
U.P.B. Sci. Bull., Series A, Vol. 86, Iss. 4, 2024 ISSN 1223-7027

STRONG CONVERGENCE THEOREMS FOR φ -BEST PROXIMITY POINTS OF
NON-SELF NONEXTENSIVE MAPPINGS IN A BANACH SPACE

Priyanka Priyadarshini Behera1, C. Nahak2

This study obtains strong convergence theorems for non-self nonextensive mappings in a
Banach space, utilizing the new hybrid algorithmic techniques to address global minimization prob-
lems that pertain to common φ -best proximity points. Applying the generalized projection operator, we
introduce the φ -proximal property and exhibit some existence results of φ -best proximity points. This
serves as an imperative tool for establishing our strong convergence results.
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1. Introduction

Let B be a real Banach space with norm ∥ · ∥ and B∗ be its dual space. Let K be a nonempty,
closed subset of B and T : K → K be a mapping. Let F(T ) symbolise the fixed point set of T , defined
as F(T ) := {x ∈ K : T x = x}. We will use the notations SB = {u ∈ B : ∥u∥= 1} for the unit sphere,

⟨·, ·⟩ for the duality pair of B and B∗, and →, w−→ and w∗
−→ for strong, weak and weak∗ convergence,

respectively.
The duality mapping J from B to B∗ is defined by

Ju = {ζ ∈ B∗ : ⟨u,ζ ⟩= ∥u∥2 = ∥ζ∥2}, for every u ∈ B.

J is single-valued in a smooth Banach space B and uniformly norm-to-norm continuous on each
bounded subset of a uniformly smooth Banach space B (see [12, 17, 20] for more details). A Ba-
nach space B is said to be strictly convex if for any two distinct elements u,v ∈ SB, ∥ u+v

2 ∥ < 1
and uniformly convex if for any two sequences {un} and {vn} in SB with ∥ un+vn

2 ∥ → 1, we have
∥un − vn∥ → 0 as n → ∞. B is said to have property (KK) if the norm and weak convergence coin-
cide on the unit sphere SB. It has been proved that every uniformly convex Banach space is strictly
convex, reflexive and satisfies property (KK) (see [17, 8]). B is said to be smooth if for every u,v∈ SB

and t ∈R, the limit limt→0
∥u+tv∥−∥u∥

t , exists and it is called uniformly smooth if the limit is attained
uniformly. We recall that [8] the duality mapping J from a smooth Banach space B into B∗ is said to

be weakly sequentially continuous if un
w−→ u implies Jun

w∗
−→ Ju.

Let B be a smooth Banach space. We define the functional [22] φ : B×B → R by

φ(u,v) = ∥u∥2 −2⟨u,Jv⟩+∥v∥2, ∀ u,v ∈ B. (1)

Some properties of the functional φ are listed below (see [22, 24, 15, 16] for more details):
(φ1) (∥u∥−∥v∥)2 ≤ φ(u,v)≤ (∥u∥+∥v∥)2, u,v ∈ B.
(φ2) φ(u,v) = φ(u,z)+φ(z,v)+2⟨u− z,Jz− Jv⟩, u,v,z ∈ B.
(φ3) [16, Remark 2.1] φ(u,v) = 0 if and only if u = v, for u,v in a strictly convex and smooth Banach

space B.
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Let K be a nonempty, closed and convex subset of a strictly convex, reflexive and smooth Banach
space B and u ∈ B. Then there exists a unique element u0 ∈ K such that φ(u,u0) = infv∈K φ(u,v). We
collect such element u0 in ΠKu and refer to ΠK as the generalized projection onto K. To get more
insight on generalized projections, one may refer to [7, 15, 16, 19]. Alber et al. [23] introduced the
notion of nonextensive mappings in a Banach space applying the generalized projection operator.
Inspired by this, we say that a mapping T : M → N is non-self nonextensive if

φ(Tu,T v)≤ φ(u,v), for all u,v ∈ M. (2)

Certainly, in a Hilbert space H, φ(u,v) = ∥u− v∥2, for u,v ∈ H and in such a case, nonextensive
mappings coincide with the nonexpansive mappings.

A mapping T : B → B is said to possess a fixed point if the equation Tu = u has atleast one
solution. When considering a generalized projection operator, which may not behave like a metric,
we define a fixed point of T as φ(u,Tu) = 0, for u ∈ B. This simplifies the fixed point equation
in a strictly convex and smooth Banach space. In the case of a non-self mapping T , the equation
φ(u,Tu) = 0 may not have a solution, resulting in φ(u,Tu)> 0. More precisely, let us assume two
nonempty subsets M, N of a smooth Banach space B such that T : M → N and φ(u,Tu)> 0,u ∈ M.
In such a case, it is our objective to find an element u0 ∈ M such that φ(u0,Tu0) attains its minimum
value distφ (M,N). This point u0 is referred to as a φ -best proximity point of the mapping T in M.

