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ON THE IMPLICATIONS OF THE BIOLOGICAL SYSTEMS 
FRACTAL MORPHO-FUNCTIONAL STRUCTURE   

Roxana Maria NEMEȘ1, Letiţia Doina DUCEAC2*, Elena Geanina VASINCU3, 
Maricel AGOP4, Paraschiva POSTOLACHE51 

Considering that the biological systems structural units dynamics are 
achieved on fractal curves, in the scale relativity hydrodynamic variant (with 
constant arbitrary fractal dimension), fractal logical elements (fractal bit, fractal 
cellular neural network etc.) are defined. Assuming that the external scalar potential 
is proportional with the fractal states density, the one-dimensional solution with 
finite fractal “energy” is obtained in the form of a fractal kink, whose “topology” 
implies, through its induced topological charge, the fractal bit. By mapping the one-
dimensional solution with infinite fractal “energy”, the fractal cellular neural 
network is obtained. In a particular case, for motions on Peano curves at Compton 
scale, the quantum logical elements are obtained once more. Some implications on 
the fractal morpho-functional structure of the lung, using this model, are shown. 

 
Keywords: biological systems, fractals, Scale Relativity Theory, fractal bit, quantum bit, 
fractal cellular neural network. 

1. Introduction 

The biological systems dynamics imply self-organization and various 
chaos transition scenarios (intermittency, quasi-periodicity, sub-harmonic 
bifurcation etc.) [1][2] of its structural units. Thus, the collective behavior (pattern 
generation through “biological structural units” coherence [3][4][5]) can be 
mimed by self-organization, while the plasticity (functional substitution) can be 
mimed by various chaos transition scenarios [5]. 

Considering the facts above, we admit that for large temporal scales with 
respect to the inverse of the highest Lyapunov exponent, the deterministic 
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trajectories of biological structural units (for example the lung alveoli [3][4]) are 
substituted by a set of potential trajectories and the definite positions concept is 
substituted by that of probability densities. As a result, the differentiability from 
standard biophysics can be replaced by fractality from the Scale Relativity Theory 
[6][7] or by fractality from the Scale Relativity Theory with an arbitrary constant 
dimension [8][9]. In both of these theories we assume that the movements of 
biological structural units (for example the lung alveoli [3][4]) take place on 
fractal curves, so that all physical phenomena involved in the biological systems 
dynamics depend not only on the space and time coordinates but also on scales 
resolution [10]. As a consequence, the variables that describe the biological 
systems dynamics must be considered as fractal functions. Moreover, the 
biological structural units may be reduced to and identified with their own 
trajectories, so that the biological systems will behave as a special interactionless 
“fluid” (biological fractal fluid).  

In the present paper, assuming that the biological systems structural unit’s 
dynamics take place on fractal curves, in the hydrodynamic formulation of the 
Scale Relativity Theory with an arbitrary constant fractal dimension, the fractal 
bit, in particular the quantum bit, and the fractal cellular network are defined. In 
our opinion, according to the Complex Systems General Theory [1][2], every 
organ, for example the lung, structures its own fundamental logical elements, 
which may explain specific functions mimicking by stem cells injected into 
organs. 

2.  Fractal Hydrodynamics Model 

Let us reconsider the fractal hydrodynamics equations in the form [8][9]: 
D D D( ) ( )t Q U∂ + ⋅∇ = −∇ +V V V ,    (1) 

D( ) 0t∂ ρ+∇ ⋅ ρ =V ,      (2) 
where DV  is the differentiable and scale resolution independent  velocity field, 
ρ is the  states density field, Q  is the specific  fractal potential 

( ) ( )24 22 12 F
F2 ( ) ( )

2
F FD DQ D dt D dt
− −Δ ρ

= − = − − ∇ ⋅
ρ

V V , (3) 

FV is the  non-differentiable and scale resolution dependent velocity field 

( ) 1
2

F ( ) (ln )FDD dt
−

= ∇ ρV .       (4) 
U is the  external scalar potential, D is the fractal – non-fractal transition 

coefficient, FD  is the fractal dimension, dt , by means of substitution principle is 
the scale resolution [5][6][7], ∇ is the gradient operator and Δ  is the Laplace 
operator. For FD  any definition can be used [10]. Once such a definition is 
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accepted, it has to be constant over the entire analysis of the biological system 
dynamics. In a particular case, for motions on Peano curves, 2FD = , at Compton 
scale 02D ћ m= , where ћ is the reduced Planck constant and 0m the rest mass of 
the biological system  structural unit, the fractal hydrodynamic equations (1)-(3) 
become the quantum hydrodynamic equations. 

