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HYBRID GRASSHOPPER OPTIMIZATION ALGORITHM 

INCORPORATING WHALE OPTIMIZATION ALGORITHM 

Wei LIU1,*, Guangyu HAN2, Tong LI3, Tengteng REN4, Wenlv YAN5 

In order to address the issues with the original grasshopper optimization 

algorithm, this work offers a hybrid grasshopper optimization algorithm (WOGOA). 

First, the initial population of grasshoppers was mapped by Logistic mapping. 

Second, the parameter c was changed, and the nonlinear weight was added. Finally, 

Levy flight was integrated into the spiral bubble net hunting behavior of the whale 

optimization algorithm and then introduced into the grasshopper optimization 

algorithm as a whole. The algorithm was benchmarked on 9 test functions. According 

to the experimental data, WOGOA can deliver outcomes that are highly competitive 

in terms of convergence ability and accuracy.  

Keywords: Grasshopper optimization algorithm; Whale optimization algorithm; 

Logistic chaotic maps; Levy fight 

1. Introduction 

Fusion algorithm refers to the combination of certain behaviors of two or 

more algorithms to complement each other's strengths and weaknesses, so as to 

better achieve the effect before fusion. For example, reference [1] proposed a new 

improved whale optimization algorithm (IWOA) of multi-strategy hybrid 

algorithm, which enhanced the speed of convergence and global search capabilities 

of whale optimization algorithm. The various performances of the algorithm were 

benchmarked on 23 benchmark functions, proving the superiority of IWOA. In 

reference [2], the author demonstrated the use of modified whale optimization 

algorithm (MWOA) search based Selective Harmonic Elimination Pulse Width 

Modulation application, which has contributed to the field of power quality in micro 

grid systems. Reference [3] proposed a new multi-objective particle swarm 
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optimization algorithm and used it to optimize the geometric shape of permanent 

magnet motors and compared it with two other multi-objective optimization particle 

swarm algorithms, demonstrating its superiority. Through this literature, we can 

comprehend that the fusion algorithm performs well in both its own right and other 

disciplines, demonstrating its effectiveness. 

The whale optimization algorithm (WOA) [4] and grasshopper optimization 

algorithm (GOA) [5] both imitate the predatory tendencies of their respective 

animal counterparts in the wild. The principle of GOA is easy to understand, the 

parameters are few, and it is easy to implement. However, the algorithm 

convergence speed is slow and prone to premature convergence. Improved in 

response to the limitations of GOA, this article enhances its effectiveness. Due to 

the initial population distribution of GOA is random, the richness and uniformity 

of the population are reduced. Therefore, this article uses Logistic chaotic mapping 

to initiate the grasshopper population. Additionally, the GOA parameter c has a 

significant impact on the algorithm's capacity for exploration and exploitation. 

However, a linear decrease in c does not promote optimal balance within the 

algorithm. Therefore, the linearly reduced parameter c is changed to a non-linear 

reduction. WOA only updates its position based on the best individual, which 

results in a lack of population diversity and low global search ability. Furthermore, 

numerous academics have demonstrated that Levy flight can depart from local 

optima. Add the above methods to GOA to obtain WOGOA. The data results of 

WOGOA on the test function prove that WOGOA has high optimization ability. 

 

2. Fundamental principles of algorithm 

2.1. Grasshopper Optimization Algorithm 

It imitates the swarming and foraging behaviors of grasshoppers in the wild.  

The goal of algorithmic biomimetic is to quickly translate the small-scale 

movement behavior of grasshopper larvae to local development. The large-scale 

mobility behavior of adult grasshoppers is mapped to a long-term global search. 

The algorithm's optimization phase is the process of looking for food sources. 

Equation (1) can be used to explain grasshopper swarm behavior. 
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where 𝑋𝑖 is the position of grasshopper; ub and lb are the upper and lower bounds 

of the search space, respectively; xj and xi are different grasshoppers; dij is the 

distance between different xj and xi grasshoppers;  𝑇𝑑̂ is the optimal location. s is 

calculated by formula (2), where f=0.5 and l=1.5. 
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The parameter outside the parentheses c of equation (1) can balance the entire 

grasshopper swarm's exploration and exploitation. The purpose of the parameter c 

inside the parentheses is to limit the range of the repulsion force between 

grasshoppers. It is calculated as equation (3): 

max mi n
max

max

c - c
c = c - t

T
, (3) 

where t denotes the current iteration count and Tmax denotes the maximum number 

of iterations; cmax is equal to 1 and cmin is equal to 0.0004. 