Researchers have devised and investigated numerous iterative approaches to approximate a
common fixed point of nonexpansive mappings. In this direction, Nakajo and Takahashi [9] de-
veloped an iterative scheme for approximating fixed points of nonexpansive mappings in a Hilbert
space. Matsushita and Takahashi [16] obtained a hybrid algorithm for obtaining a strong conver-
gence theorem for relatively nonexpansive mappings in a Banach space. By modifying the hybrid
method introduced in [16], Inoue et al. [4] proposed a modified shrinking projection technique
for relatively nonexpansive mappings in a Banach space. This approach is based on the modifying
shrinking projection method introduced by Takahashi et al. [21] in a Hilbert space.

Strong convergence theorems by hybrid methods for the best proximity point of a nonself
nonexpansive mapping in Hilbert spaces were recently proposed by Jacob et al. [5]. A shrinking
projection approach was developed by Suparatulatorn et al. [14] to solve the iterative scheme in a
Hilbert space, with the aim of making computation easier. Recently, Suparatulatorn et al. [13] intro-
duced the general Mann algorithm for nonself nonexpansive mappings and proved the convergence
result in a Hilbert space. They improved upon previous results of [14] by utilizing an approximate
best proximity point sequence for a mapping T instead of the demi-closedness principle. Motivated
by all the above research findings, our objective is to obtain strong convergence theorems for non-
self nonextensive mappings in Banach spaces. We propose hybrid algorithms for strong convergence
results of common φ -best proximity points in a Banach space.

This article organizes its contents into four parts. The fundamental concepts are concisely
outlined in Section 2. Section 3 introduces the notion of φp-property and some of its basic properties.
In Section 4, we investigate the φ -proximal property and its associated findings. In Section 5, we
employ the φ -proximal property for achieving strong convergence results by shrinking projection
method for common φ -best proximity points in Banach spaces.

2. Preliminaries

Let M and N be two nonempty, closed, convex subsets of a smooth Banach space B. For the
rest of the paper, unless otherwise stated, we denote M0 and N0 as follows:

M0 = {u ∈ M : φ(u,v) = distφ (M,N), for some v ∈ N},
N0 = {v ∈ N : φ(u,v) = distφ (M,N), for some u ∈ M},
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where distφ (M,N) = inf{φ(u,v) : u ∈ M and v ∈ N}. The pair (M0,N0) is referred to as the φ -
best proximity pair associated with (M,N). This pair is nonempty whenever (M,N) is a nonempty,
compact pair of subsets in a Frechet smooth Banach space.

Let us denote BestφM(T ) as the set of φ -best proximity points of T on M, where

BestφM(T ) = {u ∈ M : φ(u,Tu) = distφ (M,N)}.

It is easy to see that the set BestφM(T ) is contained in M0.
The following findings are essential for exhibiting the main theorems that will be presented

in subsequent sections.

Lemma 2.1. (Kamimura and Takahashi [15]) Let B be a uniformly convex and smooth Banach space
and let {un} and {vn} be two sequences in B. If φ(un,vn)→ 0 and either of {un} or {vn} is bounded,
then un − vn → 0 as n → ∞.

Lemma 2.2. (Alber [22], Alber and Reich [24], Kamimura and Takahashi [15]) Let K be a nonempty,
closed, convex subset of a smooth Banach space B and u ∈ B. Then u0 = ΠKu if and only if ⟨u0 −
v,Ju− Ju0⟩ ≥ 0, for all v ∈ K.

Lemma 2.3. (Alber [22], Kamimura and Takahashi [15]) Let B be a reflexive, strictly convex
and smooth Banach space and let K be a nonempty, closed, convex subset of B and u ∈ B. Then
φ(v,ΠKu)+φ(ΠKu,u)≤ φ(v,u), ∀v ∈ K.

Lemma 2.4. (Xu [6], Zǎlinescu [3]) Let B be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function ψ : [0,∞)→ [0,∞) with ψ(0) = 0
and ∥ηu+(1−η)v∥2 ≤ η∥u∥2 +(1−η)∥v∥2 −η(1−η)ψ(∥u− v∥), for all u,v ∈ Br = {z ∈ B :
∥z∥ ≤ r} and η ∈ [0,1].

3. φp-property

We now introduce a concept called the φp-property, which generalizes the previously defined
P-property in [18]. While the P-property relies on a metric, the φp-property utilizes the functional φ

in a smooth Banach space.

Definition 3.1. [φp-property] Let (M,N) be a pair of non-empty subsets of a smooth Banach space
B with M0 is non-empty. Then (M,N) is said to have the φp-property if and only if{

φ(u1,v1) = distφ (M,N)

φ(u2,v2) = distφ (M,N)
⇒ φ(u1,u2) = φ(v1,v2),

for u1,u2 ∈ M0 and v1,v2 ∈ N0.

Lemma 3.1. Any pair (M,N) of non-empty, closed, convex subsets of a real Hilbert space H satisfies
the φp-property.