The following conclusions are obvious: 
i) Any structural unit of the biological system is in a permanent 

interaction with the fractal medium through the specific fractal 
potential (3). For motions on Peano curves at Compton scale the  
fractal medium corresponds to the sub-quantum level [11]; 

ii) The  fractal medium is identified with a non-relativistic fractal fluid 
(the fluid  structural unit may be reduced to and identified with its 
own trajectory, i.e. its geodesics, so that the fluid will behave as a 
special interactionless  “fluid” by means of geodesics in a fractal 
space) described by the specific  momentum and states density 
conservation laws (see equation (1) and (2)); 

iii) The fractal velocity FV  does not represent actual motion, but 
contributes to the transfer of specific momentum and energy 
concentration. This may be seen clearly from the absence of FV  
from the states density conservation law (2) and from its role in the 
variational principle [6][7]. As an immediate consequence of the 
facts mentioned above, regarding biological systems dynamics, we 
can note that, although at a macroscopic scale, in some cases, 
cancer cannot be observed, although cancer cells are replicating 
continuously at a fractal scale – the dormant stage of cancer [3][4]; 

iv) Any interpretation of the specific fractal potential should take 
cognizance of the “self” nature of the specific momentum transfer. 
While the energy is stored in the form of mass motion and potential 
energy, some is available elsewhere and only the total is conserved. 
It is the conservation of energy and the specific momentum that 
ensures reversibility and the existence of eigenstates, but also 
denies a Brownian motion form of interaction with an external 
living medium. This implies for biological systems dynamics, the 
possibility of reversibility, for example cancer relapse after a 
“successful” treatment; 

v) Two types of fractal stationary states are to be distinguished:  
a) Dynamic states. For 0t∂ =  and D 0≠V   equations (1) and (2) 

give 
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2
D

1
2

U Q E+ + =V ,          (5)  

Dρ = ∇×V f .      (6) 
Consequently, the sum of the specific kinetic energy 2

D 2V , 
external potential, U , and  fractal potential, Q , is invariant, i.e. 
equal to the integration constant ( )E E≠ r (see equation 
(5)). E E≡  represents the total energy of the fractal dynamic 
system. The states density current, DρV , has no sources (see 
equation (6)), i.e. its streamlines are closed. 

b) Static states. For 0t∂ =  and D 0=V , equations (1) and (2) give 
U Q E+ =  .     (7) 

The sum of the external potential,U , and  fractal potential, Q , 
is invariant, i.e. equal to the integration constant ( )E E≠ r (see 
equation (7)). E E≡  represents the total energy of the fractal 
static system. The states density conservation law (2) is 
identically satisfied. 

3. Spontaneous symmetry breaking at fractal scale and its implications 

Let us consider the static states 

 0t∂ = , ( )2 1

F ( ) 0FDD dt S
−

= ∇ =V ,     (8) 
i.e. the phase coherence, .S const=  of the  fractal fluid structural units. 

Then, equation (7) with the substitutions 
1 2, . 0, ,U E E const g= ρ = > ρ = ( )2 1

( ) FDdtD
−

=D   (9) 
becomes 

2
302m g g g

E
Δ = −

D .      (10) 

In the one-dimensional case and using the notation 2 1 2
0( 2 )x E mξ = D , 

Equation (10) takes the form: 
3g g gξξ∂ = − .      (11) 

The equation (11) can also be obtained through the fractal variational 
principle 0Ldδ τ =∫ with dτ  the fractal elementary volume applied to the fractal 
Lagrangean density (we extend the method from [12]): 
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21 ( ) ( )
2

L g gξ= ∂ −Θ ,     (12) 

with the “potential”: 
4 2

( )
4 2
g gg ⎛ ⎞ ⎛ ⎞

Θ = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.     (13) 

Equation (11) has the solutions 0, 1F Fg g= = ± . By calculating the 
second derivative with respect to g of the “potential” entering (13) and 
substituting the above critical values into the result of this differentiation we find 

(0) 1, ( 1) 2 0ξξ ξξΘ = − Θ ± = > . Therefore the solution 1Fg = ± is associated with the 
minimum “energy”. Hence, the model under consideration has a double 
degenerated fractal vacuum state. 

