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Stream Ciphering based on Non-Linearity of Elementary Function
Compositions

Roxana Drăgănoiu1, George Anescu1, Florica Moldoveanu2, Alin Moldoveanu4

The paper is exploring the possibility of using the non-linearity of
elementary function compositions, combined with principles from number
theory and combinatorics, in designing new cryptographic methods, and
particularly in designing synchronous stream ciphering methods. The
strength of such methods is based on the difficulty to solve with high accuracy
large systems of nonlinear equations. The implementation details of an
example of such stream ciphering method are presented. The security
analysis and the statistical tests run on the implemented method show that
the proposed approach is promising.
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1. Introduction

The main idea in synchronous stream ciphering is to generate, based
on a mathematical algorithm, a sequence of pseudo-random bytes, called key
stream, used for ciphering a stream of plain text data. Usually the plain text
is xor-ed with the generated key stream, a process called one-time padding:

ci = pi ⊕ ri, i = 1, 2, . . . , (1)

where pi are the characters (bytes) of the plain text, ri are the bytes of
the generated key stream, and respectively ci are the bytes of the ciphered
text. The deciphering is done by using the same key stream:

pi = ci ⊕ ri, i = 1, 2, . . . . (2)

Equally powerful is the use of the addition with modulo 256 operation:
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ci = (pi + ri)%256, i = 1, 2, . . . . (3)

The strength of a stream ciphering method relies on the keystream
generating function. In order to use a stream cipher securely one should not
use the same keystream more than once. That means that a different key must
be used for each invocation of the stream cipher. There are many examples
of stream ciphering methods known in the cryptographic literature based on
different approaches.

The traditional approach is to use algorithms based on fast bitwise
operations. The eSTREAM project ([1]), ran in Europe from 2004 to 2008
by EU ECRYPT network had the purpose to identify new stream cipher
primitives suitable for widespread adoption based on the traditional approach.
It was set up as a result of the failure of a previous European project, the
NESSIE project ([2]), which was concerned with a set of six proposed stream
ciphers, but all of them were cracked. The eSTREAM portfolio was revised
in September 2008 and currently it contains seven stream ciphers organized
into two profiles. Profile 1 contains 4 stream ciphers more suitable for software
applications with high throughput requirements: HC-128, Rabbit, Salsa20/12
and SOSEMANUK. Profile 2 contains 3 stream ciphers more suitable for
hardware applications with restricted resources, such as limited storage, gate
count, or power consumption: Grain v1, MICKEY 2.0 and Trivium. The
eSTREAM portfolio is periodically revisited, as the algorithms mature. The
first review was published in October 2009 ([3]), and the second in January
2012 ([4]). The original eSTREAM project’s website ([1]) gives information on
the selection process, including a timetable of the project and further technical
background. The eSTREAM Book ([5]), a volume published by Springer in
2008, provides full specifications of all 16 stream ciphers that reached the final
phase of the eSTREAM project.

A newer approach in designing stream ciphers is inspired from chaos
theory ([6]) and is using chaotic maps (functions) in order to produce random
sequences. The chaotic systems have a pseudo-random behavior, are highly
sensitive to initial conditions and are able to disperse data around their working
space. Unlike the traditional approach, the chaotic stream ciphers are based
on various chaotic maps which employ floating point arithmetic operations,
see as examples [7], [8] and [9]. A survey on the encryption algorithms based
on chaos theory is given in [10]. Many proposed chaos-based cryptosystems
are difficult to implement in practice with a reasonable degree of security and
they are seldom accompanied by a thorough security analysis. In the study
[11] the basic cryptographic requirements for such systems are analyzed and a
common framework is given.

