u_n, u) \leq \phi(p, u) - \phi(p, u_n) \leq \phi(p, u), \text{ for each } n \in \mathbb{N}. \quad (10)$$

This shows that $\{\phi(u_n, u)\}$ is bounded and hence by the inequality $(\|u_n\| - \|u\|)^2 \leq \phi(u_n, u)$; it follows that $\{u_n\}$ is bounded. Next, since $u_{n+1} = \Pi_{H_{n+1}} u \in H_n$, using Proposition 2.3, we obtain that

$$\phi(u_n, u) \leq \phi(u_{n+1}, u), \text{ for each } n \in \mathbb{N}. \quad (11)$$

Thus, $\{\phi(u_n, u)\}$ is nondecreasing and so, it converges to a limit. Further, we have

$$\phi(u_{n+1}, u_n) = \phi(u_{n+1}, \Pi_{H_n} u) \leq \phi(u_{n+1}, u) - \phi(\Pi_{H_n} u, u) = \phi(u_{n+1}, u) - \phi(u_n, u),$$

for each $n \in \mathbb{N}$. This implies that $\phi(u_{n+1}, u_n) = 0$ and hence by Proposition 2.1, we have

$$\lim_{n \rightarrow \infty} \|u_{n+1} - u_n\| = 0. \quad (12)$$

Besides, we can see that $\phi(u_{n+1}, v_n) \leq \phi(u_{n+1}, u_n)$, for each $n \in \mathbb{N}$, which follows from the fact that $u_{n+1} \in H_{n+1}$. Thus, we can conclude that

$$\lim_{n \rightarrow \infty} \phi(u_{n+1}, v_n) = 0 \text{ and so } \lim_{n \rightarrow \infty} \|u_{n+1} - v_n\| = 0. \quad (13)$$

Now,

$$\begin{aligned} \phi(u_n, v_n) &= \phi(u_n, J^{-1}(\alpha_n Ju_n + (1 - \alpha_n) J \Pi_M T u_n)) \\ &\leq \alpha_n \phi(u_n, u_n) + (1 - \alpha_n) \phi(u_n, \Pi_M T u_n) \\ &= (1 - \alpha_n) \phi(u_n, \Pi_M T u_n). \end{aligned} \quad (14)$$

From (12) and (13), we have $\|u_n - v_n\| \rightarrow 0$ and since $\{u_n\}$ is bounded, we have $\phi(u_n, v_n) \rightarrow 0$ as $n \rightarrow \infty$. So, (14) together with the fact that α_n does not converge to 1 gives

$$\lim_{n \rightarrow \infty} \phi(u_n, \Pi_M Tu_n) = 0. \quad (15)$$

Thus,

$$\begin{aligned} \lim_{n \rightarrow \infty} \phi(u_n, Tu_n) &= \lim_{n \rightarrow \infty} \phi(u_n, \Pi_M Tu_n) + \phi(\Pi_M Tu_n, Tu_n) + 2\langle u_n - \Pi_M Tu_n, J\Pi_M Tu_n - JT u_n \rangle \\ &= \lim_{n \rightarrow \infty} \phi(\Pi_M Tu_n, Tu_n) \text{ (by (15) and Frechet smoothness of } B) \\ &= \text{dist}_\phi(M, N). \end{aligned} \quad (16)$$

As a result, $\{u_n\}$ is an (A ϕ -BPS) for the mapping T . Our aim now is to show that the set of weak accumulation points of the sequence $\{u_n\}$ is contained in $\text{Best}_M^\phi(T)$. To show this, let q be the weak limit point of the sequence $\{u_n\}$. i.e., we can find a subsequence $\{u_{n_k}\}$ of $\{u_n\}$ such that $u_{n_k} \xrightarrow{w} q$. From (16) and using the fact that T satisfies the ϕ -proximal property, we obtain that $\phi(q, Tq) = \text{dist}_\phi(M, N)$. i.e., $q \in \text{Best}_M^\phi(T)$.