From (12) result both the “energy”, 

 ( )21( ) ( )
2

g d g g
∞

ξ
−∞

⎡ ⎤ε = ξ ∂ + Θ⎢ ⎥⎣ ⎦∫ ,    (14) 

and the “energy” relative to the  fractal vacuum: 

 ( )2 2 21 1( ) ( ) ( 1)
2 4Fg g d g g

∞

ξ
−∞

⎡ ⎤ε − ε = ξ ∂ + −⎢ ⎥⎣ ⎦∫  .  (15) 

Since all terms in (15) are positive and in view of the infinite limits of 
integration, the finiteness of the “energy” implies that at ξ→ ±∞  

2 210, ( 1) 0
4

g gξ∂ = − = .     (16) 

From this, it follows that at ξ→ ±∞ the function ( )g ξ  tends to its fractal 
vacuum value 1Fg → ± . In order to find the explicit form of the solution of (11), 
we multiply it by gξ∂ and subsequently over ξ , This yields: 

 
2 4

2
0

1 1( )
2 2 4 2

g gg gξ∂ = − + + ,     (17) 

where 0g  is a  fractal integrate constant. From this, we have:   

4

0

2
0 2 0

g

g

dg

g g
ξ − ξ =

− +
∫ ,     (18) 

where 0ξ  is the other  fractal integrate constant. To this general solution 
corresponds for an arbitrary 0g  an infinite value of the “energy” ( )gε . To obtain 
the solution with finite “energy”, we make use of the boundary 
conditions 1Fg → ± . From (17) it results that 0 1 2g = . Replacing this value of 0g  
into (18), the solution ( )kf ξ of the field equation (17) with a finite “energy” is: 
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   ( ) ( )0 01( ) tanh
2kg g ⎡ ⎤ξ = ξ − ξ = ξ − ξ⎢ ⎥⎣ ⎦

.   (19) 

We denote it the fractal kink solution (details on the standard kink can be 
found in [13]). 

Combining (15) with 1Fg =  and kg , we obtain the “energy” of the kink 
relative to the  fractal vacuum: 

  2 3( ) ( )
3k Fg gε − = .      (20) 

Thus, the  fractal kink solution is obtained by a fractal spontaneous 
symmetry breaking (the  fractal vacuum states are not invariant with respect to the  
fractal transformations group which makes invariant equation (11), while the  
fractal Lagrangean density remains invariant). Moreover, the fractal kink 
corresponds to a fractal pattern in the form of a Cooper type pair. We note that for 
motions on Peano curves at Compton scale, the above fractal pattern can be 
reduced to a standard Cooper type pair [14][15][16][17]. 

4. Topology at fractal scale and its implications 

A fractal topological method can be applied because the admissible 
number of  fractal kinks is determined by the fractal topological properties of the  
fractal symmetry group induced by equation (11) (details on the standard 
topological method can be found in [12]). In this context, the following problems 
must be solved: i) the number of admissible fractal kink solutions determined by 
the fractal topological properties of equation (11); ii) the fractal topological 
charge. 

The fractal kink solution can be obtained as fractal mapping of a fractal 
spatial zero-sphere 0S , taken at infinity onto the fractal vacuum manifold of the 
model given by means of equation (11). The fractal homotopy group for this 
model is 0 0 2( )Z ZΠ = i.e. the model gives rise to two solutions: a constant solution 

Fg  and the fractal kink solution. Details on a usual homotopy mapping are given 
in Ref. [12].  

The fractal topological charge is: 
1 1( )
2 2

q j d dg
∞ ∞

−∞ −∞

= ξ ξ =∫ ∫             (22) 

The fractal vacuum solution (absence of spatial gradients) and the fractal 
kink solution can be characterized by attributing the 0q = and 1q = , respectively. 
This result is obtained by an adequate normalization of g . Since equation (11) is 
a fractal Ginzburg – Landau type equation [13], it follows that 0q = describes the 
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fractal vacuum states, while 1q = , by means of fractal kink solution, describes the 
fractal Cooper type pair [18][19][20].  

Now, one can associate to these fractal topological charge values the 
fractal bit, that is a  fractal system which can exist in two distinct  fractal states (an 
unstructured  state or of  fractal vacuum and a structured one or of fractal Cooper 
type pair). These states are used in order to represent 0( )dt and 1( )dt , that is a  
single binary fractal digit. In a particular case, for motions on Peano curves at 
Compton scale, the fractal bit is reduced to the quantum bit. Thus, the structural 
relations between the fractal Cooper type pairs generate a special topology, which 
implies defining the fractal bit. 