Proof. In a Hilbert space φ(u,v) = ∥u− v∥2. Let us take u1,u2 ∈ M0 and v1,v2 ∈ N0 satisfying{
φ(u1,v1) = distφ (M,N),

φ(u2,v2) = distφ (M,N).
This gives, ∥u1 − v1∥2 = distφ (M,N) and ∥u2 − v2∥2 = distφ (M,N).

Then, by the uniqueness of generalized projection operator φ on H, we get v1 = ΠN(u1) and v2 =
ΠN(u2). Also, ∥u1 − v2∥ = ∥u2 − v1∥. Hence, ∥u1 − v2∥2 = ∥u1 − u2∥2 + distφ (M,N); and ∥u2 −
v1∥2 = ∥v1 − v2∥2 + distφ (M,N). Therefore, ∥u1 − u2∥2 = ∥v1 − v2∥2. So, φ(u1,u2) = φ(v1,v2).
Hence H satisfies the φp-property. □

Lemma 3.2. Let B be a strictly convex and smooth Banach space and (M,N) be a pair of non-
empty subsets of B with M0 being non-empty. Then, (M,N) satisfies the φp-property whenever
distφ (M,N) = 0.
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Proof. Let us consider φ(u1,v1) = 0 = φ(u2,v2); for u1,u2 ∈ M0 and v1,v2 ∈ N0. Then, u1 = v1 and
u2 = v2. Hence, φ(u1,u2)−φ(v1,v2) = 0. So, φ(u1,u2) = φ(v1,v2). □

Remark 3.1. It is noted that if B is a uniformly convex and smooth Banach space and M0 is non-
empty, then according to Lemma 3.2, the pair (M,N) satisfies the φp-property, when the φ -distance
function distφ (M,N) equals 0. However, if distφ (M,N) ̸= 0, then a non-empty pair of subsets need
not satisfy the φp-property, even if the space is uniformly smooth and uniformly convex. This is
shown in the following example.

Example 3.1. Let us consider (R3,∥ · ∥3), where the norm is defined by

∥x∥3 = (|x1|3 + |x2|3 + |x3|3)
1
3 , x = (x1,x2,x3) ∈ R3.

Let us take

M = {(x1,x2,x3) : 0 ≤ x1 ≤ 1,x3
2 + x3

3 = 1} and N = {(0,0,0)}.

Then both M and N are compact subsets of R3. Here distφ (M,N) = 1 and M0 = {(0,1,0),(0,0,1)}
and N0 =N. Now, φ((0,1,0),(0,0,0))= 1= φ((0,0,1),(0,0,0)); but φ((0,1,0),(0,0,1)) ̸= φ((0,0,0)).
So, (M,N) fails to satisfy the φp-property.

Remark 3.2. Any pair (M,N) of nonempty subsets of a smooth Banach space B with distφ (M,N) ̸= 0
may not satisfy the φp-property if one of the sets is singleton.

Lemma 3.3. Let B be a strictly convex and smooth Banach space and (M,N) be a pair of non-empty,
closed, convex subsets of B with M0 being non-empty and (M,N) satisfies the φp-property. Then, the
generalized projection ΠM0 restricted to N0 is an φ -isometry.

Proof. For elements v1,v2 ∈N0, there exists u1,u2 ∈M0 such that φ(ui,vi)= distφ (M,N), for i= 1,2.
i.e., ΠM0(vi) = ui, i = 1,2. By the φp-property, φ(ΠM0(v1),ΠM0(v2)) = φ(v1,v2) = φ(u1,u2). Thus,
ΠM0 is an φ -isometry. □

The subsequent conclusions are essential for proving the main findings.

Lemma 3.4. Let (M,N) be a pair of nonempty, closed, convex subsets of a smooth Banach space B.
Then φ(u,ΠNu) = distφ (M,N), ∀u ∈ M0 and φ(ΠMv,v) = distφ (M,N), ∀v ∈ N0.

Proof. Let u ∈ M0, then we can find an element z ∈ N such that φ(u,z) = distφ (M,N). Using the
definition of ΠNu, we ascertain that

φ(u,ΠNu) = inf
û∈N

φ(u, û)≤ φ(u,z) = distφ (M,N).

Thus, φ(u,ΠNu) = distφ (M,N). The other claim follows likewise. □

Lemma 3.5. Let (M,N) be a pair of nonempty subsets of a strictly convex and smooth Banach space
B with M being closed and convex. Let T : M → N be a mapping satisfying T (M0) ⊆ N0 and that
(M,N) has the φp-property. Then F(ΠM ◦T |M0) = F(ΠM ◦T )∩M0 = BestφM(T ).

