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GENERATION OF MULTI-MODAL LAMB WAVES FOR THE 
INSPECTION OF THIN AERONAUTICAL STRUCTURES 

Andreea-Denisa GRIGUȚĂ1, Mihai Valentin PREDOI2* 

Many researchers presented various aspects concerning the Lamb waves, 
from methods to obtain the dispersion curves, to the assessment of discontinuities 
geometry, by numerical and experimental methods. Due to their capacity to travel 
along the planar structures, the Lamb waves can inspect large structures, from a 
single point of generation-reception of ultrasonic signals, based on scattering of 
incident waves by small defects. The scattering phenomenon is more complex as the 
frequency increases and more Lamb modes can propagate. Most authors have 
chosen a single incident mode for this reason, which is a limiting factor in many 
cases. The present paper is investigating a normal incidence piston-like excitation of 
multi-modes Lamb waves. The advantage is that the transducer energy is entirely 
transmitted to the structure. The trade-off is represented by the requirement to 
compute the incident energy associated with each of the Lamb modes from the 
incident wave.  

Keywords: Lamb waves, piston excitation, multimode propagation. 

1. Introduction 

Lamb waves, named after their discoverer [1], are nowadays presented in 
most ultrasonic textbooks  e.g. [2], [3] and are used in technical applications, 
especially in non-destructive evaluation of planar structures, due to their long-
range propagation in comparison to bulk waves. The classical Lamb waves 
propagate along homogeneous isotropic plates and are made of one or several 
Lamb modes, belonging to one of the two classes of modes: symmetric and 
antisymmetric (skew-symmetric as some authors prefer). A dedicated 
monography was published in 1967 by Viktorov [4].  
 The amplitude of each such mode depends on the generation method and 
on the scattering phenomena occurring during the propagation along the plate. 
Scattering is a process of splitting the incident modes into all possible propagating 
modes, in such a manner that the boundary conditions over the discontinuity are 
fully met. Determining the modal amplitudes from a scattering process relies on 
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modal orthogonality proven by Fraser [5] and in a another form by Murphy and 
Chin-Bing [6]. 
 One of the first investigated discontinuity is represented by the plate end 
considered to be perpendicular on the free surfaces of the plate. Torvik [7] used 
the reciprocity relation to decompose the incident Lamb mode into a series of 
Lamb modes reflected from a free normal end of an elastic plate. Gregory and 
Gladwell [8] used an orthogonality formula for the this reflection problem. Galan 
and R. Abascal [9], [10] used a hybrid finite elements- boundary elements method 
to solve the reflection problem, using an original method to compute the 
dispersion curves. Predoi and Rousseau determined the symmetric and 
antisymmetric Lamb modes amplitudes, scattered from a free edge of a plate for a 
wide range of frequencies [11], using a series of modes including non-propagating 
modes. These modes were presented in detail by Predoi in ref. [12]. An important 
experimental validation, emphasizing the so-called “edge mode” was investigated 
by Le Clezio et al. [13]. 

The present work is organized as follows. The theoretical aspects related 
to the dispersion curves are presented in section 2. The scattering phenomenon at 
the plate incidence end is presented in section 3, using an analytical method based 
on orthogonality theorems [5], [6], providing the incident energy of each mode, 
for a given plate at a wide range of frequencies. A qualitative experimental 
validation is proving the modal decomposition validity over a relatively large 
frequency range.   

2. Theoretical aspects 

2.1 Dispersion curves  
 

In a homogeneous isotropic plate occupying the domain: 
( ) [ ) [ ]{ }, ; 0, , 2, 2x z x z h h∈ ∞ ∈ −  (Fig. 1) the elasticity equations are fulfilled by 

two potentials. One is the scalar potential ( ), ,x z tϕ  satisfying the wave equation 
for the longitudinal (compressional) waves 2

Lc ϕ ϕ∆ =  and the other is a vector 
potential ( ), ,x z tψ describing the transversal (shear) waves 2

Tc ψ ψ∆ =   with 
possible horizontal (SH) or vertical (SV) polarizations relative to the indicated 
axes.  A supplementary “gauge” condition is imposed to the third scalar 
component, so that finally in an elastic solid there are three scalar functions 
describing the possible elastic waves. 
   The two bulk velocities are related to the elasticity constants (Lamé 
constants λ, μ) and mass density ρ, by the classical formulas: 

2 ;L Tc cλ µ µ
ρ ρ
+

= =  .    (1) 
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In the particular case of the Lamb waves, the displacements field has only two 
components: u(x,y,t) along the Ox axis and w(x,y,t) along the Oz axis. 
 