5. Fractal cellular neural network 

Since the general solution (with infinite “energy”) of the GL type equation 
(11) has the explicit form,  

2
0

2 2

2 ;
1 1

sg sn s
s s

ξ ξ⎛ ⎞−
= ⎜ ⎟+ +⎝ ⎠

    (23)  

where sn is the elliptical Jacobi function of modulus s [21], the specific 
fractal potential becomes:  

( ) ( )
2 2 2

2 2 0
2 2 2 2

1 1 2, 1 ;
1 1 1

d g s sQ s g cn s
g d s s s

ξ ξη
η

⎛ ⎞− −
= − = − = + ⎜ ⎟+ + +⎝ ⎠

  (24)  

- see Figs. 1a-e. Therefore, the biological systems’ structural units’ 
dynamics can be described by cnoidal oscilation modes [22]. These 
modes, for 0s =  or 0s →  imply linear waves or wave packets, 

( )
2 2

2 0
2 2 2

1 2, 0, 0 cos ;
1 1 1

s sQ s s s
s s s

ξ ξ
η

⎛ ⎞−−
= → = + ⎜ ⎟

+ + +⎝ ⎠
  (25)   

while for 1s = or 1s →  they imply solitons or soliton packets, 

( )
2 2

2 0
2 2 2

1 2, 1, 1 sec ;
1 1 1

s sQ s s h s
s s s

ξ ξ
η

⎛ ⎞−−
= → = + ⎜ ⎟

+ + +⎝ ⎠
.  (26) 

 The normalized fractal potential (24) takes a very simple expression which 
is directly proportional to the Cooper type pairs states density. When the Cooper 
type pairs states density, 2g , becomes zero, the fractal potential takes a finite 
value, 1Q = . The fractal fluid is normal and there are no coherent structures 
(Cooper type pairs) in it. When 2g  becomes 1, the fractal potential is zero, i.e., the 
entire quantity of energy of the fractal fluid is transferred to its coherent 
structures, i.e., to the superconducting type pairs. Then the fractal fluid becomes 
“superconducting”. Therefore, one can assume that the energy from the fractal 
fluid can be stoked by transforming all the environment’s entities into coherent 
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structures (Cooper type pairs) and then “freezing” them. The “superconducting” 
fluid acts as an energy accumulator through the fractal potential (24). 
 The cnoidal oscillation modes can be assimilated with a non-linear Toda 
lattice [23][24][25][26]. Now, by mapping these modes, a fractal cellular neural 
network can be defined. For details on this process. [13][27]. 
 

5. Conclusions 
The main conclusions of the present papers are the following: 
i) The  hydrodynamic version of the scale relativity theory in arbitrary 

constant fractal dimension is presented (fractal hydrodynamics); 
ii) Assuming that the external scalar potential is proportional with the 

fractal states density, the one-dimensional solution with finite fractal 
“energy” in the form of fractal kink is obtained. This solution breaks the 
fractal vacuum symmetry and generates fractal Cooper type pairs by 
means of fractal spontaneous symmetry breaking mechanisms. Then, the 
phase coherence of the  fractal pairs will produce a self-structuring of the 
fractal vacuum which is interpreted as a tendency of the system to make 
structures (patterns) in the form of  fractal Cooper type pairs. In such a 
manner, biological systems self-structuring can manifest; 

iii) Since the admissible number of fractal kinks is determined by the 
fractal topological properties of the fractal symmetry group of 
equation (11), a topological fractal method can be applied. Then, the 
fractal bit and, in particularly, the quantum bit, are obtained; 

iv) It can be shown that, by infinite energy solution mapping, a fractal 
cellular neural network can be defined; 

v) The simultaneous presence in biological systems both of the 
“hardware” (cell, tissue, organ etc.) and of the “software” (fractal bit, 
fractal cellular neural networks etc.), denotes a higher class of evolution 
through external medium adjustment specific mechanisms. For 
example, compensatory growth is such a mechanism, of regenerative 
type, that can take place in a number of human organs after the organs 
are either damaged, removed, or cease to function [28]. Additionally, 
increased functional demand can also stimulate this growth in tissues 
and organs. In the case of the lung we observe the postpneumonectomy 
mechanism [3][4]. This concept is different from remodeling (capillary 
congestion, increasing in air content). The absolute increase in tissue 
after pneumonectomy and blood flow surfaces coupled with an 
enlargement of the conducting airways may provide a decrease in 
hypoxia. Postpneumonectomy compensation, which is slow for an adult 
lung, is more present in children. The cells expand by hyperplasia 
and/or hypertrophy. 
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Figs. 1a-e. 3D dependence of the specific fractal potential, Q on the non-linear degree, s and 
normalized coordinate, ξ (a); contour curves of the specific fractal potential for various non-linear 

degree (b-e) 
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