2.2. Bubble net hunting behavior in Whale Optimization Algorithm 

Humpback whales engage in one of two bubble-net behaviors: shrinking 

encircle and spiral updating position. The bubble net behavior is shown in Fig. 1. 

The spiral update position is shown in equation (4): 

+ =   + *( 1) ' cos(2 ) ( )blX t D e l X t , (4) 

where the helix's shape can be altered by the constant b, which has a value of 1;  

𝑋⃗ (𝑡 + 1) is the position of the next iteration;  𝑋⃗∗(𝑡) is the position vector of the 

optimal solution; l is a selection value between [-1, 1]; 𝐷⃗⃗⃗′ can be calculated from 

equation (5) to obtain. 

= −*' ( ) ( )D X t X t , (5) 

𝑋⃗(𝑡) is the position vector. 

 
Fig. 1. A humpback whale's bubble-net eating technique 

3. WOGOA 

3.1. Chaotic Map Initialization 

In the area of algorithm optimization, chaotic mapping can frequently 

substitute the pseudorandom generator for generating chaotic numbers from 0 to 1. 

Reference [6] applied the Tent mapping to the grasshopper optimization algorithm 

and achieved good results. The Logistic map utilized in this article is widely 

adopted due to its straightforward expression, as shown in equation (6): 

1 (1 )n n nX X X+ =   − . (6) 
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In the formula, Xn+1 in [0, 1], λ in [0, 4] is a parameter of Logistic, which 

has different chaotic effects in different values. Reference [7] indicates that when 

3.5669<λ≤ 4. This mapping presents a completely chaotic state, so this article 

chooses λ = 4. A random number with an initial position between 0 and 1. 

3.2. Nonlinear parameters 

From equation (1), it follows that parameter c is crucial for achieving a 

balance between exploration and exploitation during the GOA algorithm's process 

of updating the grasshopper position. However, the linear variation of parameter c 

hinders effective global and local search, leading to low convergence accuracy [8]. 

This paper suggests a novel nonlinear parameter to address this issue, as shown in 

equation (7): 

3
max
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( )
t

c c
T

= − , (7) 

cmax, cmin, and Tmax have been elaborated on in the previous text. The rapid 

decrease of parameter c in the early phase prevents the algorithm from becoming 

stagnated into local optimum, while its slower decrease in later phases allows for 

more detailed exploitation. Therefore, this nonlinear parameter can better balance 

the algorithm's exploration and exploitation. 

3.3. Nonlinear Weights 

From the preceding description, the grasshopper position is updated using 

equation (1) throughout the whole iteration phase. However, in the later phase, this 

equation can only promote the grasshopper to approach the target position, but 

cannot converge to the global optimum faster [9]. Being inspired by the particle 

swarm weights mentioned in reference, nonlinear weights were added to the GOA 

[10]. The nonlinear weight w is shown in equation (8): 
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where the current iteration is t; wmax is 1, wmin is 0.0004; the maximum iteration is 

Tmax; y can be calculated by equation (9): 
/10

10exp( log )ty = − . (9) 

From equation (8), it is evident that the algorithm's exploration ability is 

enhanced during the early search phase due to a relatively large weight, ensuring 

global search. As the algorithm progresses, the weight gradually decreases, 

improving its exploitation performance and convergence speed. Therefore, the 

position update of grasshoppers becomes equation (10): 
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3.4. Levy flight was integrated into the spiral bubble-net attacking 

The inclusion of the Levy flight mechanism improves the algorithm's ability 

to conduct global exploration while looking for the best values, making it easier to 

discover the global optimum. The Levy flight follows the Levy distribution, where 

the formula is shown in equation (11): 
1 evyt t

i iX X L+ = +  , (11) 

where Xi
t+1 represents the next position, Xi

t represents the current iteration 

position, and step size α is usually a constant with a value of 0.01. However, the 

method in this article can have a big step size for global search the algorithm in its 

early phases, making it simple to jump out of local optima. So the value of an in 

this article ranges between [0.01, 0.3].⊕representing point-to-point multiplication. 