Fig. 1 Geometry of the semi-infinite plate 

 The following harmonic forms of the scalar potential and the relevant 
component of the vector potential are written as [4], [2]: 

 
( ) ( )
( ) ( )

cos exp

sin exp
L Lz x

T Tz x

S k z i k x t

S k z i k x t

ϕ ω

ω

= −  
Ψ = −  

,    (2) 

which allow writing the symmetrical displacements about the Oxy plane: 

( ) ( ) ( )

( ) ( ) ( )

cos cos exp

sin sin exp

L x Lz T Tz Tz x

L Lz Lz T x Tz x

u iS k k z S k k z i k x t
x z

w S k k z iS k k z i k x t
z x

ϕ ω

ϕ ω

∂ ∂Ψ
= − = − −      ∂ ∂
∂ ∂Ψ

= + = − + −      ∂ ∂

. (3) 

 
The following notations have been used:  

 
2 2 2 2

2 ; ; ; ;

;

x T L
T L

Tz T x Lz L x

f k k k
c c c

k k k k k k

ω ω ωω π= = = =

= − = −

    (4) 

in which f is the frequency (Hz) and c is the phase velocity of a Lamb mode, 
whereas kx denotes the Ox component of the wavenumber, SL and ST represent the 
complex valued amplitudes, which are corelated for a given Lamb mode, after 
solving the dispersion equation. For small displacements, the relevant strain 
components in the elastic material are: 

 ; ; .x z zx
u w u w
x z z x

ε ε γ∂ ∂ ∂ ∂
= = = +
∂ ∂ ∂ ∂

    (5) 

The associated stress components can be developed as: 

-h/2 

h/2 

z 

x O 
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 ( ) ( )2 ; 2 ;xx zz xz
u w u w
x z z x

σ λ µ σ λ µ σ µ∂ ∂ ∂ ∂ = + = + = + ∂ ∂ ∂ ∂ 
    (6) 

Injecting the displacements expressions (3) in the stress formulas (6), one can 
deduce the dispersion equation for symmetric Lamb modes [1], [4], by enforcing 
cancellation of stresses: normal ( )2 0zz hσ ± =  and shear ( )2 0xz hσ ± = : 

( ) ( ) ( ) ( )22 2 2, 4 tan 2 tan 0s x x Lz Tz Lz x T TzC k k k k k h k k k hω = + − =  .   (7) 

In a similar manner, antisymmetric modes are obtained from the potential 
formulas: 

( ) ( ) ( ) ( )sin exp ; cos expL Lz x T Tz xA k z i k x t A k z i k x tϕ ω ω= − Ψ = −         (8) 

as: 

 ( ) ( ) ( ) ( )22 2 2, 4 tan 2 tan 0a x x Lz Tz Tz x T LzC k k k k k h k k k hω = + − =  .       (9) 

 The authors developed a numerical method for solving these dispersion 
equations, based on the residuals theorem [14]. More detail concerning this 
numerical algorithm can be found in refs. [11] and [12]. For a chosen frequency, 
the full range of real, imaginary and complex roots are obtained, forming 
continuous curves for each mode, denoted S0, S1, S2, S3, …, A1, A2, etc. The real 
nondimensional wavenumbers (kxh) indicate propagating modes, which exist for 
non-dimensional frequency ( Th cω ), marked by black dots on Fig. 2. Blue dots 
indicate purely imaginary wavenumbers and green dots indicate complex 
conjugate wavenumbers. The modes S1, S2, … are propagating only above the so-
called cut-off frequencies, visible in this figure. 

