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GENERATION OF MULTI-MODAL LAMB WAVES FOR THE
INSPECTION OF THIN AERONAUTICAL STRUCTURES

Andreea-Denisa GRIGUTA!, Mihai Valentin PREDOI*

Many researchers presented various aspects concerning the Lamb waves,
from methods to obtain the dispersion curves, to the assessment of discontinuities
geometry, by numerical and experimental methods. Due to their capacity to travel
along the planar structures, the Lamb waves can inspect large structures, from a
single point of generation-reception of ultrasonic signals, based on scattering of
incident waves by small defects. The scattering phenomenon is more complex as the
frequency increases and more Lamb modes can propagate. Most authors have
chosen a single incident mode for this reason, which is a limiting factor in many
cases. The present paper is investigating a normal incidence piston-like excitation of
multi-modes Lamb waves. The advantage is that the transducer energy is entirely
transmitted to the structure. The trade-off is represented by the requirement to
compute the incident energy associated with each of the Lamb modes from the
incident wave.
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1. Introduction

Lamb waves, named after their discoverer [1], are nowadays presented in
most ultrasonic textbooks e.g. [2], [3] and are used in technical applications,
especially in non-destructive evaluation of planar structures, due to their long-
range propagation in comparison to bulk waves. The classical Lamb waves
propagate along homogeneous isotropic plates and are made of one or several
Lamb modes, belonging to one of the two classes of modes: symmetric and
antisymmetric  (skew-symmetric as some authors prefer). A dedicated
monography was published in 1967 by Viktorov [4].

The amplitude of each such mode depends on the generation method and
on the scattering phenomena occurring during the propagation along the plate.
Scattering is a process of splitting the incident modes into all possible propagating
modes, in such a manner that the boundary conditions over the discontinuity are
fully met. Determining the modal amplitudes from a scattering process relies on
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modal orthogonality proven by Fraser [5] and in a another form by Murphy and
Chin-Bing [6].

One of the first investigated discontinuity is represented by the plate end
considered to be perpendicular on the free surfaces of the plate. Torvik [7] used
the reciprocity relation to decompose the incident Lamb mode into a series of
Lamb modes reflected from a free normal end of an elastic plate. Gregory and
Gladwell [8] used an orthogonality formula for the this reflection problem. Galan
and R. Abascal [9], [10] used a hybrid finite elements- boundary elements method
to solve the reflection problem, using an original method to compute the
dispersion curves. Predoi and Rousseau determined the symmetric and
antisymmetric Lamb modes amplitudes, scattered from a free edge of a plate for a
wide range of frequencies [11], using a series of modes including non-propagating
modes. These modes were presented in detail by Predoi in ref. [12]. An important
experimental validation, emphasizing the so-called “edge mode” was investigated
by Le Clezio et al. [13].

The present work is organized as follows. The theoretical aspects related
to the dispersion curves are presented in section 2. The scattering phenomenon at
the plate incidence end is presented in section 3, using an analytical method based
on orthogonality theorems [5], [6], providing the incident energy of each mode,
for a given plate at a wide range of frequencies. A qualitative experimental
validation is proving the modal decomposition validity over a relatively large
frequency range.

2. Theoretical aspects

2.1 Dispersion curves

In a homogeneous isotropic plate occupying the domain:
{(x,z); xe[0,), ze[-h/2, h/Q]} (Fig. 1) the elasticity equations are fulfilled by
two potentials. One is the scalar potential ¢(x,z,¢) satisfying the wave equation
for the longitudinal (compressional) waves c;Ag=¢and the other is a vector
potential (x,z,t)describing the transversal (shear) waves c;Ay =y with
possible horizontal (SH) or vertical (SV) polarizations relative to the indicated
axes. A supplementary “gauge” condition is imposed to the third scalar
component, so that finally in an elastic solid there are three scalar functions
describing the possible elastic waves.