The present paper is proposing an original stream ciphering approach
and is detailing an implementation example of it. The proposed approach
is inspired from previous work in enhanced graphical parametric modeling
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methods ([12], [13], [14], [15] and [16]). Basically the graphical modeling
method consists in generating expressions made by functions connected by
means of specific binary operators. The functions are selected from families of
functions obtained from a set of basic functions by applying some extension
rules. If f0 : R → [0, 1], sup(f0) = 1 is a basic function then the family of

associated functions, denoted by F f0
a,b,c,d, is formed by the functions f ∈ F f0

a,b,c,d

defined by ([16]):

f(x) = a

[
(1− b)f0

(
x− c
d

)
+ b

]
, (4)

where a ∈ R is the amplitude (a scaling factor on Oy axis), b ∈ [0, 1] is the
compression (a translation factor on Oy axis), c ∈ R is the phase (a translation
factor on Ox axis) and d ∈ (0,∞) is the wavelength (a scaling factor on Ox
axis), with the inverse of d, e = 1

d
, having the meaning of frequency.

The expressions are generated step by step, starting with a function
and adding at each step a binary operator and a new function. Based on
the proposed graphical modeling system ([16]) some powerful software tools
can be implemented, which are useful for a wide range of users with various
backgrounds and levels of mathematical training, providing them a deeper
understanding of mathematical elementary functions and their composition
through interactive visualization.

The rest of the paper is organized as follows: Section 2 presents the design
principles of the proposed stream ciphering method and an implementation
example. Section 3 presents aspects related to the security analysis of the
proposed stream ciphering implementation, including key space estimation and
periodicity estimation. Section 4 presents the results of the security tests run
on sample results of the proposed stream ciphering method. Section 5 draws
some conclusions and hint to further research directions. Some Appendices
follow the References section and are presenting the analytical formulas of the
primitive functions (Appendix A), unary operators (Appendix B) and binary
operators (Appendix C).

2. SCNLEFC Method’s Design

All the design details of the proposed Stream Ciphering based on Non-
Linearity of Elementary Function Compositions (SCNLEFC ) presented in this
section are considered public by observing the cryptographic principle that
the security of a cryptosystem should depend only on its key. Inspired by
the graphical modeling system presented in [16], we designed a set of 30 basic
one variable functions (we call them primitive functions or primitives here,
see Appendix A.), a set of 18 unary operators (also one variable functions,
see Appendix B.) and a set of 9 binary operators (two variables functions,
see Appendix C.). In order to better control the computations and to
avoid domain values where the primitive functions and the operators are
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undefined, as a general rule, we designed all of them defined on the [0, 1]
real interval with values in the [0, 1] real interval. We designed the primitive
functions as compositions of elementary functions with increased variability,
typically higher than the variability of the unary operators. As a graphical
representation example see the primitive function 17 in Fig. 1.

Fig. 1. Example of variability in primitive functions (p17(x))

Although the primitive functions are conceptually similar to the base
functions used in the graphical modeling method ([16]), in order to increase
the randomness of the key stream we designed them so that they do not present
any symmetries. At any given computing iteration only a combinatorial
arrangement of 5 primitive functions from the set of 30, (pi1 , pi2 , pi3 , pi4 , pi5),
a combinatorial arrangement of 5 unary operators from the set of 18,
(uj1 , uj2 , uj3 , uj4 , uj5), and a combinatorial arrangement of 4 binary operators
from the set of 9 (bk1 , bk2 , bk3 , bk4), are used, with the sets of indices i, j and k
taking values in the corresponding ranges. Each of the currently used primitive
functions can be computed only on a corresponding fixed set of 1024 = 210

values in the [0, 1] real interval, generated from the expanded/contracted
key data as it will be explained later. From the parameters a, b, c and d
used to generate the family of associated functions (see equation (4)) only
the parameters a and d are retained, and they are also generated from the
expanded/contracted key data. The method can be easily redesigned using
different numbers of primitive functions and unary or binary operators, and can
be scaled differently, we here present only the design principles and a possible
implementation example. The main phases of the SCNLEFC algorithm are
summarized in the pseudo-code below and will be detailed in the following
sub-sections:

2.1. Key Expansion/Contraction and Method Parameters
Computation

All the method’s parameters are generated based on the expansion of
the initial key performed by employing the key expansion/contraction method
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Algorithm SCNLEFC

Key Expansion/Contraction
Method’s Parameters Computation
i← 1
while i < stream length do

Key Stream Word Values Computation
Key Stream Word Values Application to Ciphering
i← i+ 4

proposed in [17]. The employed method allows any initial key length and it
is able to generate expanded/contracted key data of any length. In the next
subsection will be explained in detail how the generated method parameters
are used in the cryptographic algorithm. The initial key data is expanded to
a total size of 5180 words denoted wi, i = 1, . . . , 5180 (a word is assumed here
to have 32 bits).

The first 5 words, wi, i = 1, . . . , 5, are used to generate the Oy scaling
factors ai, i = 1, . . . , 5, as double precision floating point numbers in the
[0.1, 10.0] real interval. Based on the LSBs (less significant bits) of the words
the ai parameters are computed as:

ai =
100000000 + (wi%900000000)

100000000.0
, (5)

if the LSB of word wi is set (1), and as:

ai =
100000000 + (wi%900000000)

1000000000.0
, (6)

if the LSB of word wi is not set (0). In this way, by assuming that the
bits of the generated expanded/contracted key are uniformly distributed, the
Oy scaling factors ai have equal chances to be selected in the [0.1, 1.0] real
interval (contraction) or in the [1.0, 10.0] real interval (dilation).

The next 5 words, wi+5, i = 1, . . . , 5, are used to generate the Ox scaling
factors di as double precision floating point numbers in the [1.0, 10.0] real
interval:

di =
100000000 + (wi+5%900000000)

100000000.0
, i = 1, . . . , 5. (7)

The next 19 words, wi+10, i = 1, . . . , 19, are providing the pseudo-random
bytes used to generate the initial random combination of 7 prime numbers
primei, i = 1, . . . , 7, from the set of 75 prime numbers between 512 and 1024.
Only the first 75 bytes (from the 19 × 4 = 76 bytes) are used in the known
Durstenfeld’s shuffling algorithm (an improved variant of the Fisher Yates
shuffling algorithm, [18]). The first 5 generated prime numbers are giving the
periods (lenghts) of the computing windows pri = primei, i = 1, . . . , 5, while
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the next two prime6 and prime7 will be used in the computing of the word
key stream value.

The next 5 words, wi+29, i = 1, . . . , 5, are used to generate the increments
icri, i = 1, . . . , 5. The increments can be odd numbers between 1 and 1023
(prime with 1024 = 210) and therefore they are computed as:

icri = (wi+29%1024)|1, i = 1, . . . , 5, (8)

the LSB bits being set to 1 to ensure the oddness.
The next 8 words, wi+34, i = 1, . . . , 8, are providing the pseudo-random

bytes used to generate the initial random combinatorial arrangement of 5
primitive functions from the set of 30 primitive functions. Only the first 30
bytes (from the 8 × 4 = 32 bytes) are used in the Durstenfeld’s shuffling
algorithm.

The next 5 words, wi+42, i = 1, . . . , 5, are providing the pseudo-random
bytes used to generate the initial random combinatorial arrangement of 5 unary
operators from the set of 18 unary operators. Only the first 18 bytes (from
the 5× 4 = 20 bytes) are used in the Durstenfeld’s shuffling algorithm.

The next 3 words, wi+47, i = 1, . . . , 3, are providing the pseudo-random
bytes used to generate the initial random combinatorial arrangement of 4
binary operators from the set of 9 binary operators. Only the first 9 bytes
(from the 3× 4 = 12 bytes) are used in the Durstenfeld’s shuffling algorithm.

The next 2 words, wi+50, i = 1, . . . , 2, are providing the pseudo-random
bytes used to generate the initial random permutation to be applied to the
generated random combinatorial arrangement of 5 primitive functions. Only
the first 5 bytes (from the 2 × 4 = 8 bytes) are used in the Durstenfeld’s
shuffling algorithm.