Fig. 2 Dispersion curves for symmetric modes  
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 These last two types of wavenumbers represent non-propagating (or 
evanescent) modes, which are useful only in expressing boundary conditions, 
since these modes do not propagate far in the plate. For propagating modes only, 
on Fig. 3 are shown the wavenumbers vs. frequency in both nondimensional  (kxh, 

T Th c k hωΩ = = ) and physical quantities (kx, usual frequency f [kHz] ) for a 3mm 
thick aluminum plate.   

 
Fig. 3 Dispersion curves for Lamb modes in an aluminum plate  

The antisymmetric modes are included in this figure, up to A2. Negative 
wavenumbers indicate a particular frequency domain in which the phase and 
group velocities have opposite signs.  
 
2.2 Modal decomposition  
 
 It has been proven by Murphy and Chin-Bing [5] and by Brazier-Smith 
and Scott [6] that any stress or displacements field of a propagating ultrasonic 
wave in a plate, can be decomposed in an infinite series of propagating and 
evanescent modes, coexisting at that particular frequency, using their property of 
energy flux reciprocity or modal orthogonality. The modal amplitudes are 
obtained using this procedure, using the dispersion curves, mentioned in the 
previous section. 
 If the ultrasonic wave is a chirp or any arbitrary ultrasonic signal, the 
method can be applied for each individual frequency of the spectrum, obtained by 
applying a Fourier series (FFT) decomposition of the temporal signal.  
 Our analysis is focused on symmetric modes, provided that the plate has a 
perpendicular edge where the ultrasonic transducer will be placed. Due to the 
geometric symmetry of the problem, it can be easily proven that only symmetric 

1 2 3 4 5 6

0

1

2

3

4

5

6

Kx
.h

S0

S1

S2

A0

A1

A2

200 400 600 800 1000 1200 1400

f [kHz]  Alu H=4 mm

0

500

1000

1500

2000

2500

3000

kx
 [r

ad
/m

]



222                               Andreea-Denisa Griguță, Mihai Valentin Predoi 

Lamb modes can be generated by the longitudinally oscillating perpendicular 
edge.  The symmetric displacements  (3) will be written in a more compact form, 
for a particular symmetric Lamb mode of order n =0, 1, 2, … : 

( )
( ) ( )

, , ( )
exp

, , ( )
xn

n xn
znn

u x z t U z
S i k x t

w x z t U z
ω

   
= −      

  
    (10) 

in which Sn is an arbitrary constant representing the (complex) amplitude of mode 
n. The other constant from (3) is no longer independent after solving the 
dispersion equation, being provided by their ratio:  

 ( ) ( )
( ) ( )2 2

2 sin
, ,

sin
xn Lzn Lzn

Sn L T
Tzn xn Tzn

k k k h
B c c

k k k h
ω =

−
.    (11) 

 Consequently, the displacement field of any particular symmetric Lamb 
mode can be written, leaving aside the harmonic factor ( )exp xni k x tω−   as [11]: 

 xn Lzn Sn Tzn Tznx

Lzn Lzn Sn xn Tznz n

ik c iB k cU
k s B k sU

−  
=    − −   

.    (12) 

The axial and shear stress functions along the normal direction onto the free plate 
surfaces are:  

( )
( )

2 2

2 2

2 2

2 2

T Lz Lzn s x Tz Tznxx

zx Lz x Lzn s Tz x Tzn

k k c B k k cS
S ik k s B k k s

µ
 − − +   =     − − −  

   (13) 

The following notations have been used : 
 ( ) ( ) ( ) ( )cos ; sin ; cos ; sin .Lzn Lzn Lzn Lzn Tzn Tzn Tzn Tznc k z s k z c k z s k z= = = =   
Finally, any displacement field at a given frequency f at x=0,  can be expressed as 
a sum of Lamb modes: 

          ( )
( )

( )
( )0

U z
W z

x
n

n z n

U z
S

U z

∞

=

   
=   

   
∑ .   (14) 