The two bulk velocities are related to the elasticity constants (Lamé
constants A, 1) and mass density p, by the classical formulas:

A+2
¢, = /—”; cr=4/ﬁ : (1)
P P
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In the particular case of the Lamb waves, the displacements field has only two
components: u(x,y,t) along the Ox axis and w(x,y,?) along the Oz axis.
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Fig. 1 Geometry of the semi-infinite plate

The following harmonic forms of the scalar potential and the relevant
component of the vector potential are written as [4], [2]:

p=S5, cos(kLZz)exp[i(kxx - a)t)]

, 2
V¥ =S, sin(k,.z)exp [i(kxx—a)t)] @
which allow writing the symmetrical displacements about the Oxy plane:
U= Z_f - (Z—\j =[iS,k, cos(k,z)— Sk, cos(ky.z) |exp| i(k,x—at) | 5
w= Z—f - 68_‘)1: =[-8, k,. sin(k,,z) +iS,k sin(k;z) Jexp[i(kx—ar) ]
The following notations have been used:
w=2rf; k, =2; k, =£; k, =£;
¢ r ¢ 4)

ky = ki =k sk =k — k]

in which f is the frequency (Hz) and c is the phase velocity of a Lamb mode,
whereas k. denotes the Ox component of the wavenumber, S; and S7 represent the
complex valued amplitudes, which are corelated for a given Lamb mode, after
solving the dispersion equation. For small displacements, the relevant strain
components in the elastic material are:

_Ou _ow, _Ou  Ow

E.=—; ¢ ; Y, = —+t—. 5
T T T e ®)

The associated stress components can be developed as:
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ou ow ou ow
=(A+2u)—; =(A+2u)—;0_ =y —+— 6
Ou=(Ar2p) o =(Ardu) o “(az 8xj (©)
Injecting the displacements expressions (3) in the stress formulas (6), one can
deduce the dispersion equation for symmetric Lamb modes [1], [4], by enforcing

cancellation of stresses: normal o (+4/2) =0 and shear o_(+4/2)=0:
C, (k. @)= 4k%k, k, tan(k,_h)+(2k> — &) tan(k.h) =0 . (7)

In a similar manner, antisymmetric modes are obtained from the potential
formulas:

¢ = A, sin(k,_z)exp|i(kx—at)]; ¥ = 4, cos(k.z)exp|i(kx—at)]  (8)
as:
C, (k,.0) =4k k, k;. tan (k.h)+(2k - k] )2 tan(k,.h) =0 . 9)

The authors developed a numerical method for solving these dispersion
equations, based on the residuals theorem [14]. More detail concerning this
numerical algorithm can be found in refs. [11] and [12]. For a chosen frequency,
the full range of real, imaginary and complex roots are obtained, forming
continuous curves for each mode, denoted So, S1, Sz, S3, ..., A1, Az, etc. The real
nondimensional wavenumbers (k) indicate propagating modes, which exist for
non-dimensional frequency (wh/c, ), marked by black dots on Fig. 2. Blue dots
indicate purely imaginary wavenumbers and green dots indicate complex
conjugate wavenumbers. The modes Si, So, ... are propagating only above the so-
called cut-off frequencies, visible in this figure.
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Fig. 2 Dispersion curves for symmetric modes
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These last two types of wavenumbers represent non-propagating (or
evanescent) modes, which are useful only in expressing boundary conditions,
since these modes do not propagate far in the plate. For propagating modes only,
on Fig. 3 are shown the wavenumbers vs. frequency in both nondimensional (k:#,
Q=wh/c, =k,h) and physical quantities (kr, usual frequency f [kHz] ) for a 3mm

thick aluminum plate.

A

3

Fig. 3 Dispersion curves for Lamb modes in an aluminum plate

The antisymmetric modes are included in this figure, up to A,. Negative
wavenumbers indicate a particular frequency domain in which the phase and
group velocities have opposite signs.

2.2 Modal decomposition

It has been proven by Murphy and Chin-Bing [5] and by Brazier-Smith
and Scott [6] that any stress or displacements field of a propagating ultrasonic
wave in a plate, can be decomposed in an infinite series of propagating and
evanescent modes, coexisting at that particular frequency, using their property of
energy flux reciprocity or modal orthogonality. The modal amplitudes are
obtained using this procedure, using the dispersion curves, mentioned in the
previous section.

If the ultrasonic wave is a chirp or any arbitrary ultrasonic signal, the
method can be applied for each individual frequency of the spectrum, obtained by
applying a Fourier series (FFT) decomposition of the temporal signal.