The next 5 words, wi+52, i = 1, . . . , 5, are used to generate the initial
positions inii, i = 1, . . . , 5. The initial positions are indices between 1 and
1024 and therefore they are computed as:

inii = (wi+52%1024) + 1, i = 1, . . . , 5. (9)

The next 3 words, wi+57, i = 1, . . . , 3, are used to generate the parameters
fact, sum1 and sum2 used in the computing of the key stream value:

fact = 100000000 + (w58%900000000), (10)

sum1 = w59, (11)

sum2 = w60. (12)

Next the arrays of fixed computing values corresponding to each primitive
function, vj,i, j = 1, . . . , 5, i = 1, . . . , 1024, are generated based respectively
on the words:
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w1j,i = w1024(j−1)+i+60, j = 1, . . . , 5, i = 1, . . . , 1024. (13)

The words w1j,i are restricted to the domain [1,MAXUINT − 1] with
MAXUINT = 232 − 1 = 4294967295, so if w1j,i = 0 then it is changed to 1
and if w1j,i = MAXUINT then it is changed to MAXUINT − 1. Then the
fixed computing values are computed as fractional parts restricted to the (0, 1)
real interval according to:

vj,i =

{
dj

(double)w1j,i
MAXUINT

}
, j = 1, . . . , 5, i = 1, . . . , 1024, (14)

where {.} is the fractional part function. A flowchart of the method
parameters computation process is presented in Fig. 2.

Fig. 2. Method Parameters Computation
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2.2. Key Stream Values Computation

At a computing iteration each primitive function is positioned to an
index ixi, i = 1, . . . , 5, in its corresponding array of fixed values. Initially the
positioning indices of the primitive functions are given by the inii parameters
ixi = inii, i = 1, . . . , 5, and in the next iterations they are usually incremented
by 1 and wrapped around within the modulo 1024 arithmetic:

ixi = (ixi + 1)%1024 + 1, i = 1, . . . , 5, (15)

with the exception of two types of discontinuities introduced by design.
The first type of discontinuity appears when at least one computing window
is ended. For example, if it is assumed that pr1 is the smallest of the pri,
i = 1, . . . , 5 parameters, then the first computing window will end first after
pr1 iterations and a discontinuity will be applied by updating

ini1 = (ini1 + icr1)%1024 + 1, (16)

and moving ix1 to the new ini1. The same first type of discontinuity logic
is also applied to the remaining pri, i = 2, . . . , 5, when their corresponding
computing windows end. At each discontinuity of first type the permutation
applied to the primitive functions is updated, in this way updating the
method’s state (the configuration of the computing binary tree is altered).
The described algorithm for updating the positioning indices ensure that the
initial positioning indices will repeat after a period of t1 iterations, with:

t1 = 1024× pr1 × pr2 × pr3 × pr4 × pr5, (17)

which represents the second type of discontinuity applied simultaneously
for all the computing windows. This property is mathematically ensured by
the primality of the pri, i = 1, . . . , 5 periods, they being relatively prime among
themselves and with the array sizes 1024 = 210. At each discontinuity of second
type the combinatorial arrangement of 5 primitive functions, the combinatorial
arrangement of 5 unary operators, and the combinatorial arrangement of 4
binary operators are updated, in this way altering even more radically the
method’s state (the configuration of the computing binary tree is altered).

Assuming that at a computing iteration the 5 current primitive functions
are computed respectively for the real values x1 = v1,ix1 , x2 = v2,ix2 , x3 = v3,ix3 ,
x4 = v4,ix4 and x5 = v5,ix5 , then the current ciphering real value is computed
according to the computing binary tree as:

v1(x1, x2, x3, x4, x5) = ab4 × ((((u1(p1(x1))b1u2(p2(x2)))b2(p3(x3)))b3

u4(p4(x4)))b4u5(p5(x5))),
(18)

where for simplification we denoted the current combinatorial
arrangements with (p1, p2, p3, p4, p5) for primitive functions, (u1, u2, u3, u4, u5)
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for unary operators, and respectively (b1, b2, b3, b4) for binary operators. The
computing tree is illustrated in Fig. 3.