Proof. Let u ∈ F(ΠM ◦T )∩M0. Since u ∈ F(ΠM ◦T ), it implies that ΠM ◦Tu = u. Then,

φ(u,Tu) = φ(u,ΠM ◦Tu)+φ(ΠM ◦Tu,Tu)+2⟨u−ΠM ◦Tu,JΠM ◦Tu− JTu⟩
= φ(ΠM ◦Tu,Tu)

= distφ (M,N). (by Lemma 3.4)

This shows that u ∈ BestφM(T ).
Conversely, let u ∈ BestφM(T ). Clearly, u ∈ M0 and φ(u,Tu) = distφ (M,N). Also, by Lemma

3.4, we deduce that φ(ΠM ◦Tu,Tu) = distφ (M,N). Since (M,N) has the φp-property, we obtain that
φ(u,ΠM ◦Tu) = 0. i.e., u ∈ F(ΠM ◦T ) and as a result, u ∈ F(ΠM ◦T )∩M0. □
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Lemma 3.6. Let (M,N) be a pair of nonempty subsets of a smooth and strictly convex Banach space
B with N being closed and convex. Let T : M → N be a mapping that satisfies T (M0) ⊆ N0. Then,
Tu = ΠNu, ∀u ∈ BestφM(T ).

Proof. Let u∈BestφM(T ). i.e., φ(u,Tu) = distφ (M,N). Now, since BestφM(T )⊆M0 and φ(u,ΠNu) =
distφ (M,N) (by Lemma 3.4); using φp-property, we deduce that

φ(Tu,ΠNu) = 0.

Hence, by (φ3), Tu = ΠNu. □

4. φ -proximal property

In this section, we study the φ -proximal property, which is an encompassing term derived
from [11] in the context of a generalized projection.

Definition 4.1. [Aφ -BPS] Let (M,N) be a nonempty pair of subsets of a smooth Banach space B
and T : M → N be a non-self mapping. A sequence {un} in M is said to be an approximate φ -best
proximity point sequence (Aφ -BPS) for T if and only if lim

n→∞
φ(un,Tun) = distφ (M,N).

It is noteworthy that in a Hilbert space, this notion is analogous to the idea of an approximate
best-proximity point sequence as studied in [11]. The following lemma ensures the existence of an
(Aφ -BPS) for a non-self nonextensive mapping.

Lemma 4.1. Let (M,N) be a pair of nonempty, convex subsets of a smooth and uniformly convex
Banach space that satisfies the φp-property. Let T : M → N be a non-self nonextensive mapping
satisfying T (M0)⊆ N0, then there exists an (Aφ -BPS) for T in M.

Proof. It is evident that M0 is a convex subset of M. Let u0 ∈ M0. Since T (M0) ⊆ N0, there exists
an element u1 ∈ M0 such that φ(u1,Tu0) = distφ (M,N). Now, since u1 ∈ M0 and by using the fact
that T (M0)⊆ N0, it is guaranteed to find an element u2 ∈ M0 such that φ(u2,Tu1) = distφ (M,N). By
proceeding in this way, we can identify a sequence {un} in M0 such that

φ(un+1,Tun) = distφ (M,N), for each n ∈ N∪{0}. (3)

Since (M,N) satisfies the φp-property and T is nonextensive, it follows that φ(un,un+1) = φ(Tun−1,
Tun) ≤ φ(un−1,un). As a result, {φ(un,un+1)} is a decreasing, bounded sequence and so it con-
verges. Consequently, we find that as n approaches infinity, φ(un,un+1) → 0 and Proposition 2.1
gives

lim
n→∞

∥un −un+1∥= 0. (4)

Therefore, we conclude that

φ(un,Tun) = φ(un,un+1)+φ(un+1,Tun)+2⟨un −un+1,Jun+1 − Jun⟩. (5)

Employing (3) and (4) in (5), we get lim
n→∞

φ(un,Tun) = distφ (M,N). This proves the claim. □

Motivated by [11] and [20], the subsequent definition is provided.

Definition 4.2. [φ -proximal property] Let (M,N) be a pair of nonempty subsets of a smooth Banach
space B. A non-self mapping T : M → N is said to satisfy the φ -proximal property if and only if
for each sequence {un} in M such that un

w−→ u0 ∈ M and lim
n→∞

φ(un,Tun) = distφ (M,N), we have

φ(u0,Tu0) = distφ (M,N).

Note that if distφ (M,N)= 0 and B is smooth and strictly convex, then the φ -proximal property
reduces to the demi-closedness principle of I −T at 0, where I is the identity operator on M. Recall
that the map I − T : M → B is demi-closed at 0 if whenever {un} is a sequence in M such that
un

w−→ u0 ∈ M and (I −T )un → 0 as n → ∞; then (I −T )u0 = 0.
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The following theorem asserts the existence of φ -best proximity points for non-self nonex-
tensive mappings in a uniformly convex Banach space.

Theorem 4.1. Let (M,N) be a pair of nonempty, convex subsets of a smooth and uniformly convex
Banach space B with M being weakly compact and that (M,N) satisfies the φp-property. Suppose
T : M → N be a non-self nonextensive mapping satisfying T (M0)⊆ N0 and M0 is nonempty. Then T
has a φ -best proximity point if one of the following condition hold.
(1) J is weakly sequentially continuous and T is weakly continuous.
(2) T satisfies the φ -proximal property.