Our analysis is focused on symmetric modes, provided that the plate has a
perpendicular edge where the ultrasonic transducer will be placed. Due to the
geometric symmetry of the problem, it can be easily proven that only symmetric
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Lamb modes can be generated by the longitudinally oscillating perpendicular
edge. The symmetric displacements (3) will be written in a more compact form,
for a particular symmetric Lamb mode of ordern =0, 1, 2, ... :

[u(x»z,t)l _s. {Uw(z)}exp[i( kx—or)] (10)

w(x, z,t) U, (2)

in which S, is an arbitrary constant representing the (complex) amplitude of mode
n. The other constant from (3) is no longer independent after solving the
dispersion equation, being provided by their ratio:

2k, k.., sin (k,.,h)

Lzn
(kr., — k7, )sin (ky,h) (1)

Lzn

By, (wscucr) =

xn Tzn

Consequently, the displacement field of any particular symmetric Lamb
mode can be written, leaving aside the harmonic factor exp[i(k,x—wt)]as [11]:

U ik_c,. —iBgk, c
x — xn—Lzn Sn"Tzn"~"Tzn ' (12)
U. | —Bg ks,

z - LGS Lzn Sn"Vxn

The axial and shear stress functions along the normal direction onto the free plate
surfaces are:

2 2
S _(kT —2kp, )CLG + 2Bk krocryy,
x|y (13)
Szx _2ikszxSLG - Bs (k72"z - 2k)% )STzn

The following notations have been used :
Clon = cos(kLGz); Son = sin(kLGz); Crop = cos(sznz); STon = sin(sznz).
Finally, any displacement field at a given frequency f'at x=0, can be expressed as

a sum of Lamb modes:
W()J -3, {Z Eﬂ - (14)

3. Modes generated by a piston transducer

An ultrasonic transducer has a planar surface oscillating at high frequency,
usually being excited by an electric pulse, and generating an ultrasonic chirp. A
chirp can be decomposed in harmonic signals of amplitudes A4, and frequencies f
obtained from an harmonic analysis (FFT). Consequently, our investigation can be
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continued at a frequency f,, and an arbitrary amplitude 4, . In a practical case, the
obtained results can be summed, according to the superposition principle applied
for linear phenomena. An important hypothesis has to be introduced at this stage:
the transducer which is pressed against the plate edge at x=0, produces only
longitudinal displacements and stresses and no tangential displacements, nor shear

stresses:
Eale

Consequently, in this case the boundary conditions at x=0 are written as a sum of
modal displacements, marked by index n:

zos{ )l =[lﬂ . (16)

In order to determine the S, modal amplitudes for the modes of interest, the
following reciprocity relation will be used [7], with Txx and T being components
of the stress field to be decomposed into Lamb modes. A bar above a quantity
represents the complex conjugate of the respective quantity:

[ AR R [ e U

—h

In the present work, the left side of this equation is simpler:

PJ.U dz—ZS[j( st gl ))dz]- (18)

n=0 —h

The uniform pressure P produced by the piston-like action of the transducer was
considered. The integral in the right side, can be proven [7] to be the reciprocal

work between Lamb modes m and »n, which is S,,,,6,,,, using the Kronecker

if m#n
symbol 6, = {1 ]J: and Wy, is the time averaged energy flux of the mode
if m=n
n. The infinite sum converges rapidly, and nm.x=20 has been proven to be
20

sufficient for an energy balance z Wyn [Wine =1 with less than 2% error.
n=0

4. Material properties

Having in view aeronautical applications, the chosen material is aluminum
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in the form of a plate of thickness #~=3mm. In the present work, the material
properties have been determined, for existing samples and using the classical
ultrasonic techniques of measuring the bulk ultrasonic waves velocities:
longitudinal ¢; and respectively transversal cr. The time lapse (A7z and Atr
respectively) between two successive echoes reaching the transducer, which is
applied perpendicular on the plate surface, allows for the computation of the two
velocities:

cr =ﬂ:6322.4 m/s; cr =ﬁ=3115.3 m/s-
AtL AIT
The mass density was determined from an accurate mass determination
using a professional scale and the volume from the measured dimensions

(335.03x200.73x3 mm) of the plate, resulting to be p = 2681 kg/m>. Using these

material data, the Lamé coefficients A=55.13 GPa and p=26.01 GPa are obtained
(or the Young modulus E=69.7 GPa and the Poisson coefficient v=0.34).