Fig. 3. Computing Tree

The word key stream value is computed according to:

rw = prime5× (prime6×b100000× fact× v1 + 0.5c+ sum1) + sum2, (19)

where b.c is the integer part function. From the word key stream
value 4 bytes of key stream values are generated: r1 = (BY TE)rw, r2 =
(BY TE)(rw >> 8), r3 = (BY TE)(rw >> 16) and r4 = (BY TE)(rw >>
24), which can be applied in the stream ciphering equation (1). A flowchart of
the key stream values computation process is presented in Fig. 4.

Due to the complexity of the computing binary tree, an important
concern is related to the computing speed of the proposed proposed SCNLEFC
stream ciphering method. A speed increase solution could be the use of
parallel computing for pre-calculated segments of stream for which the state
of the cryptographic method (the configuration of the computing binary tree)
is not changed. Both multi-core CPUs (Central Processing Units) and GPUs
(Graphics Processing Units) systems can be used.

3. Security Analysis

3.1. Key Space Analysis

The strength of any cryptographic method is based on the difficulty to
solve an associated mathematical problem. It is also the case for the proposed
SCNLEFC stream ciphering method, which is based on the difficulty to solve
with high numerical accuracy large systems of nonlinear equations ([19]), as
it will be explained in this section. We identified three types of possible
cryptanalytic attacks:
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Fig. 4. Key Stream Values Computation

1. A direct brute force attack to the initial key: The initial key is masked
by the expansion/contraction method, and therefore only a direct brute force
attack is feasible on it, but by choosing an appropriately large initial key length
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(≥ 256 bits for the computing power of the present computers) such a brute
force attack is greatly discouraged.

2. A direct brute force attack to the expanded/contracted key data:
As previously explained, the initial key data is expanded to a total size of
5180 words. The first 60 words are partially used to compute the method
parameters, while the remaining 5180− 60 = 5120 = 5× 1024 words are used
to compute the fixed computing values vj,i, j = 1, . . . , 5, i = 1, . . . , 1024, based
on the words w1j,i, j = 1, . . . , 5, i = 1, . . . , 1024, see the equations (14) and
(13). The words w1j,i are restricted to 232 − 2 values. In our analysis we will
divide the key space in two pieces: 2.1. the key space generated by the fixed
computing values vj,i; and, 2.2. the key space generated by method parameters
(generated the first 60 expanded key data words):

2.1. We can conservatively evaluate the space dimension of the fixed
computing values vj,i, DKS1, as:

DKS1 > (232 − 2)5120 > (231)5120 = 2158720, (20)

which is a very large key space dimension discouraging a brute force
attack.

2.2. We will evaluate the remaining space dimension generated by
the first 60 words from the expanded key data. The first 60 words are
partially used to compute the the scaling factors ai, i = 1, . . . , 5, the scaling
factors di, i = 1, . . . , 5, the initial random combinatorial arrangement of
7 prime numbers primei, i = 1, . . . , 7, the increments icri, i = 1, . . . , 5,
the initial random combinatorial arrangement of 5 primitive functions, the
initial random combinatorial arrangement of 5 unary operators, the initial
random combinatorial arrangement of 4 binary operators, the initial random
permutation applied to the primitive functions, the initial computing positions
inii, i = 1, . . . , 5, the initial parameters fact, sum1 and sum2. For example
for the ai scaling factors, each of them can take 900000000 possible values (see
(5), (6)), their key space dimension being:

dka = 2log2(900000000
5) = 25log2(900000000) ≈ 25×29.745 ≈ 2148.725. (21)