3. Modes generated by a piston transducer 

 An ultrasonic transducer has a planar surface oscillating at high frequency, 
usually being excited by an electric pulse, and generating an ultrasonic chirp. A 
chirp can be decomposed in harmonic signals of amplitudes Am and frequencies fm 
obtained from an harmonic analysis (FFT). Consequently, our investigation can be 
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continued at a frequency fm and an arbitrary amplitude Am . In a practical case, the 
obtained results can be summed, according to the superposition principle applied 
for linear phenomena. An important hypothesis has to be  introduced at this stage: 
the transducer which is pressed against the plate edge at x=0, produces only 
longitudinal displacements and stresses and no tangential displacements, nor shear 
stresses: 

                                          ( )
( )

0U z
W z 0

U   
=   
  

.                            (15) 

Consequently, in this case the boundary conditions at x=0 are written as a sum of 
modal displacements, marked by index n: 

           ( )
( )

0

0 0
x

n
n z n

U z U
S

U z

∞

=

   
=   
  

∑  .   (16) 

In order to determine the Sn modal amplitudes for the modes of interest, the 
following reciprocity relation will be used [7], with Txx and Tzx being components 
of the stress field to be decomposed into Lamb modes. A bar above a quantity 
represents the complex conjugate of the respective quantity: 

 ( ) ( )( ) ( ) ( ) ( ) ( )( )
0

h h
m m m n m n

x xx z zx n x xx z zx
nh h

U T U T dz S U S U S dz
∞

=− −

 
 + = +
  

∑∫ ∫ .  (17) 

In the present work, the left side of this equation is simpler: 

( ) ( ) ( ) ( ) ( )( )
0

h h
m m n m n

x n x xx z zx
nh h

P U dz S U S U S dz
∞

=− −

 
 = +
  

∑∫ ∫ .    (18) 

The uniform pressure P produced by the piston-like action of the transducer was 
considered. The integral in the right side, can be proven [7] to be the reciprocal 
work between Lamb modes m and n, which is n nn nmS W δ , using the Kronecker 

symbol 
0
1mn

if m n
if m n

δ
≠

=  =
and Wnn  is the time averaged energy flux of the mode 

n. The infinite sum converges rapidly, and nmax=20 has been proven to be 

sufficient for an energy balance 
20

0
1nn inc

n
W W

=
≅∑   with less than 2% error. 

4. Material properties 

 Having in view aeronautical applications, the chosen material is aluminum 
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in the form of a plate of thickness h=3mm.  In the present work, the material 
properties have been determined, for existing samples and using the classical 
ultrasonic techniques of measuring the bulk ultrasonic waves velocities: 
longitudinal cL and respectively transversal cT.  The time lapse (ΔtL and ΔtT 
respectively) between two successive echoes reaching the transducer, which is 
applied perpendicular on the plate surface, allows for the computation of the two 
velocities: 

2 26322.4 ; 3115.3L T
L T

h hc m s c m s
t t

= = = =
∆ ∆

. 

The mass density was determined from an accurate mass determination 
using a professional scale and the volume from the measured dimensions 
(335.03x200.73x3 mm) of the plate, resulting to be ρ =  2681 kg/m3. Using these 
material data, the Lamé coefficients λ=55.13 GPa and μ=26.01 GPa are obtained 
(or the Young modulus E=69.7 GPa and the Poisson coefficient ν=0.34). 
 

5. Numerical example 

The mathematical method presented in section 3 was applied to a plate of 
aluminum of relevant material constants obtained as presented in the previous  
section.  

 
Fig. 4 Modal displacements normal to the plate surface 

In order to obtain a wider range of applicable results, the computations and the 
results are using non-dimensional physical quantities, e.g the non-dimensional 
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frequency 2
T

T

hk h f
c
π

Ω = = , but for the tested sample, an upper true frequency scale 

(f in MHz) is included for an easier comparison of results.   
The obtained modal amplitudes for each frequency allow us to determine 

the normal displacements on the plate surface, for each of the propagating modes 
over the selected frequency range (Fig. 4). At each non-dimensional / true 
frequency can be determined also the normal velocities (Fig. 5) for all propagating 
modes, necessary for comparison with laser velocimeter data. 