Let $u^* = \Pi_{\text{Best}_M^\phi(T)} u$. By (10), we get $\phi(u_n, u) \leq \phi(u^*, u)$, for all $n \in \mathbb{N}$. Then

$$\phi(q, u) \leq \liminf_{k \rightarrow \infty} \phi(u_{n_k}, u) \leq \limsup_{k \rightarrow \infty} \phi(u_{n_k}, u) \leq \phi(u^*, u).$$

On the other hand, using the fact that $u_{n+1} = \Pi_{H_{n+1}} u$ and $u^* \in \text{Best}_M^\phi(T) \subset H_n$, we get $\phi(u_{n+1}, u) \leq \phi(u^*, u)$. From the definition of $\Pi_{\text{Best}_M^\phi(T)} u$, we obtain that $q = u^*$ and so, $\lim_{k \rightarrow \infty} \phi(u_{n_k}, u) = \phi(u^*, u)$ which further gives $\|u_{n_k}\| \rightarrow \|u^*\|$. Therefore, by the property (KK), we conclude that $\{u_{n_k}\}$ strongly converges to $u^* = \Pi_{\text{Best}_M^\phi(T)} u$ and since $\{u_{n_k}\}$ is arbitrary, the assertion follows. \square

Theorem 5.2. *Let (M, N) be a pair of nonempty, closed, convex subsets of a uniformly convex and uniformly smooth Banach space B that satisfies the ϕ_p -property. Let $T : M \rightarrow N$ be a non-self nonextensive mapping satisfying $T(M_0) \subseteq N_0$ and that T has the ϕ -proximal property. Let us consider the sequence $\{u_n\}$ generated by*

$$\begin{cases} u_1 = u \in M_0 \text{ be arbitrary,} \\ v_n = J^{-1}(\alpha_n Ju_n + (1 - \alpha_n) J\Pi_M Tu_n), \\ H_n = \{z \in M_0 : \phi(z, v_n) \leq \phi(z, u_n)\}, \\ W_n = \{z \in M_0 : \langle u_n - z, Ju_n - Ju \rangle \leq 0\}, \\ u_{n+1} = \Pi_{H_n \cap W_n} u, \end{cases} \quad (17)$$

for each $n \in \mathbb{N}$, where $\alpha_n \in [0, a]$, for some $a \in [0, 1)$. If $\text{Best}_M^\phi(T)$ is nonempty, then the sequence $\{u_n\}$ strongly converges to $u^* = \Pi_{\text{Best}_M^\phi(T)} u$.

Proof. Firstly, we show that $\text{Best}_M^\phi(T)$ is contained in $H_n \cap W_n$. By Theorem 5.1, it is assured that H_n is closed and convex and $\text{Best}_M^\phi(T)$ is contained in H_n . It can be easily seen that W_n is closed and convex. So, it remains to only prove that $\text{Best}_M^\phi(T) \subset W_n$, for each $n \in \mathbb{N}$. For $n = 1$, $\text{Best}_M^\phi(T) \subset M_0 = W_1$ and assume that $\text{Best}_M^\phi(T) \subset W_k$, for some $k \in \mathbb{N}$. Since, $u_{k+1} = \Pi_{H_k \cap W_k} u$, we obtain that

$$\langle u_{k+1} - z, Ju - Ju_{k+1} \rangle \geq 0, \quad \forall z \in H_k \cap W_k. \quad (18)$$

Since, $\text{Best}_M^\phi(T) \subset H_k \cap W_k$; (18) holds for all $z \in \text{Best}_M^\phi(T)$. Hence, $\text{Best}_M^\phi(T) \subset W_{k+1}$. Thus, $\text{Best}_M^\phi(T) \subset H_n \cap W_n$. It follows from the definition of W_n and Proposition 2.3 that, $u_n = \Pi_{W_n} u$ and so, $\phi(u_n, u) \leq \phi(p, u) - \phi(p, u_n) \leq \phi(p, u)$, for each $p \in \text{Best}_M^\phi(T)$. Therefore, $\{\phi(u_n, u)\}$ is

bounded. Moreover, $\{u_n\}$ is bounded. Since, $u_{n+1} = \Pi_{H_n \cap W_n} u \in W_n$; by Proposition 2.3, $\phi(u_n, u) \leq \phi(u_{n+1}, u)$, for each $n \in \mathbb{N}$. Therefore, $\{\phi(u_n, u)\}$ is nondecreasing and so, it converges. Now,

$$\phi(u_{n+1}, u_n) = \phi(u_{n+1}, \Pi_{W_n} u) \leq \phi(u_{n+1}, u) - \phi(u_n, u), \text{ for each } n \in \mathbb{N}.$$