Proof. It is apparent from Lemma 4.1 that there exists a (Aφ -BPS) sequence {un} in M0. i.e.,
limn→∞ φ(un,Tun) = distφ (M,N). Now, since T is weakly compact, we may assume that un

w−→ u0 ∈
M.
(1) If T is weakly continuous; then Tun

w−→ Tu0, and since J is weakly sequentially continuous,

JTun
w∗
−→ JTu0. Therefore,

φ(u0,Tu0)≤ liminf
n→∞

φ(un,Tu0) = lim
n→∞

φ(un,Tun)+∥Tu0∥2 −∥Tun∥2 +2⟨un,JTun − JTu0⟩

= distφ (M,N).

(2) If T satisfies the φ -proximal property, we obtain from the Definition 4.2 that φ(u0,Tu0) =
distφ (M,N).

□

Motivated by the Property (UC), studied in [1], we introduce the notion of property (φ -UC)
in a Banach space.

Definition 4.3. [Property (φ -UC)] A pair (M,N) of nonempty subsets of a smooth Banach space B
is said to have the property (φ -UC) if for any sequences {un},{vn} in M and {tn} in N,

lim
n→∞

φ(un, tn) = distφ (M,N)

lim
n→∞

φ(vn, tn) = distφ (M,N)

}
⇒ lim

n→∞
φ(un,vn) = 0.

We now state another version of Theorem 4.1 for a uniformly convex Banach space.

Theorem 4.2. Let (M,N) be a pair of nonempty, convex subsets of a uniformly convex and Frechet
smooth Banach space B with N being compact and M is closed and bounded. Assume that T : M →N
is a non-self nonextensive mapping with T (M0)⊆ N0 and that (M,N) satisfies the property (φ -UC).
Then T has a φ -best proximity point in M.

Proof. Lemma 4.1 gives a sequence {un} in M0 satisfying limn→∞ φ(un,Tun) = distφ (M,N). Since
M is bounded and N is compact, it follows that un

w−→ u0 ∈ M0 and Tun → v0 ∈ N. Therefore,

φ(u0,v0)≤ liminf
n→∞

φ(un,v0) = lim
n→∞

φ(un,Tun)+φ(Tun,v0)+2⟨un −Tun,JTun − Jv0⟩

= distφ (M,N), (6)

which follows using the fact that JTun−Jvn → 0 as n→∞ in a Frechet smooth Banach space. On the
other hand, for each n ∈N, we have lim

n→∞
φ(un,v0) = distφ (M,N). Since (M,N) satisfies the property

(φ -UC); it follows that lim
n→∞

φ(un,u0) = 0. Consequently, by Proposition 2.1, lim
n→∞

∥un −u0∥= 0. As

a result, φ(v0,Tu0) = 0; which implies that v0 = Tu0. Thus, φ(u0,Tu0) = distφ (M,N). □

5. Algorithms and strong convergence results

This section commences some strong convergence results of the iterate sequence to the φ -best
proximity point of non-self nonextensive mappings using hybrid algorithms. We start with proving
the strong convergence theorem using the shrinking projection method in a Banach space.
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Theorem 5.1. Let (M,N) be a pair of nonempty, closed, convex subsets of a uniformly convex
and uniformly smooth Banach space B that satisfies the φp-property. Let T : M → N be a non-
self nonextensive mapping satisfying T (M0) ⊆ N0 and that T has the φ -proximal property. Let us
consider the sequence {un} generated by

u1 = ΠM0u,u ∈ B be arbitrary,
H1 = M0,

vn = J−1(αnJun +(1−αn)JΠMTun),n ∈ N,
Hn+1 = {z ∈ Hn : φ(z,vn)≤ φ(z,un)},
un+1 = ΠHn+1u,

(7)

for each n ∈ N, where αn ∈ [0,a], for some a ∈ [0,1). If BestφM(T ) is nonempty, then the sequence
{un} strongly converges to u∗ = Π

BestφM(T )
u.

Proof. From the definition of Hn, it is obvious that Hn is closed. The convexity of Hn is inferred
from the inequality φ(z,vn) ≤ φ(z,un), which is equivalent to 2⟨z,Jun − Jvn⟩+ ∥vn∥2 −∥un∥2 ≤ 0.
Next, we show by induction that the set BestφM(T ) is contained in Hn, for each n ∈ N. For n = 1,
BestφM(T )⊂ H1 = M0. Let us assume that BestφM(T )⊂ Hk, for some k ∈ N and p ∈ BestφM(T )⊂ Hk.
Then

φ(p,vk) = φ(p,J−1(αkJuk +(1−αk)JΠMTuk))

≤ ∥p∥2 −2αk⟨p,Juk⟩−2(1−αk)⟨p,JΠMTuk⟩+αk∥uk∥2 +(1−αk)∥ΠMTuk∥2

= αkφ(p,uk)+(1−αk)φ(p,ΠMTuk). (8)