 Fig. 5 Modal velocities normal onto the plate surface 

For the same longitudinal displacement U0 applied by the harmonic moving 
piston-transducer at one plate end, the normal displacements and velocities at 
lower frequencies (Ω = kT.h < 2.8) corresponding to the S0 mode, are considerably 
lower than those of the modes S1 and S2 at frequencies just above Ω = 3.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 The force applied at the plate edge vs. frequency for a displacement amplitude u0 
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The normal displacements and velocity of the mode S1 decreases to 
vanishing as non-dimensional frequency increases from 3.2 to 6.3.  Consequently, 
it is necessary to compute the axial force of the transducer required to produce the 
longitudinal displacement U0.  

The force required to generate a particular set of modes at a given 
frequency is obtained as 0F Uµ . The necessary force to be applied at a plate edge 
for a given edge vibration amplitude is shown on Fig. 6. At the lowest 
frequencies, below the cutoff frequency of modes S1 and S2, the required force is 
also low for a given motion amplitude, as it can be expected. An interesting 
remark is that the force is not increasing monotonically, but a local maximum is 
reached for a non-dimensional frequency kt.h = 2.   

The narrow frequency range close to non-dimensional frequency 3 is 
governed by a rapid variation of wavenumbers in the dispersion curves, reflected 
by a rapid variation in the required force. This frequency range and all above 
values are avoided by most specialists. What we suggest in this paper is to 
consider the higher frequency range Ω = 3.2 – 9.2. In this domain, the required 
force increases almost linearly with increasing frequency. In other words, for a 
given force, the ultrasonic modes amplitudes will decrease linearly with 
increasing frequency. However, as shown on Fig. 5, in the frequency range kT.h = 
3.2 … 6.3 the normal velocity of the mode S2 has a relatively constant amplitude, 
at least below kT.h = 5.5 and could be used for non-destructive applications.  

  
 

Fig. 7 Relative energy flux of propagating modes vs. frequency (non-dimensional values) 

The most important results are represented by the energy flux distribution among 
the propagating modes as a function of frequency, since the sum of these energy 
fluxes equal or close to the unit value, represent a validation of the numerical 
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results. On Fig. 7 are presented the first six propagating modes, from the lowest 
frequencies, where only S0 mode exists, up to a very high frequency at which all 
six modes could propagate. As expected, if only the fundamental S0 mode can 
propagate, the entire energy flux of the ultrasonic transducer applied at the plate 
edge (Wtotal), will be carried by this mode. Even in the transition domain with 
rapid variations of fluxes, the mathematical model works with high accuracy, but 
the results are less interesting from a practical point of view. In the emphasized 
frequency range Ω = 3.2 – 9.2, the incident energy flux is scattered among the 
propagating modes in a specific manner: 

• The fundamental S0 mode is completely absent. 
• The S1 mode is energy dominant up to a non-dimensional frequency kt.h = 

5.2, but continuously decaying in front of the mode S2 which is reaching a 
peak of energy flux at kt.h = 6.8.  

• Beyond the cutoff frequency kt.h = 6.8, the S3 mode has an increasing 
energy flux.  
 

6. Experimental results 

The experiments were conducted in the Laboratory of Structures Integrity 
Control located in the Department of Mechanics of the University Politehnica of 
Bucharest. The experimental setup consists of a Polytec laser vibrometer using a 
OFV-505 sensor head with highest central frequency of fcen = 1 MHz. A Pulser-
Receiver is used to generate the ultrasonic pulses at the plate edge, by a GE 
Krautkramer H1K or H2K ultrasonic transducers of central frequencies 1 MHz 
and 2 MHz respectively. The overall setup is presented on Fig. 8a depicting the 
main devices and their connections. The aluminum plate is displaced vertically 
downwards in steps of 0.075 mm (Fig. 8b,c). The signals shown on the 
oscilloscope are stored on a USB stick. The ultrasonic signals detected by the 
Laser vibrometer are recorded with a step of 0.075 mm for a total of 500 steps. A 
detailed signal processing is done by the double Fourier transform. The time 
domain is transformed into the frequency domain and the spacing evolution at a 
fixed time is transformed into wavenumbers. This is done by a proprietary signal 
processing algorithm developed in GNU Octave scientific programming software 
[15]. 