Consequently,

$$\lim_{n \rightarrow \infty} \phi(u_{n+1}, u_n) = 0 \text{ and } \lim_{n \rightarrow \infty} \|u_{n+1} - u_n\| = 0. \quad (19)$$

Since, $u_{n+1} = \Pi_{H_n \cap W_n} u \in H_n$, from the definition of H_n , we have $\phi(u_{n+1}, v_n) \leq \phi(u_{n+1}, u_n)$, $\forall n \in \mathbb{N}$. Therefore,

$$\lim_{n \rightarrow \infty} \phi(u_{n+1}, v_n) = 0 \text{ and } \lim_{n \rightarrow \infty} \|u_{n+1} - v_n\| = 0. \quad (20)$$

By broadly applying the proof of Theorem 5.1, one can show that $\{u_n\}$ converges strongly to $u^* = \Pi_{\text{Best}_M^\phi(T)} u$. \square

We now state the strong convergence result, which a modified shrinking projection method defined in [2].

Theorem 5.3. *Let (M, N) be a pair of nonempty, closed, convex subsets of a uniformly smooth and uniformly convex Banach space B that satisfies the ϕ_p -property. Let $T : M \rightarrow N$ be a nonself nonextensive mapping satisfying $T(M_0) \subseteq N_0$ and that T has the ϕ -proximal property. Let us consider the sequence $\{u_n\}$ generated by*

$$\begin{cases} u_0 = u \in M_0 \text{ be arbitrary,} \\ H_1 = M_0, u_1 = \Pi_{M_0} u, \\ v_n = \Pi_M J^{-1}(\alpha_n J \Pi_N u_n + (1 - \alpha_n) J T u_n), \\ H_{n+1} = \{z \in H_n : \phi(z, v_n) \leq \phi(z, u_n)\}, \\ u_{n+1} = \Pi_{H_{n+1}} u, \end{cases} \quad (21)$$

for each $n \in \mathbb{N}$, where $\alpha_n \in (0, 1)$ and $\liminf_{n \rightarrow \infty} \alpha_n(1 - \alpha_n) > 0$. If $\text{Best}_M^\phi(T)$ is nonempty, then the sequence $\{u_n\}$ strongly converges to $u^* = \Pi_{\text{Best}_M^\phi(T)} u$.

Proof. Clearly, H_n is closed and convex, for each $n \in \mathbb{N}$. Firstly, we claim that $\text{Best}_M^\phi(T) \subset H_n$, for each $n \in \mathbb{N}$. For $n = 1$, $\text{Best}_M^\phi(T) \subset H_1 = M_0$ is obvious. Assume that $\text{Best}_M^\phi(T) \subset H_k$, for some $k \in \mathbb{N}$ and $p \in \text{Best}_M^\phi(T)$. By Lemma 3.5, we have $p = \Pi_M \circ T p$. Then,

$$\begin{aligned} \phi(p, v_k) &= \phi(\Pi_M \circ T p, \Pi_M J^{-1}(\alpha_k J \Pi_N u_k + (1 - \alpha_k) J T u_k)) \\ &\leq \phi(T p, J^{-1}(\alpha_k J \Pi_N u_k + (1 - \alpha_k) J T u_k)) \\ &\leq \alpha_k \phi(T p, \Pi_N u_k) + (1 - \alpha_k) \phi(T p, T u_k). \end{aligned} \quad (22)$$

Since, $\phi(u_k, \Pi_N u_k) = \text{dist}_\phi(M, N)$ and $\phi(p, T p) = \text{dist}_\phi(M, N)$; by ϕ_p -property, we have

$$\phi(T p, \Pi_N u_k) = \phi(p, u_k). \quad (23)$$

Using (23) and the fact that T is nonextensive, (22) reduces to $\phi(p, v_k) \leq \phi(p, u_k)$, for some $k \in \mathbb{N}$. This shows that $p \in H_{k+1}$. Thus, by induction, it is proved that $\text{Best}_M^\phi(T) \subset H_n$, for all $n \in \mathbb{N}$. This also shows that $\{u_n\}$ is a well-defined sequence.