And the Levy is described by equation (12): 


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where v adheres to the normal distribution with a 0 mean and a 1 variance, μ obey 

mean of 0, variance of σμ the Gaussian distribution, where σμ the calculation method 

is shown in equation (13): 
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λ is a random number in (1, 3), in this article we assumed it as 1.5; Γ(x) is the 

gamma function. 

After integrating Levy flight into the spiral bubble-net attacking behavior of 

whales, the updated formula becomes: 

 
+ = +  −  ( 1) ( ) ( ) cos(2 )blX t X t Levy X X t e l , (14) 

where b is the constant coefficient of the spiral equation, usually b is 1; l is a 

selection value between [-1, 1]. 

Integrating Levy flights into the spiral bubble-net attacking behavior facilitates 

running out of local optima to search global optima during the optimization process. 

Combining the position update of grasshoppers with the position update of whale 

spiral bubble-net attacking behavior which was added to Levy flight, and alternate 

between them for updating. Specifically, execute equation (10) when the number 

of iterations is odd and equation (14) when it is even. 

3.4. WOGOA Step 

Step 1   Make the population's initial state via logistic mapping, set 

parameters cmax, cmin, population N, and the most iterations allowed Maxiter. 
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Step 2   Determine the starting population's fitness, and find the best Td 

position for the current population after updating the target position. 

Step 3   When the current iteration count is singular, execute the position 

update equation (10); otherwise, execute the position update equation (14). 

Step 4   Edge the new position X'(t) obtained, calculate the fitness, and 

compare it with position X(t) in the previous iteration. Find the ideal position, 

update Td, and save the position with the lowest fitness as the final position X(t+1). 

Step 5   Ascertain if the reached number of iterations has been reached. 

When the maximum number of iterations has been achieved, publish the overall 

best solution; if not, continue with steps 3 and 4. 

In Fig. 2, the WOGOA flowchart is displayed. 
 

 
Fig. 2. The flowchart of WOGOA 

 

4. Results 

4.1. Experimental environment 
 

The experiments are tested on an Intel machine Core(TM) i5-8250U CPU 

1.6GHz and 20 GB RAM. All algorithms are tested using the MATLAB 2022b 

software. 
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4.2. Comparison with different original algorithms 

To prove the WOGOA algorithm's capacity for optimization, this paper 

selected Ant lion optimization algorithm (ALO) [11], Harris hawks optimization 

(HHO) [12], Whale optimization algorithm (WOA), and Grasshopper optimization 

algorithm (GOA) to compare with WOGOA. The number of search agents is 30, 

and other parameters were the same as those in the reference. This paper selected 9 

test functions for comparison. In Table 1, which corresponds to rows F1 through F9 

in the test data result table, the names, dimensions, and formulas of the chosen 

functions are displayed. F1 through F6 are unimodal functions having a single best 

solution. The proposed algorithm's rate of convergence will be examined. F7 to F9 

are multimodal functions with numerous global solutions. The purpose is to verify 

WOGOA's global optimization ability and whether it can find the global optimal 

solution. Each test function was run 30 times independently to avoid the 

occasionality of a single experiment, and the number of iterations was set to 1000. 
 

Table 1 

Partial benchmark functions 

 

Table 2 displays the test results data. In Table 2, Best is the optimal value of 

30 experiments, Worst is the worst value of 30 experiments, Ave is the average 

value of 30 experiments, and Std is the variance of 30 experiments. Fig. 3 displays 

the test's convergence curves. 
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Function

 

Algorithms

 