As another exeample, for the 7 prime numbers there are A7
75 possible

arrangements, their key space dimension being:

dkap = 2log2(A
7
75) = 243.185. (22)

Through similar evaluations for the remaining parameters we can finally
derive a key space dimension:

DKS2 ≈ 2590, (23)

which is large enough to discourage a brute force attack.
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In all the analyzed cases (1., 2.1. and 2.2) modern cryptanalytical
methods, like linear cryptanalysys and differential cryptanalysys ([20]), cannot
succeed because such methods, even when applicable, have the purpose to
deduce only a piece of the key space (a so called “key round”) in order to
reduce the key dimension, the remaining key space being found by brute force
attacks. But for our SCNLEFC method we don’t have any key rounds, and
even if they were applicable, due to the large key spaces in all the analysed
cases, the assumed remaining key space is still large enough and cannot be
broken by brute force attacks. But even assuming that we can break the
method parameters, in order to determine the fixed computing values vj,i we
will still need to solve with a high precision a system of complex nonlinear
equations with dimension 5120, which is still not practically feasible.

3.2. Periodicity of the Pseudo-Random Sequence

Here we will conservatively evaluate the periodicity of the generated key
stream and prove that it is large enough to discourage attacks based on pattern
repetitions. By denoting with P the period of the generated pseudo-random
sequence and considering the equation (17) we have

t1 > 1024× 5125 = 210 × (29)5 = 255. (24)

But after a t1 cycle the combinatorial arrangement of the 7 prime numbers
is changed and the number of possible combinations is C7

75 = 1984829850 > 230

(in reality, combinatorial arrangements are used and their number is much
larger), and also considering that each word key stream value computation
generates 4 = 22 bytes we have:

P > 22 × 230 × 255 = 287 = 247 Tb, (25)

which is a relatively large number for a data stream length.

4. Randomness Tests and Results

For testing the randomness of the key stream we used the PractRand
(Practically Random) test suite ([21]), version version 0.94 . PractRand is
a C++ library implementing a variety of very high quality pseudo-random
number generators (PRNGs) and statistical tests for PRNGs capable to find
the widest variety of biases quickly if there are plenty of bits of PRNG output.
For a testing example we applied the PractRand test suite to a PRNG output of
4 megabytes. From a total number of 124 statistical tests 26 reported problems
with various degrees of gravity (7 with unusual, 3 with mildly suspicious,
2 with suspicious, 7 with very suspicious and 7 with fail). Considering the
relatively large percentage (20.97%) of statistical tests reporting problems we
can conclude that the proposed SCNLEFC method is not appropriate for
use as a Pseudo-Random Number Generator (PRNG), but still due to the
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security considerations from the previous section, it is safe for cryptographic
applications.

5. Conclusions

The paper proposed a new stream ciphering method, SCNLEFC, based
on the non-linearity of elementary function compositions combined with
principles from number theory and combinatorics, and the mathematical
difficulty to solve with high accuracy large systems of nonlinear equations. Due
to the failure of some of the randomness tests from the Practically Random
test suite we do not recommend the SCNLEFC method as a PRNG, but due
to the very large key space and large period of the pseudo-random sequence we
still consider that the method is safe for stream ciphering applications. Further
research will be concerned with designing, implementing and testing a stream
ciphering method based on the number theory and combinatorial principles of
SCNLEFC, but using bitwise operations (instead of floating point operations)
for increased computing speed.
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Appendix A. The Illustrative Set of Primitive Functions

p1(x) = 0.385

(
4 tan−1(4x2 − 1)

π
+ 1

)
(A.1)

p2(x) = 0.525

(
sin2 (π(1− x)2) + sin

(
π(1− x)

2

))
(A.2)

p3(x) = 0.5
(
sin(2πx)

(
sin2 (πx) + 1

)
+ x0.5

)
− 0.5 (A.3)

p4(x) = 3.1(x+ 0.04)1/2 cos2
(
π(x+ 0.2)