Besides this, it is also observed that $\text{Best}_M^\phi(T)$ is closed and convex. This follows from Lemma 3.5, which yields $F(\Pi_M \circ T|_{M_0}) = \text{Best}_M^\phi(T)$. So, if we consider $\hat{u} \in M_0$ and $q \in F(\Pi_M \circ T|_{M_0})$; then $\phi(\Pi_M \circ T|_{M_0} q, \Pi_M \circ T|_{M_0} \hat{u}) \leq \phi(T|_{M_0} q, T|_{M_0} \hat{u}) \leq \phi(q, \hat{u})$. Consequently, using the arguments from

[16, Proposition 2.4], we can show that $\text{Best}_M^\phi(T)$ is closed and convex. Next, since $u_{n+1} = \Pi_{H_{n+1}} u$ and $\text{Best}_M^\phi(T) \subset H_n$, for all $n \in \mathbb{N}$; it follows by Proposition 2.3 that

$$\phi(u_{n+1}, u) \leq \phi(p, u), \text{ for } p \in \text{Best}_M^\phi(T). \quad (24)$$

Thus, $\{\phi(u_n, u)\}$ is bounded and so, by the inequality $(\|u_n\| - \|u\|)^2 \leq \phi(u_n, u)$; $\{u_n\}$ is bounded. Again, since $u_n = \Pi_{H_n} u$, we obtain that,

$$\phi(u_n, u) \leq \phi(u_{n+1}, u). \quad (25)$$

Therefore, $\{\phi(u_n, u)\}$ is nondecreasing and so, it has a limit. From Proposition 2.3, it also follows that

$$\phi(u_{n+1}, u_n) \leq \phi(u_{n+1}, u) - \phi(u_n, u), \forall n \in \mathbb{N}. \quad (26)$$

Thus,

$$\lim_{n \rightarrow \infty} \phi(u_{n+1}, u_n) = 0 \Rightarrow \lim_{n \rightarrow \infty} \|u_{n+1} - u_n\| = 0. \text{ (by Proposition 2.1)} \quad (27)$$

From the definition of H_n , we also have, $\phi(u_{n+1}, v_n) \leq \phi(u_{n+1}, u_n)$, $\forall n \in \mathbb{N}$; which results

$$\lim_{n \rightarrow \infty} \phi(u_{n+1}, v_n) = 0 \Rightarrow \lim_{n \rightarrow \infty} \|u_{n+1} - v_n\| = 0. \text{ (by Proposition 2.1)} \quad (28)$$

From (27) and (28), it follows that

$$\lim_{n \rightarrow \infty} \|u_n - v_n\| = 0. \quad (29)$$

Since, J is norm-to-norm continuous on bounded sets, we have

$$\lim_{n \rightarrow \infty} \|Ju_n - Jv_n\| = 0. \quad (30)$$

Let us take $r = \sup_{n \in \mathbb{N}} \{\|\Pi_N u_n\|, \|Tu_n\|\}$. We know that B^* is uniformly convex, since B is uniformly smooth; thus by Lemma 2.4, we can find a continuous, strictly increasing and convex function ψ with $\psi(0) = 0$ such that $\|\eta f + (1 - \eta)g\|^2 \leq \eta\|f\|^2 + (1 - \eta)\|g\|^2 - \eta(1 - \eta)\psi(\|f - g\|)$, for $f, g \in B_r^*$ and $\eta \in [0, 1]$. Therefore, for $p \in \text{Best}_M^\phi(T)$, one has