By Lemma 3.4, it follows that φ(ΠMTuk,Tuk) = distφ (M,N) and φ(p,T p) = distφ (M,N). By using
the φp-property and the fact that T is nonextensive mapping, we deduce that

φ(p,ΠMTuk) = φ(T p,Tuk)≤ φ(p,uk). (9)

So, (8) reduces to, φ(p,vk)≤ φ(p,uk); indicating that p∈Hk+1. Therefore, it follows that BestφM(T )⊂
Hn, for all n ∈ N. This also proves that {un} is well-defined.
On the other hand, from the definition Hn, un = ΠHnu. Applying Proposition 2.3, we get

φ(un,u)≤ φ(p,u)−φ(p,un)≤ φ(p,u), for each n ∈ N. (10)

This shows that {φ(un,u)} is bounded and hence by the inequality (∥un∥− ∥u∥)2 ≤ φ(un,u); it
follows that {un} is bounded. Next, since un+1 = ΠHn+1u ∈ Hn, using Proposition 2.3, we obtain that

φ(un,u)≤ φ(un+1,u), for each n ∈ N. (11)

Thus, {φ(un,u)} is nondecreasing and so, it converges to a limit. Further, we have

φ(un+1,un) = φ(un+1,ΠHnu)≤ φ(un+1,u)−φ(ΠHnu,u) = φ(un+1,u)−φ(un,u),

for each n ∈ N. This implies that φ(un+1,un) = 0 and hence by Proposition 2.1, we have

lim
n→∞

∥un+1 −un∥= 0. (12)

Besides, we can see that φ(un+1,vn)≤ φ(un+1,un), for each n ∈N, which follows from the fact that
un+1 ∈ Hn+1. Thus, we can conclude that

lim
n→∞

φ(un+1,vn) = 0 and so lim
n→∞

∥un+1 − vn∥= 0. (13)

Now,

φ(un,vn) = φ(un,J−1(αnJun +(1−αn)JΠMTun))

≤ αnφ(un,un)+(1−αn)φ(un,ΠMTun)

= (1−αn)φ(un,ΠMTun). (14)
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From (12) and (13), we have ∥un − vn∥ → 0 and since {un} is bounded, we have φ(un,vn)→ 0 as
n → ∞. So, (14) together with the fact that αn does not converge to 1 gives

lim
n→∞

φ(un,ΠMTun) = 0. (15)

Thus,

lim
n→∞

φ(un,Tun) = lim
n→∞

φ(un,ΠMTun)+φ(ΠMTun,Tun)+2⟨un −ΠMTun,JΠMTun − JTun⟩

= lim
n→∞

φ(ΠMTun,Tun) (by (15) and Frechet smoothness of B)

= distφ (M,N). (16)

As a result, {un} is an (Aφ -BPS) for the mapping T . Our aim now is to show that the set of weak
accumulation points of the sequence {un} is contained in BestφM(T ). To show this, let q be the
weak limit point of the sequence {un}. i.e., we can find a subsequence {unk} of {un} such that
unk

w−→ q. From (16) and using the fact that T satisfies the φ -proximal property, we obtain that
φ(q,T q) = distφ (M,N). i.e., q ∈ BestφM(T ).
Let u∗ = Π

BestφM(T )
u. By (10), we get φ(un,u)≤ φ(u∗,u), for all n ∈ N. Then

φ(q,u)≤ liminf
k→∞

φ(unk ,u)≤ limsup
k→∞

φ(unk ,u)≤ φ(u∗,u).

On the other hand, using the fact that un+1 = ΠHn+1u and u∗ ∈ BestφM(T )⊂ Hn, we get φ(un+1,u)≤
φ(u∗,u). From the definition of Π

BestφM(T )
u, we obtain that q= u∗ and so, limk→∞ φ(unk ,u) = φ(u∗,u)

which further gives ∥unk∥→ ∥u∗∥. Therefore, by the property (KK), we conclude that {unk} strongly
converges to u∗ = Π

BestφM(T )
u and since {unk} is arbitrary, the assertion follows. □

Theorem 5.2. Let (M,N) be a pair of nonempty, closed, convex subsets of a uniformly convex
and uniformly smooth Banach space B that satisfies the φp-property. Let T : M → N be a non-
self nonextensive mapping satisfying T (M0) ⊆ N0 and that T has the φ -proximal property. Let us
consider the sequence {un} generated by

u1 = u ∈ M0 be arbitrary,
vn = J−1(αnJun +(1−αn)JΠMTun),

Hn = {z ∈ M0 : φ(z,vn)≤ φ(z,un)},
Wn = {z ∈ M0 : ⟨un − z,Jun − Ju⟩ ≤ 0},
un+1 = ΠHn∩Wnu,

(17)

for each n ∈ N, where αn ∈ [0,a], for some a ∈ [0,1). If BestφM(T ) is nonempty, then the sequence
{un} strongly converges to u∗ = Π

BestφM(T )
u.