5. Numerical example

The mathematical method presented in section 3 was applied to a plate of
aluminum of relevant material constants obtained as presented in the previous
section.
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Fig. 4 Modal displacements normal to the plate surface

In order to obtain a wider range of applicable results, the computations and the
results are using non-dimensional physical quantities, e.g the non-dimensional
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frequency Q=+kh _2zh /, but for the tested sample, an upper true frequency scale
CT

(fin MHz) is included for an easier comparison of results.

The obtained modal amplitudes for each frequency allow us to determine
the normal displacements on the plate surface, for each of the propagating modes
over the selected frequency range (Fig. 4). At each non-dimensional / true
frequency can be determined also the normal velocities (Fig. 5) for all propagating
modes, necessary for comparison with laser velocimeter data.

0.5 1 1.5 2 25 3 f(MHz}
— T — i T T T

10 10

d(Uz)/dt (A.U.)
- w

kT*h
Fig. 5 Modal velocities normal onto the plate surface

For the same longitudinal displacement Uy applied by the harmonic moving
piston-transducer at one plate end, the normal displacements and velocities at
lower frequencies (Q2 = kt.h < 2.8) corresponding to the Sp mode, are considerably
lower than those of the modes S; and S at frequencies just above Q = 3.2.
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Fig. 6 The force applied at the plate edge vs. frequency for a displacement amplitude ug
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The normal displacements and velocity of the mode S; decreases to
vanishing as non-dimensional frequency increases from 3.2 to 6.3. Consequently,
it is necessary to compute the axial force of the transducer required to produce the
longitudinal displacement Uh.

The force required to generate a particular set of modes at a given
frequency is obtained as r/,u, . The necessary force to be applied at a plate edge

for a given edge vibration amplitude is shown on Fig. 6. At the lowest
frequencies, below the cutoff frequency of modes Si and S», the required force is
also low for a given motion amplitude, as it can be expected. An interesting
remark is that the force is not increasing monotonically, but a local maximum is
reached for a non-dimensional frequency kz.h = 2.

The narrow frequency range close to non-dimensional frequency 3 is
governed by a rapid variation of wavenumbers in the dispersion curves, reflected
by a rapid variation in the required force. This frequency range and all above
values are avoided by most specialists. What we suggest in this paper is to
consider the higher frequency range Q = 3.2 — 9.2. In this domain, the required
force increases almost linearly with increasing frequency. In other words, for a
given force, the ultrasonic modes amplitudes will decrease linearly with
increasing frequency. However, as shown on Fig. 5, in the frequency range kr.h =
3.2 ... 6.3 the normal velocity of the mode S> has a relatively constant amplitude,
at least below kt.h = 5.5 and could be used for non-destructive applications.
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Fig. 7 Relative energy flux of propagating modes vs. frequency (non-dimensional values)

The most important results are represented by the energy flux distribution among
the propagating modes as a function of frequency, since the sum of these energy
fluxes equal or close to the unit value, represent a validation of the numerical
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results. On Fig. 7 are presented the first six propagating modes, from the lowest
frequencies, where only SO mode exists, up to a very high frequency at which all
six modes could propagate. As expected, if only the fundamental So mode can
propagate, the entire energy flux of the ultrasonic transducer applied at the plate
edge (Wiotal), Will be carried by this mode. Even in the transition domain with
rapid variations of fluxes, the mathematical model works with high accuracy, but
the results are less interesting from a practical point of view. In the emphasized
frequency range Q = 3.2 — 9.2, the incident energy flux is scattered among the
propagating modes in a specific manner:
e The fundamental So mode is completely absent.
e The Si mode is energy dominant up to a non-dimensional frequency kt.h =
5.2, but continuously decaying in front of the mode S> which is reaching a
peak of energy flux at kt.h = 6.8.
e Beyond the cutoff frequency kt.h = 6.8, the S3 mode has an increasing
energy flux.