$$\begin{aligned} \phi(p, v_n) &= \phi(\Pi_M \circ T p, \Pi_M J^{-1}(\alpha_n J \Pi_N u_n + (1 - \alpha_n) J T u_n)) \\ &\leq \phi(T p, J^{-1}(\alpha_n J \Pi_N u_n + (1 - \alpha_n) J T u_n)) \\ &\leq \|T p\|^2 - 2\alpha_n \langle T p, J \Pi_N u_n \rangle - 2(1 - \alpha_n) \langle T p, J T u_n \rangle \\ &\quad + \alpha_n \|\Pi_N u_n\|^2 + (1 - \alpha_n) \|T u_n\|^2 - \alpha_n(1 - \alpha_n) \psi(\|J \Pi_N u_n - J T u_n\|) \\ &\leq \alpha_n \phi(T p, \Pi_N u_n) + (1 - \alpha_n) \phi(T p, T u_n) - \alpha_n(1 - \alpha_n) \psi(\|J \Pi_N u_n - J T u_n\|) \\ &\leq \phi(p, u_n) - \alpha_n(1 - \alpha_n) \psi(\|J \Pi_N u_n - J T u_n\|). \text{ (by (23) and the nonextensiveness of } T) \end{aligned}$$

So,

$$\begin{aligned} \alpha_n(1 - \alpha_n) \psi(\|J \Pi_N u_n - J T u_n\|) &\leq \phi(p, u_n) - \phi(p, v_n) \\ &= \|u_n\|^2 - \|v_n\|^2 - 2\langle p, Ju_n - Jv_n \rangle \\ &\leq \|u_n - v_n\|(\|u_n\| + \|v_n\|) + 2\|p\| \|Ju_n - Jv_n\|. \end{aligned} \quad (31)$$

Substituting (29) and (30) in (31), we have $\alpha_n(1 - \alpha_n) \psi(\|J \Pi_N u_n - J T u_n\|) \rightarrow 0$ as $n \rightarrow \infty$. Since, $\liminf_{n \rightarrow \infty} \alpha_n(1 - \alpha_n) > 0$, it follows that $\lim_{n \rightarrow \infty} \psi(\|J \Pi_N u_n - J T u_n\|) = 0$. The properties of ψ yield that

$$\lim_{n \rightarrow \infty} \|J \Pi_N u_n - J T u_n\| = 0. \quad (32)$$

Since B is uniformly smooth, J^{-1} is uniformly norm-to-norm continuous on bounded sets and so we get

$$\lim_{n \rightarrow \infty} \|\Pi_N u_n - T u_n\| = \lim_{n \rightarrow \infty} \|J^{-1}(J \Pi_N u_n - J T u_n)\| = 0. \quad (33)$$

Therefore,

$$\begin{aligned}\lim_{n \rightarrow \infty} \phi(u_n, Tu_n) &= \lim_{n \rightarrow \infty} \phi(u_n, \Pi_N u_n) + \phi(\Pi_N u_n, Tu_n) + 2\langle u_n - \Pi_N u_n, J\Pi_N u_n - JT u_n \rangle \\ &= \lim_{n \rightarrow \infty} \phi(u_n, \Pi_N u_n) \quad (\text{by (32) and (33)}) \\ &= \text{dist}_\phi(M, N).\end{aligned}$$

This shows that $\{u_n\}$ is an $(A\phi\text{-BPS})$. The strong convergence can be now obtained by the same arguments followed in Theorem 5.1. \square

Remark 5.1. *Theorem 5.1 can be used to solve the strong convergence problem concerning a nonself nonexpansive mapping in a Hilbert space, which is equivalent to [14, Theorem 3.2]. In a Hilbert space, Theorem 5.2 is equivalent to the convergence result determined in [5].*

6. Conclusion

In conclusion, we employ the shrinking projection approach to identify the ϕ -best proximity points of a non-self nonextensive mapping in a uniformly convex and uniformly smooth Banach space. We have proved the strong convergence of the generated sequence by the proposed algorithm under the assumption that the nonextensive mapping has the ϕ -proximal property. New iterative techniques for two or more non-self nonextensive mappings in Banach spaces may be developed from this work, guiding the authors' future work.

Acknowledgements

The authors sincerely thank the referees and editors for their valuable comments and suggestions, which have greatly enhanced the presentation of the manuscript.

