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NEW VISCOSITY ALGORITHM WITH STRONG CONVERGENCE FOR

QUASIMONOTONE VARIATIONAL INEQUALITIES
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This paper investigates quasimonotone and Lipschitz continuous variational

inequalities in real Hilbert spaces. To address this problem, we propose a new iterative

algorithm for finding an element of the solution set of the quasimonotone variational

inequality problem. Our approach combines techniques from the inertial modified subgra-

dient extragradient algorithm and the viscosity approximation method. Using a new self

adaptive stepsize, we establish a strong convergence theorem for the sequence generated

by the proposed algorithm under appropriate conditions. The results presented in this

work improve upon and generalize some recent findings in this area.
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1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. Let C be

a nonempty, closed and convex subset of H. Let F : H → H be a single-valued mapping.

We study the classical variational inequality (VI) as formulated by Fichera [18] and

Stampacchia [32] (see also Kinderlehrer and Stampacchia [24]) which is: Find a point x∗ ∈ C

such that

⟨Fx∗, x− x∗⟩ ≥ 0,∀x ∈ C. (1)

The solution set of VI is denoted by S.

The dual variational inequality of VI is to find x∗ ∈ C such that

⟨Fx, x− x∗⟩ ≥ 0,∀x ∈ C.

We denote the solution set of the dual VI by SD. SD is clearly a closed convex set

(possibly empty). When F is continuous and C is convex, SD ⊂ S. If F is pseudomonotone

and continuous, then S = SD (see, Lemma 2.1 in [13]). The inclusion S ⊂ SD is false if F

is quasimonotone and continuous (see, Example 4.2 in [39]).

We also use ST and SN for the trivial and nontrivial solution sets of VI; that is,

ST = {x∗ ∈ C|⟨Fx∗, x− x∗⟩ = 0,∀x ∈ C},

SN = S\ST .

We assume that the following conditions hold:

Condition 1.1. SD ̸= ∅.
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Condition 1.2. The mapping F : H → H is L-Lipschitz continuous on H. However, the

information of L is not necessary to be known.

Condition 1.3. The mapping F is sequentially weakly continuous on C, i.e., for each

sequence {xn} ⊂ C : {xn} converges weakly to x∗ implies {Fxn} converges weakly to Fx∗.

Condition 1.4. The mapping F is quasimonotone on H.

Variational inequality (VI) is a very general mathematical model with numerous ap-

plications in fields like economics, engineering, transportation, and more (see [1, 7, 9, 17, 24,

25]). Over the past decades, many algorithms have been developed for solving VIs, including

extragradient methods [26], projection and contraction techniques [8, 20, 33], and various

splitting methods [36].

Korpelevich [26] (independently of Antipin [4]) introduced the extragradient method

for solving monotone variational inequalities, which requires two projections onto the feasible

set per iteration. An important extension is the subgradient extragradient method proposed

by Censor et al. [10, 11, 12], where the second projection is replaced by one onto a half-space

containing the feasible set. Since half-space projections have an explicit form, this reduces

computational complexity compared to the extragradient method. Recently, approaches

combining the advantages of projection contraction methods [20, 33] and the subgradient

extragradient method have been studied [14, 15, 30, 36].

We now discuss an inertial-type algorithm based on a discrete version of a second-order

dissipative dynamical system [5, 6]. This approach can be viewed as a procedure for accel-

erating convergence, as discussed in [3, 29]and references therein. Recently, several authors

have studied inertial methods when the operator F is quasimonotone (or non-monotone), see

[2, 21, 22, 28, 37, 38, 39] and references therein. These works analyze the convergence prop-

erties of inertial-type algorithms and demonstrate their numerical performance on various

imaging and data analysis problems.

To the best of the authors’ knowledge, the study of strong convergence for solving

quasimonotone variational inequalities in the Hilbert space setting remains unexplored. This

motivates the following research question: Can we establish strong convergence results for an

inertial subgradient extragradient method to solve quasimonotone variational inequalities?