Proof. Firstly, we show that BestφM(T ) is contained in Hn ∩Wn. By Theorem 5.1, it is assured
that Hn is closed and convex and BestφM(T ) is contained in Hn. It can be easily seen that Wn is
closed and convex. So, it remains to only prove that BestφM(T ) ⊂ Wn, for each n ∈ N. For n = 1,
BestφM(T )⊂ M0 =W1 and assume that BestφM(T )⊂Wk, for some k ∈N. Since, uk+1 = ΠHk∩Wk u, we
obtain that

⟨uk+1 − z,Ju− Juk+1⟩ ≥ 0, ∀z ∈ Hk ∩Wk. (18)

Since, BestφM(T ) ⊂ Hk ∩Wk; (18) holds for all z ∈ BestφM(T ). Hence, BestφM(T ) ⊂ Wk+1. Thus,
BestφM(T ) ⊂ Hn ∩Wn. It follows from the definition of Wn and Proposition 2.3 that, un = ΠWnu
and so, φ(un,u) ≤ φ(p,u)− φ(p,un) ≤ φ(p,u), for each p ∈ BestφM(T ). Therefore, {φ(un,u)} is
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bounded. Moreover, {un} is bounded. Since, un+1 = ΠHn∩Wnu ∈Wn; by Proposition 2.3, φ(un,u)≤
φ(un+1,u), for each n ∈ N. Therefore, {φ(un,u)} is nondecreasing and so, it converges. Now,

φ(un+1,un) = φ(un+1,ΠWnu)≤ φ(un+1,u)−φ(un,u), for each n ∈ N.

Consequently,

lim
n→∞

φ(un+1,un) = 0 and lim
n→∞

∥un+1 −un∥= 0. (19)

Since, un+1 = ΠHn∩Wnu ∈ Hn, from the definition of Hn, we have φ(un+1,vn)≤ φ(un+1,un),∀n ∈N.
Therefore,

lim
n→∞

φ(un+1,vn) = 0 and lim
n→∞

∥un+1 − vn∥= 0. (20)

By broadly applying the proof of Theorem 5.1, one can show that {un} converges strongly to u∗ =
Π

BestφM(T )
u. □

We now state the strong convergence result, which a modified shrinking projection method
defined in [2].

Theorem 5.3. Let (M,N) be a pair of nonempty, closed, convex subsets of a uniformly smooth and
uniformly convex Banach space B that satisfies the φp-property. Let T : M → N be a nonself nonex-
tensive mapping satisfying T (M0)⊆ N0 and that T has the φ -proximal property. Let us consider the
sequence {un} generated by

u0 = u ∈ M0 be arbitrary,
H1 = M0, u1 = ΠM0u,
vn = ΠMJ−1(αnJΠNun +(1−αn)JTun),

Hn+1 = {z ∈ Hn : φ(z,vn)≤ φ(z,un)},
un+1 = ΠHn+1u,

(21)

for each n ∈ N, where αn ∈ (0,1) and liminf
n→∞

αn(1−αn) > 0. If BestφM(T ) is nonempty, then the

sequence {un} strongly converges to u∗ = Π
BestφM(T )

u.

Proof. Clearly, Hn is closed and convex, for each n ∈ N. Firstly, we claim that BestφM(T )⊂ Hn, for
each n ∈ N. For n = 1, BestφM(T ) ⊂ H1 = M0 is obvious. Assume that BestφM(T ) ⊂ Hk, for some
k ∈ N and p ∈ BestφM(T ). By Lemma 3.5, we have p = ΠM ◦T p. Then,

φ(p,vk) = φ(ΠM ◦T p,ΠMJ−1(αkJΠNuk +(1−αk)JTuk))

≤ φ(T p,J−1(αkJΠNuk +(1−αk)JTuk))

≤ αnφ(T p,ΠNuk)+(1−αk)φ(T p,Tuk). (22)

Since, φ(uk,ΠNuk) = distφ (M,N) and φ(p,T p) = distφ (M,N); by φp-property, we have

φ(T p,ΠNuk) = φ(p,uk). (23)

Using (23) and the fact that T is nonextensive, (22) reduces to φ(p,vk)≤ φ(p,uk), for some k ∈ N.
This shows that p ∈ Hk+1. Thus, by induction, it is proved that BestφM(T )⊂ Hn, for all n ∈ N. This
also shows that {un} is a well-defined sequence.
Besides this, it is also observed that BestφM(T ) is closed and convex. This follows from Lemma 3.5,
which yields F(ΠM ◦ T |M0) = BestφM(T ). So, if we consider û ∈ M0 and q ∈ F(ΠM ◦ T |M0); then
φ(ΠM ◦T |M0q,ΠM ◦T |M0 û)≤ φ(T |M0q,T |M0 û)≤ φ(q, û). Consequently, using the arguments from
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[16, Proposition 2.4], we can show that BestφM(T ) is closed and convex. Next, since un+1 = ΠHn+1u
and BestφM(T )⊂ Hn, for all n ∈ N; it follows by Proposition 2.3 that