REFERENCES

- [1] A. Anthony Eldred and P. Veeramani, Existence and convergence of best proximity points. *J. Math. Anal. Appl.* **323**(2006), 1001–1006.
- [2] C. Klin-eam, S. Suantai and W. Takahashi, Strong convergence theorems by monotone hybrid method for a family of generalized nonexpansive mappings in Banach spaces. *Taiwanese J. Math.* **16**(2012), No. 6, 1971–1989.
- [3] C. Zălinescu, On uniformly convex functions. *J. Math. Anal. Appl.* **95**(1983), No. 2, 344–374.
- [4] G. Inoue, W. Takahashi and K. Zembayashi, Strong convergence theorems by hybrid methods for maximal monotone operator and relatively nonexpansive mappings in Banach spaces. *J. of Convex Anal.* **16**(2009), No. 3-4, 791–806.
- [5] G. K. Jacob, M. Postolache, M. Marudai and V. Raja, Norm convergence iterations for best proximity points of non-self non-expansive mappings. *UPB Sci. Bull. Ser. A Appl. Math. Phys.* **79**(2017), 49–56.
- [6] H. K. Xu, Inequalities in Banach spaces with applications. *Nonlinear Anal.* **16**(1991), No. 12, 1127–1138.
- [7] Jinlu Li, The generalized projection operator on reflexive Banach spaces and its applications. *J. Math. Anal. Appl.* **306**(2005), 55–71.
- [8] J. Diestel, Geometry of Banach space-selected topics Lect. Notes in Math., **485**, 1975.
- [9] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. *J. Math. Anal. Appl.* **279**(2003), No. 2, 372–379.
- [10] M. A. Al-Thagafi and N. Shahzad, Convergence and existence results for best proximity points. *Nonlinear Anal.* **70**(2009), No. 10, 3665–3671.
- [11] M. Gabeleh, Best proximity point theorems via proximal non-self mappings. *J. Optim. Theory Appl.* **164**(2015), No. 2, 565–576.
- [12] Ravi P. Agarwal, Donal O'Regan and D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications. Vol. 6. New York: Springer, 2009.
- [13] R. Suparatulatorn, W. Cholamjiak and S. Suantai, Existence and convergence theorems for global minimization of best proximity points in Hilbert spaces. *Acta Appl. Math.* **165**(2020), 81–90.

- [14] *R. Suparatulatorn and S. Suantai*, A new hybrid algorithm for global minimization of best proximity points in Hilbert spaces. *Carpathian J. Math.* **35**(2019), No. 1, 95–102.
- [15] *S. Kamimura and W. Takahashi*, Strong convergence of a proximal-type algorithm in a Banach space. *SIAM J. Optim.* **13**(2002), 938–945.
- [16] *S. Matsushita and W. Takahashi*, A strong convergence theorem for relatively nonexpansive mappings in a Banach space. *J. Approx. Theory* **134**(2005), 257–266.
- [17] *V. Barbu and Th. Pewcupanu*, Convexity and Optimization in Banach spaces. Romania International Publishers, Bucuresti, 1978.
- [18] *V. Sankar Raj*, A best proximity point theorem for weakly contractive non-self-mappings, *Nonlinear Anal.* **74**(2011), 4804–4808.
- [19] *W. B. Guan and W. Song*, W-approximative compactness and continuity of the generalized projection operator in Banach spaces. *J. Approx. Theory* **62**(2010), 64–71.
- [20] *W. Takahashi*, Nonlinear Functional Analysis, Yokohama Publishers 2000.
- [21] *W. Takahashi, Y. Takeuchi and R. Kubota*, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. *J. Math. Anal. Appl.* **341**(2008), No. 1, 276–286.
- [22] *Ya. Alber*, Metric and generalized projection operators in Banach spaces: Properties and applications, in: A. Kartsatos (Ed.), *Theory and Applications of Nonlinear Operators of Accretive and Monotone Type*, Marcel Dekker, Inc. 15–50, 1996.
- [23] *Ya. Alber and S. Guerre-Delabriere*, On the projection methods for fixed point problems, *Analysis* **21** (2001), 17–39.
- [24] *Ya. Alber and S. Reich*, An iterative method for solving a class of nonlinear operator equations in Banach spaces. *Panam. Math. J.* **4** (1994), 39–54.