Best Worst Ave Std 

F1 

ALO 1.81E-06 1.55E-05 6.33E-06 3.96E-06 

HHO 4.21E-207 8.11E-180 2.70E-181 0 

WOA 5.30E-168 4.58E-150 1.58E-164 8.35E-151 

GOA 0.5741 18.8231 7.3336 5.4888 

WOGOA 0 0 0 0 

F2 

ALO 0.0890 124.1006 37.6341 51.7361 

HHO 1.10E-111 9.01E-97 7.02E-98 2.12E-97 

WOA 5.44E-113 2.90E-101 1.05E-102 5.30E-102 

GOA 0.2035 71.2622 8.3375 13.7452 

WOGOA 0 0 0 0 

F3 

ALO 580.8901 3605.0574 1136.3067 601.6023 

HHO 1.80E-184 6.27E-138 2.10E-139 1.14E-138 

WOA 2070.0063 31620.2934 18003.2910 9046.1781 

GOA 790.9804 5217.8573 1983.0377 1214.4968 

WOGOA 0 0 0 0 

F4 

ALO 4.8288 20.1975 12.8514 4.0509 

HHO 4.77E-105 1.27E-89 4.23E-91 2.31E-90 

WOA 0.0420 85.1367 43.9337 31.2751 

GOA 5.3958 17.3842 9.6231 3.0170 

WOGOA 0 1.69E-20 4.43E-21 6.29E-21 

F5 

ALO 22.0201 1740.5569 272.5554 475.0298 

HHO 3.47E-06 0.0219 0.0045 0.0057 

WOA 27.0561 28.7849 28.1150 0.4723 

GOA 122.1291 5561.6334 1031.9546 1268.8228 

WOGOA 28.7071 28.9795 28.8075 0.0697 

F6 

ALO 0.0387 0.2246 0.1012 0.4217 

HHO 8.89E-06 0.0003 7.04E-05 6.66E-05 

WOA 1.51E-05 0.0172 0.0029 0.0040 

GOA 0.0038 0.0301 0.0175 0.0062 

WOGOA 6.89E-06 0.0003 0.0001 0.0001 

F7 

ALO 39.7983 190.0363 79.2317 28.8098 

HHO 0 0 0 0 

WOA 0 0 0 0 

GOA 43.8411 158.8225 93.5683 31.4093 

WOGOA 0 0 0 0 

F8 

GOA 2.5101 6.4516 4.0077 0.9158 

SCGOA 1.6183 4.8464 2.6858 0.8751 

NGOA1 1.81E-08 2.04E-08 1.95E-08 7.41E-10 

LGOA 2.4088 4.4249 3.5474 0.6659 

WOGOA 8.88E-16 8.88E-16 8.88E-16 0 

F9 

GOA 0.5371 0.9851 0.7473 0.1341 

SCGOA 0.1797 0.3938 0.3011 0.0791 

NGOA1 9.88E-05 1.40E-14 1.26E-14 1.45E-15 

LGOA 0.1076 0.3116 0.2022 0.0703 

WOGOA 0 0 0 0 
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 (a) F1 (b) F2 (c) F3 

 
 (d) F4 (e) F5 (f) F6 

 
 (g) F7 (h) F8 (i) F9 
 

Fig. 3. Comparison of convergence curves of different algorithms 

 

As shown in Table 2, both WOA and HHO exhibit stronger overall 

optimization ability than ALO and GOA from F1-F2. Furthermore, based on the 

table's standard deviation, it can be observed that WOA and HHO exhibit superior 

robustness compared to ALO and GOA. This suggests that their optimization 

capabilities are not merely coincidental. However, WOGOA outperforms both 

WOA and HHO. It has good optimization ability in terms of precision and 

consistency, enabling it to achieve the theoretical optimal value.  

From the perspective of F3-F4, WOA's overall optimization ability is 

inferior to that of ALO and GOA. Neither method can achieve the theoretical 

optimal value. And the stability of WOA is not as good as that of ALO and GOA. 

The overall optimization ability of HHO is much better than WOA, ALO, and GOA, 

and the standard deviation is low, suggesting that HHO is more stable. After 

comparing WOGOA with the other four algorithms, it is found that WOGOA 

exhibits significantly superior global optimization ability, convergence speed, and 

stability, and is capable of achieving the theoretical optimal value.  
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From the point of view of F5, WOA and WOGOA have similar optimization 

abilities. But in terms of stability, WOWGOA is a bit more stable than WOA. But 

none of these five algorithms can locate the ideal value in theory. 