2

)
(A.4)

p5(x) = 0.6275
(
sin2 (0.85πx) + 0.6 sin2 (1.7πx2)

)
(A.5)

p6(x) = 0.51
(
sin2 (0.8x) sin (5x2) + 2x2

)
(A.6)

p7(x) = 0.9793
(
− sin

(
ln
( x

1.15
+ 0.1

))
+ 0.1 sin(9x)− 0.0721144

)
(A.7)

p8(x) = 1.25545(tan−1(ln(x2 + 1) + 0.3 sin(9x)) + 0.0710804) (A.8)

p9(x) = 0.684(2x − 1 + sin3 (3x)) (A.9)
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p10(x) = 3.55

(
ln

(
2

x+ 1

)
− 0.2 sin (5x− 5)

)
(A.10)

p11(x) = −4.27(3x− 1)2 ln (x) + 0.2 sin (14x) (A.11)

p12(x) = sin2 (6(x2 − 0.64)2) (A.12)

p13(x) = 0.541.3x+1 sin4 (5.7(x− 1)2) + 0.4(x− 1)4 + 0.2 sin2 (7x− 7) (A.13)

p14(x) = 0.523 tan−1 (3.2x) + 0.4| sin (7x)| (A.14)

p15(x) = sin−1
( x

1.197

)
+ 0.2(1− | cos(6x)|) (A.15)

p16(x) = 1.21
(
tan (x)− x3 + 0.2 sin (9x) + 0.1| sin (13x)|

)
(A.16)

p17(x) = 0.7 sin (πx2) + 0.4 sin (3πx)2 (A.17)

p18(x) = 0.51
(
sin (sin (πx2)) +

√
x+ 0.3 sin (17x)

)
(A.18)

p19(x) = 3.41
(
(x+ 0.5)(x− 0.7)2 + 0.05 sin2 (17(x− 0.7)2)

)
(A.19)

p20(x) = 1.7
(
| tan (x2 − 0.49)|+ 0.1| sin (10x− 7− sin (10x− 7))|

)
(A.20)

p21(x) = 0.097 sin (19x− 2.85 sin (5x)) + 0.97x2 (A.21)

p22(x) = 0.89
(
sin−1 (0.3(x3 + x+ (x)1/2)) + 0.1 sin (23x3)

)
(A.22)

p23(x) = 0.926
(
(1.2− x)(x− 0.4)2 + | sin (8(x− 0.4)(x+ 0.1))|

)
(A.23)

p24(x) = 0.0781
(
2 sin (17x3) + sin (sin (19x)) + sin (2x)

)
(A.24)

p25(x) = 0.772
(
sin (π(2x− 1)) + 0.3 sin (π(1− x)(x− 2)2)

)
(A.25)

p26(x) = 0.985
(
−13(x− 1)(x+ 0.5)(x− 0.3)2 − (x− 1)x+

+ 0.1 sin (7.3(x− 1)(x− 3)))
(A.26)
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p27(x) = sin

(
ln

((
x+ 0.13

10.0

)2
))2

(A.27)

p28(x) = 0.765
(

1 + 0.4 sin4 (1.5(x− 0.8)(x+ 5))− 2−9(x−0.8)
2
)

(A.28)

p29(x) = 1.799
(
0.2 tan−1 (sin (7.3x)) + 0.4 sin−1 (tan (x/2)) +

+ x(x− 1)(x− 2))
(A.29)

p30(x) = 0.5
(
| sin (13x−0.5 − 1)|+ | sin ((x− 0.5)(x− 13))|

)
(A.30)

Appendix B. The Illustrative Set of Unary Operators

The primitive function p(x) is determined at run-time.