Motivated by the existing literature, this paper aims to address the aforementioned re-

search question. Specifically, we introduce a new inertial subgradient extragradient method

for finding an element in the solution set of a quasimonotone, Lipschitz-continuous varia-

tional inequality problem.

The first proposed iterative method combines two well-established techniques: the

inertial modified subgradient extragradient method [15, 35] and the viscosity approxima-

tion method [27]. Our proposed algorithm computes only one projection onto the closed

convex set C per iteration and employ self-adaptive step sizes to approximate a solution of

the quasimonotone variational inequality problem. Moreover, we use a novel self adaptive

stepsize which may increase a positive value and has never been used in literature before.

This approach represents a novel and state-of-the-art contribution to the study of inertial

extragradient methods for solving variational inequality problems.

In Section 2, we provide some standard definitions and preliminary concepts. We

then introduce our proposed algorithm and establish the strong convergence of the iterative
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sequence to a solution of the considered variational inequality in Section 3. Finally, we

present our conclusions in Section 4.

2. Preliminaries

The weak convergence of {xn} to x is denoted by xn ⇀ x as n → ∞, while the strong

convergence of {xn} to x is written as xn → x as n → ∞. For each x, y ∈ H, we have

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩. (2)

For every point x ∈ H, there exists a unique nearest point in C, denoted by PC(x)

such that ∥x− PC(x)∥ ≤ ∥x− y∥ ∀y ∈ C. PC is called the metric projection of H onto C.

It is known that PC is nonexpansive. For properties of the metric projection, the interested

reader could be referred to [19, Section 3].

We need to recall the following results and properties, which are useful for the later

convergence analysis.

Lemma 2.1. ([19]) Let C be a nonempty closed convex subset of a real Hilbert space H.

Given x ∈ H and z ∈ C. Then z = PC(x) ⇐⇒ ⟨x− z, z − y⟩ ≥ 0 ∀y ∈ C. Moreover,

∥PC(x)− PC(y)∥2 ≤ ⟨PC(x)− PC(y), x− y⟩ ∀x, y ∈ C.

Definition 2.1. ([9]) Let F : H → H be a mapping. Then the mapping F is said to be:

(1) L-Lipschitz continuous with L > 0 if

∥F (x)− F (y)∥ ≤ L∥x− y∥ ∀x, y ∈ H.

(2) monotone if

⟨F (x)− F (y), x− y⟩ ≥ 0 ∀x, y ∈ H.

(3) pseudomonotone in the sense of Karamardian [23] if

⟨F (x), y − x⟩ ≥ 0 =⇒ ⟨F (y), y − x⟩ ≥ 0 ∀x, y ∈ H.

(4) quasimonotone, if

⟨F (x), y − x⟩ > 0 =⇒ ⟨F (y), y − x⟩ ≥ 0 ∀x, y ∈ H.

(5) δ-strongly pseudomonotone if there exists a constant δ > 0 such that

⟨F (x), x− y⟩ ≥ 0 =⇒ ⟨F (y), x− y⟩ ≥ δ∥x− y∥2 ∀x, y ∈ H.

(6) sequentially weakly continuous if, for each sequence {xn} in H, {xn} converges weakly

to a point x ∈ H implies {F (xn)} converges weakly to F (x).

It is easy to see that every (2) =⇒ (3) =⇒ (4) but the converse is not true.

The following lemma provides some sufficient conditions for nonemptiness of SD.

Lemma 2.2. ([39]) If either

(1) F is pseudomonotone on C and S ̸= ∅,
(2) F is the gradient of G, where G is a differential quasiconvex function on an open set

K,C ⊂ K and attains its global minimum on C,

(3) F is quasi-monotone on C, F ̸= 0 on C and C is bounded,

(4) F is quasi-monotone on C, F ̸= 0 on C and there exists a positive number r such

that, for every v ∈ C with ∥v∥ ≥ r, there exists y ∈ C such that ∥y∥ ≤ r and

⟨F (v), y − v⟩ ≤ 0,

(5) F is quasimonotone on C and SN ̸= ∅,
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(6) F is quasi-monotone on C, intC is nonempty and there exists v∗ ∈ S such that

F (v∗) ̸= 0.