From F6, the optimal values found by WOGOA, HHO, and WOA are 

superior to the other two algorithms. From the comparison of these three 

algorithms, WOGOA and HHO are better than WOA in terms of accuracy and 

stability. WOGOA's optimization ability is slightly stronger than HHO's, but neither 

of them is able to determine the theoretical optimal value. From the perspective of 

F7-F9, compared to the other two algorithms, WOA, HHO, and GWGOA can run 

the local optimal solution and locate the theoretically ideal value at the global level, 

and the stability is stronger than the other two algorithms. According to the above 

information obtained from the test data table and convergence curve, GWGOA can 

find the optimal value on most functions, which proves the effectiveness of 

GWGOA and highlights the excellent optimization ability of this algorithm. 

4.3. Comparison with the improved GOA 

WOGOA was contrasted with original GOA, SCGOA [13], LGOA [14], 

and NGOA1 [15] in order to further illustrate the optimization capability of 

WOGOA. The settings were set in accordance with the references, with the number 

of grasshoppers set to 30, the dimension set to 30, the number of iterations set to 

1000, and the number of grasshoppers set to 30. Table 3 displays the test data 

results, and Figure 4 displays the fitness convergence curve. 

It is evident from Table 3 and Fig. 4 that WOGOA in F1-F4 exhibits superior 

optimization capabilities compared to the other four algorithms and can effectively 

identify the optimal solution within the function theory.  
Table 3 

Partial benchmark function results of different improved GOA algorithms 

Function

 

Algorithms

 

Best Worst Ave Std 

F1 

GOA 0.5741 18.8231 7.3336 5.4888 

SCGOA 0.2768 0.7125 0.4331 0.1424 

NGOA1 2.89E-17 2.64E-17 2.78E-17 8.32E-17 

LGOA 0.0567 0.9522 0.2725 0.2646 

WOGOA 0 0 0 0 

F2 

GOA 0.2035 71.2622 8.3375 13.7452 

SCGOA 1.7461 11.8204 4.3410 2.9065 

NGOA1 2.43E-09 2.33E-09 2.40E-09 5.50E-11 

LGOA 0.3203 23.5404 5.2994 7.2088 

WOGOA 0 0 0 0 

F3 

GOA 790.9804 5217.8573 1983.0377 1214.4968 

SCGOA 397.1571 1154.8540 652.6811 240.2682 

NGOA1 7.48E-15 1.71E-14 1.45E-14 2.85E-15 

LGOA 85.4954 292.0814 158.1364 70.5805 

WOGOA 0 0 0 0 

GOA 5.3958 17.3842 9.6231 3.0170 
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F4 