φ(un+1,u)≤ φ(p,u), for p ∈ BestφM(T ). (24)

Thus, {φ(un,u)} is bounded and so, by the inequality (∥un∥−∥u∥)2 ≤ φ(un,u); {un} is bounded.
Again, since un = ΠHnu, we obtain that,

φ(un,u)≤ φ(un+1,u). (25)

Therefore, {φ(un,u)} is nondecreasing and so, it has a limit. From Proposition 2.3, it also follows
that

φ(un+1,un)≤ φ(un+1,u)−φ(un,u), ∀n ∈ N. (26)

Thus,

lim
n→∞

φ(un+1,un) = 0 ⇒ lim
n→∞

∥un+1 −un∥= 0. (by Proposition 2.1) (27)

From the definition of Hn, we also have, φ(un+1,vn)≤ φ(un+1,un), ∀n ∈ N; which results

lim
n→∞

φ(un+1,vn) = 0 ⇒ lim
n→∞

∥un+1 − vn∥= 0. (by Proposition 2.1) (28)

From (27) and (28), it follows that

lim
n→∞

∥un − vn∥= 0. (29)

Since, J is norm-to-norm continuous on bounded sets, we have

lim
n→∞

∥Jun − Jvn∥= 0. (30)

Let us take r = supn∈N{∥ΠNun∥,∥Tun∥}. We know that B∗ is uniformly convex, since B is uniformly
smooth; thus by Lemma 2.4, we can find a continuous, strictly increasing and convex function ψ with
ψ(0) = 0 such that ∥η f +(1−η)g∥2 ≤ η∥ f∥2 +(1−η)∥g∥2 −η(1−η)ψ(∥ f −g∥), for f ,g ∈ B∗

r

and η ∈ [0,1]. Therefore, for p ∈ BestφM(T ), one has

φ(p,vn) = φ(ΠM ◦T p,ΠMJ−1(αnJΠNun +(1−αn)JTun))

≤ φ(T p,J−1(αnJΠNun +(1−αn)JTun))

≤ ∥T p∥2 −2αn⟨T p,JΠNun⟩−2(1−αn)⟨T p,JTun⟩

+αn∥ΠNun∥2 +(1−αn)∥Tun∥2 −αn(1−αn)ψ(∥JΠNun − JTun∥)
≤ αnφ(T p,ΠNun)+(1−αn)φ(T p,Tun)−αn(1−αn)ψ(∥JΠNun − JTun∥)
≤ φ(p,un)−αn(1−αn)ψ(∥JΠNun − JTun∥). (by (23) and the nonextensiveness of T )

So,

αn(1−αn)ψ(∥JΠNun − JTun∥)≤ φ(p,un)−φ(p,vn)

= ∥un∥2 −∥vn∥2 −2⟨p,Jun − Jvn⟩
≤ ∥un − vn∥(∥un∥+∥vn∥)+2∥p∥∥Jun − Jvn∥. (31)

Substituting (29) and (30) in (31), we have αn(1−αn)ψ(∥JΠNun − JTun∥)→ 0 as n → ∞. Since,
liminf

n→∞
αn(1−αn)> 0, it follows that lim

n→∞
ψ(∥JΠNun − JTun∥) = 0. The properties of ψ yield that

lim
n→∞

∥JΠNun − JTun∥= 0. (32)

Since B is uniformly smooth, J−1 is uniformly norm-to-norm continuous on bounded sets and so we
get

lim
n→∞

∥ΠNun −Tun∥= lim
n→∞

∥J−1(JΠNun − JTun)∥= 0. (33)
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Therefore,

lim
n→∞

φ(un,Tun) = lim
n→∞

φ(un,ΠNun)+φ(ΠNun,Tun)+2⟨un −ΠNun,JΠNun − JTun⟩

= lim
n→∞

φ(un,ΠNun) (by (32) and (33))

= distφ (M,N).

This shows that {un} is an (Aφ -BPS). The strong convergence can be now obtained by the same
arguments followed in Theorem 5.1. □

Remark 5.1. Theorem 5.1 can be used to solve the strong convergence problem concerning a nonself
nonexpansive mapping in a Hilbert space, which is equivalent to [14, Theorem 3.2]. In a Hilbert
space, Theorem 5.2 is equivalent to the convergence result determined in [5].

6. Conclusion

In conclusion, we employ the shrinking projection approach to identify the φ -best proximity
points of a non-self nonextensive mapping in a uniformly convex and uniformly smooth Banach
space. We have proved the strong convergence of the generated sequence by the proposed algorithm
under the assumption that the nonextensive mapping has the φ -proximal property. New iterative
techniques for two or more non-self nonextensive mappings in Banach spaces may be developed
from this work, guiding the authors’ future work.
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