6. Experimental results

The experiments were conducted in the Laboratory of Structures Integrity
Control located in the Department of Mechanics of the University Politehnica of
Bucharest. The experimental setup consists of a Polytec laser vibrometer using a
OFV-505 sensor head with highest central frequency of fcen = 1 MHz. A Pulser-
Receiver is used to generate the ultrasonic pulses at the plate edge, by a GE
Krautkramer H1K or H2K ultrasonic transducers of central frequencies 1 MHz
and 2 MHz respectively. The overall setup is presented on Fig. 8a depicting the
main devices and their connections. The aluminum plate is displaced vertically

downwards in steps of 0.075 mm (Fig. 8b,c). The signals shown on the
oscilloscope are stored on a USB stick. The ultrasonic signals detected by the
Laser vibrometer are recorded with a step of 0.075 mm for a total of 500 steps. A
detailed signal processing is done by the double Fourier transform. The time
domain is transformed into the frequency domain and the spacing evolution at a
fixed time is transformed into wavenumbers. This is done by a proprietary signal
processing algorithm developed in GNU Octave scientific programming software
[15].

By plotting this frequency-wavenumber results, one can determine the
propagating modes in the plate, by a direct comparison to the computed dispersion
curves. The first transducer used (H1K) has a design central frequency of 1 MHz.
Moreover the Laser vibrometer is configured to work up to 1 MHz. No cut-off
filters were used. The results are plotted on Fig. 9a.
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Fig. 8 Experimental setup (a). Laser vibrometer head (b) and aluminum plate on top of the
ultrasonic transducer (c) with the laser spot visible

The superposition of the numerically calculated dispersion curves from
Fig. 3, shown here as dashed lines, proves to be very good and the Lamb modes
can be identified. It is apparent that the highest amplitude is focused on the So
mode below 1 MHz. Very weak amplitudes are also for the Ao, S1 and S> modes.
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Fig. 9 Experimental dispersion curves, for a transducer of 1 MHz (a) and 2 MHz (b)

The presence of the Ap mode can only be caused by small imperfections in
the geometrical symmetry and perpendicularity of the plate edge. Very weak
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amplitudes can be seen also for the So mode above the frequency of 1 MHz. For
this reason, the experiments were resumed with a H2K transducer with a central
frequency of 2 MHz. Unfortunately the Laser vibrometer has a weak sensitivity
above 1 MHz, so that the results shown on Fig. 9b are confirming this. However,
the lighter spots indicate as before, the individual propagating Lamb modes. The
So, S1 and S> modes are visible even at frequencies higher than 1 MHz.

This result is very important for future development of inspection
techniques at non-dimensional frequencies kr.h = 3.2 ... 5.5. Even if at these
frequencies, the normal force on the plate edge produced by the transducer is
several times larger, the advantages of obtaining shorter wavelengths can prove
efficient in detecting smaller defects.

7. Conclusions

The continuously increasing accuracy requirements for ultrasonic
inspections leads to an increase in the frequency of the ultrasonic waves. In
aeronautical applications, guided waves are increasingly applied for their rapid
coverage of large areas of aluminum panels. However, the complexity of the
dispersion curves at these high frequencies, represented a major setback in using
high frequencies at which multiple modes can propagate.

In the present paper was used a mathematical and numerical method,
developed by one of the authors in previous papers, capable to solve for the full
set of complex values of the wavenumbers. These continuous dispersion curves
were used in a series development of the applied piston-like displacement field.
Using the reciprocity theorem, the amplitudes of each Lamb mode is obtained, for
a wide frequency range.

The modal amplitudes, thus obtained have been used to determine the
required force of the transducer for a given plate edge harmonic motion. The
evolution of this force vs. frequency has proven to be non-monotonic, a fact
which was not reported before. The normal displacements and velocities were
determined for each propagating mode over a wide range of frequencies.

An even more useful result is the incident energy flux scattering among
the propagating modes. In the suggested frequency range for ultrasonic inspection,
it is proven that the symmetric Lamb mode S» is a principal candidate. The best
frequency range, recommended in case of using a Laser vibrometer as signal
detector, is between kr.h = 3.2 ... 5.5, for which the S, mode provides a constant
high normal velocity and a high energy flux.

The original experiments done in one university laboratory have
confirmed the theoretical and numerical results, with limitations in the highest
measurable frequency. Potential applications in the aeronautical industry are in
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the cracks and flaws detection over large aluminum panels, covered by
propagating Lamb modes.
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