SCGOA 2.8756 20.9253 8.1670 5.2974 

NGOA1 2.63E-05 2.73E-08 2.69E-08 3.58E-10 

LGOA 4.6534 27.7915 15.1358 6.6521 

WOGOA 0 1.69E-20 4.43E-21 6.29E-21 

F5 

GOA 122.1291 5561.6334 1031.9546 1268.8228 

SCGOA 55.5941 274.8262 136.0421 63.7939 

NGOA1 28.9352 28.9830 28.9552 0.0144 

LGOA 28.2851 793.2353 160.5964 228.3359 

WOGOA 28.7071 28.9795 28.9960 0.0697 

F6 

GOA 0.0038 0.0301 0.0175 0.0062 

SCGOA 0.0783 0.3871 0.2404 0.0875 

NGOA1 1.10E-05 0.0002 7.82E-05 7.13E-05 

LGOA 0.0074 0.0315 0.0198 0.0071 

WOGOA 6.89E-06 0.0003 0.0001 0.0001 

F7 

GOA 43.8411 158.8225 93.5683 31.4093 

SCGOA 72.3972 175.5481 137.1621 33.53442 

NGOA1 0 0 0 0 

LGOA 50.7467 190.0385 91.1780 36.8202 

WOGOA 0 0 0 0 

F8 

GOA 2.5101 6.4516 4.0077 0.9158 

SCGOA 1.6183 4.8464 2.6858 0.8751 

NGOA1 1.81E-08 2.04E-08 1.95E-08 7.41E-10 

LGOA 2.4088 4.4249 3.5474 0.6659 

WOGOA 8.88E-16 8.88E-16 8.88E-16 0 

F9 

GOA 0.5371 0.9851 0.7473 0.1341 

SCGOA 0.1797 0.3938 0.3011 0.0791 

NGOA1 9.88E-05 1.40E-14 1.26E-14 1.45E-15 

LGOA 0.1076 0.3116 0.2022 0.0703 

WOGOA 0 0 0 0 

 
 (a) F1 (b) F2 (c) F3 

 
 (d) F4 (e) F5 (f) F6 
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 (g) F7 (h) F8 (i) F9 
 

Fig. 4. Comparison of convergence curves of different improved GOA algorithms 
 

Secondly, in terms of standard deviation, WOGOA exhibits the smallest 

value, indicating a more stable optimization ability and stronger robustness 

compared to NGOA1. Finally, the rate of convergence of WOGOA is quicker than 

that of the other four algorithms, indicating that the algorithm has a stronger 

convergence ability. In general, the convergence speed, accuracy, and stability of 

WOGOA are higher than those of the other four algorithms in these four functions, 

which indicates that WOGOA has better optimization ability. 

From the perspective of F5, WOGOA and NGOA1 have the same 

optimization ability on this function, which is better to other algorithms in terms of 

optimization precision and stability. The theoretically ideal value of this function 

cannot be found by any of the five algorithms mentioned above. 

According to F6, GOA, SCGOA, and LGOA all have the same level of 

optimization capability in terms of accuracy and stability, and all of them have good 

accuracy and robustness. WOGOA still has a lot of room for improvement since 

the theoretically ideal value is not found. 

From the perspective of F7, GOA, SCGOA, and LGOA failed to fail to 

locate the theoretical ideal value and have not jumped out of the local optimal value. 

However, as can be observed from the figure, NGOA1 and WOGOA convergence 

speed is poor, indicating that their performance in the ability to conduct global 

searches is subpar. 

From the perspective of F8-F9, WOGOA's optimization ability is better than 

the other four algorithms. However, convergence speed is slow on F8 and fast on 

F9. 

In general, after comparing with several different improved GOA, it can still 

prove the superiority of WOGOA optimization and further highlight the 

optimization ability of WOGOA. 

5. Conclusion 

This research suggests a hybrid grasshopper optimization algorithm that 

incorporates the whale optimization method to address the shortcomings of the 
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sluggish convergence rate and low precision of GOA. Based on the GOA, this 

algorithm introduces the Levy flight's whale spiral bubble net hunting behavior as 

well as logistic chaotic mapping and nonlinear parameters and weights to improve 

the algorithm's capacity to run out of the local optimum as well as its ability to do 

local searches and accelerate convergence. According to the experimental data, 

WOGOA can deliver outcomes that are highly competitive in terms of convergence 

ability and accuracy. 

WOGOA has achieved good results in testing functions, so applying 

WOGOA to practical optimization problems, especially complex, dynamic, and 

large-scale optimization problems, is another research direction of this article. We 

can create binary and multi-objective WOGOA versions in subsequent work. And 

it can also be applied to other fields, such as photovoltaic maximum power tracking, 

power load prediction, and robot path shortest planning, and it is expected that this 

algorithm will achieve good results. 

The abbreviations involved in this article are shown in Table 4 
 

Table 4 

Abbreviate table 

Full name 
Abbreviated 

name 
Full name 

Abbreviated 

name 

Hybrid grasshopper 

optimization algorithm 
WOGOA 

Ant lion optimization 

algorithm 
ALO 

Improved whale 

optimization algorithm 
IWOA Harris hawks optimization HHO 

Modified whale 

optimization algorithm 
MWOA 

Cauchy mutation grasshopper 

optimization with 

trigonometric substitution 

SCGOA 

Whale optimization 

algorithm 
WOA 

Levy flight based grasshopper 

optimization algorithm 
LGOA 

Grasshopper optimization 

algorithm 
GOA 

The first type of new locust 

optimization algorithm 
NGOA1 
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