By plotting this frequency-wavenumber results, one can determine the 
propagating modes in the plate, by a direct comparison to the computed dispersion 
curves. The first transducer used (H1K) has a design central frequency of 1 MHz. 
Moreover the Laser vibrometer is configured to work up to 1 MHz. No cut-off 
filters were used. The results are plotted on Fig. 9a. 
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Fig. 8 Experimental setup (a). Laser vibrometer head (b) and aluminum plate on top of the 
ultrasonic transducer (c) with the laser spot visible 

The superposition of the numerically calculated dispersion curves from 
Fig. 3, shown here as dashed lines, proves to be very good and the Lamb modes 
can be identified. It is apparent that the highest amplitude is focused on the S0 
mode below 1 MHz. Very weak amplitudes are also for the A0, S1 and S2 modes. 
 

 

 

 

 

 
 
 
 
 

Fig. 9 Experimental dispersion curves, for a transducer of 1 MHz (a) and 2 MHz (b) 

The presence of the A0 mode can only be caused by small imperfections in 
the geometrical symmetry and perpendicularity of the plate edge. Very weak 
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amplitudes can be seen also for the S0 mode above the frequency of 1 MHz. For 
this reason, the experiments were resumed with a H2K transducer with a central 
frequency of 2 MHz. Unfortunately the Laser vibrometer has a weak sensitivity 
above 1 MHz, so that the results shown on Fig. 9b are confirming this. However, 
the lighter spots indicate as before, the individual propagating Lamb modes. The 
S0, S1 and S2 modes are visible even at frequencies higher than 1 MHz.  

This result is very important for future development of inspection 
techniques at non-dimensional frequencies kT.h =  3.2 … 5.5. Even if at these 
frequencies, the normal force on the plate edge produced by the transducer is 
several times larger, the advantages of obtaining shorter wavelengths can prove 
efficient in detecting smaller defects.  
 

7. Conclusions 

 The continuously increasing accuracy requirements for ultrasonic 
inspections leads to an increase in the frequency of the ultrasonic waves. In 
aeronautical applications, guided waves are increasingly applied for their rapid 
coverage of large areas of aluminum panels. However, the complexity of the 
dispersion curves at these high frequencies, represented a major setback in using 
high frequencies at which multiple modes can propagate.  
 In the present paper was used a mathematical and numerical method, 
developed by one of the authors in previous papers, capable to solve for the full 
set of complex values of the wavenumbers.  These continuous dispersion curves 
were used in a series development of the applied piston-like displacement field. 
Using the reciprocity theorem, the amplitudes of each Lamb mode is obtained, for 
a wide frequency range.  
 The modal amplitudes, thus obtained have been used to determine the 
required force of the transducer for a given plate edge harmonic motion. The 
evolution of this force vs. frequency has proven to be non-monotonic, a fact 
which was not reported before. The normal displacements and velocities were 
determined for each propagating mode over a wide range of frequencies. 
 An even more useful result is the incident energy flux scattering among 
the propagating modes. In the suggested frequency range for ultrasonic inspection, 
it is proven that the symmetric Lamb mode S2 is a principal candidate. The best 
frequency range, recommended in case of using a Laser vibrometer as signal 
detector, is between kT.h =  3.2 … 5.5, for which the S2 mode provides a constant 
high normal velocity and a high energy flux.  
 The original experiments done in one university laboratory have 
confirmed the theoretical and numerical results, with limitations in the highest 
measurable frequency. Potential applications in the aeronautical industry are in 
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the cracks and flaws detection over large aluminum panels, covered by 
propagating Lamb modes.  
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