Identity: u1(x) = p(x) (B.1)

Negative: u2(x) = 1− p(x) (B.2)

Inverse 1: u3(x) =
1− p(x)

1 + p(x)
(B.3)

Inverse 2: u4(x) =
2p(x)

1 + p(x)
(B.4)

Sinus: u5(x) = sin

(
πp(x)

2

)
(B.5)

Cosinus: u6(x) = cos(
πp(x)

2
) (B.6)

Tangent: u7(x) = tan(
πx

4
) (B.7)

Cotangent: u8(x) =
1

tan
(
π(p(x)+1)

4

) (B.8)

Arcsin: u9(x) =
sin−1(2p(x)− 1)

π
+ 0.5 (B.9)

Arccos: u10(x) =
cos−1(2p(x)− 1)

π
(B.10)

Arctangent: u11(x) =
tan−1(2p(x)− 1)

π
2

+ 0.5 (B.11)
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Arccotangent: u12(x) = 0.5− tan−1(2p(x)− 1)
π
2

(B.12)

Exponential: u13(x) =
ep(x) − 1

e− 1
(B.13)

Logarithm 1: u14(x) = ln (1 + (e− 1)p(x)) (B.14)

Logarithm 2: u15(x) =
ln (1− p(x))

ln(p(x))
(B.15)

Square: u16(x) = p2(x) (B.16)

Square Root: u17(x) = (p(x))1/2 (B.17)

Power: u18(x) = p(x)
√
a (B.18)

Appendix C. The Illustrative Set of Binary Operators

For all the binary operators:

a = (alar)
1/2 (C.1)

Weighted Arithmetic Mean:

b1(y) =
alfl(y) + arfr(y)

al + ar
(C.2)

y1b1y2 = b1(y1, y2) =
aly1 + ary2
al + ar

(C.3)

Weighted Geometric Mean:

b2(y) = fl(y)
2al

al+ar fr(y)
2ar

al+ar (C.4)

y1b2y2 = b2(y1, y2) = y
2al

al+ar

1 y
2ar

al+ar

2 (C.5)

Weighted Harmonic Mean:

b3(y) =
(al + ar)fl(y)fr(y)

alfr(y) + arfl(y)
(C.6)

y1b3y2 =
(al + ar)y1y2
aly2 + ary1

(C.7)
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Weighted Composition (with Arithmetic Mean):

b4(y) =
alfl(fr(y)) + arfr(fl(y))

al + ar
(C.8)

y1b4y2 =
alfl(y2) + arfr(y1)

al + ar
(C.9)

Weighted Power (with Arithmetic Mean):

b5(y) =
alfl(y)fr(y) + arfr(y)fl(y)

al + ar
(C.10)

y1b5y2 = b5(y1, y2) =
aly

y2
1 + ary

y1
2

al + ar
(C.11)

Weighted Composition (with Geometric Mean):

b6(y) = fl(fr(y))
2al

al+ar fr(fl(y))
2ar

al+ar (C.12)

y1b6y2 = b6(y1, y2) = fl(y2)
2al

al+ar fr(y1)
2ar

al+ar (C.13)

Weighted Power (with Geometric Mean):

b7(y) = fl(y)
2alfr(y)

al+ar fr(y)
2arfl(y)

al+ar (C.14)

y1b7y2 = b7(y1, y2) = y
2aly2
al+ar

1 y
2ary1
al+ar

2 (C.15)

Weighted Composition (with Harmonic Mean):

b8(y) =
(al + ar)fl(fr(y))fr(fl(y))

alfr(fl(y)) + arfl(fr(y))
(C.16)

y1b8y2 = b8(y1, y2) =
(al + ar)fl(y2)fr(y1)

alfr(y1) + arfl(y2)
(C.17)

Weighted Power (with Harmonic Mean):

b9(y) =
(al + ar)fl(y)fr(y)fr(y)fl(y)

alfl(y)fr(y) + arfr(y)fl(y)
(C.18)

y1b9y2 = b9(y1, y2) =
(al + ar)y

y2
1 y

y1
2

aly
y2
1 + ary

y1
2

(C.19)