Then, SD is nonempty.

Lemma 2.3. ([34]) Let {an} and {bn} be sequences of nonnegative real numbers satisfying

the inequality

an+1 ≤ an + bn.

If
∑+∞

n=1 bn < ∞, then limn→+∞ an exists.

Lemma 2.4. ([31]) Let {an} be sequence of nonnegative real numbers, {αn} be a sequence of

real numbers in (0, 1) with
∑∞

n=1 αn = ∞ and {bn} be a sequence of real numbers. Assume

that

an+1 ≤ (1− αn)an + αnbn, ∀n ≥ 1,

If lim supk→∞ bnk
≤ 0 for every subsequence {ank

} of {an} satisfying lim infk→∞(ank+1 −
ank

) ≥ 0 then limn→∞ an = 0.

3. Main results

We now introduce a novel modified extragradient method to solve quasimonotone

variational inequalities. The proposed iterative algorithm takes the following form:

Algorithm 3.1.

Initialization: Let f : H → H be a contraction mapping with contraction parameter

κ ∈ [0, 1). Given α, τ1 > 0 and {θn} is a nonnegative real numbers sequence such that∑∞
n=1 θn < +∞. Let s0, s1 ∈ H be arbitrary. We assume that {βn}, {ϵn} are two positive

sequences such that ϵn = ◦(βn), means limn→∞
ϵn
βn

= 0, where {βn} ⊂ (0, 1) satisfies the

following conditions:

lim
n→∞

βn = 0,

∞∑
n=1

βn = ∞.

Iterative Steps: Given the current iterate sn, calculate sn+1 as follows:

Step 1. Compute

wn = sn + αn(sn − sn−1)

and

vn = PC(wn − τnFwn),

where

αn =

min{α, ϵn
∥sn − sn−1∥

} if sn ̸= sn−1,

α otherwise,
(3)

If wn = vn or Fwn = 0 then stop and wn is a solution of (1). Otherwise go to Step 2.

Step 2. Compute

zn = PTn(wn − γτnηnFvn),

where

Tn = {x ∈ H | ⟨wn − τnFwn − vn, x− vn⟩ ≤ 0},

ηn :=


⟨wn − vn,∆n⟩

∥∆n∥2
if ∆n ̸= 0,

0 if ∆n = 0,
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and

∆n := wn − vn − τn(Fwn − Fvn).

Step 3. Compute

sn+1 = (1− βn)zn + βf(zn).

Update

τn+1 :=

min

{
µ

∥wn − vn∥
∥Fwn − Fvn∥

, (1 + θn)τn

}
if Fwn ̸= Fvn,

(1 + θn)τn otherwise.

(4)

Set n := n+ 1 and go to Step 1.

Remark 3.1. 1. From (3), the definition of {αn} we have limn→+∞
αn

βn
∥sn − sn−1∥ = 0.

We start the convergence analysis by proving the following lemma.

Lemma 3.1. Assume that F is L-Lipschitz continuous on H. Let {τn} be the sequence

generated by (4). Then

lim
n→∞

τn = τ with τ ≥ min
{µ

L
, τ1

}
.

Moreover

∥Fwn − Fvn∥ ≤ µ

τn+1
∥wn − vn∥. (5)

Proof. First, we prove that limn→∞ τn exists. Indeed, we show that
∏∞

n=1(1 + θn) < +∞.

We have
k∏

n=1

(1 + θn) = eln
∏k

n=1(1+θn) = e
∑k

n=1 ln(1+θn)

≤ e
∑k

n=1 θn ≤ e
∑+∞

n=1 θn = eθ < +∞,

where θ :=
∑+∞

n=1 θn. Letting k → +∞ we get
∏∞

n=1(1 + θn) < +∞. On the other hand, we

have

τn+1 ≤ (1 + θn)θn ≤ (1 + τn)(1 + θn−1)τn−1

≤ .. ≤ (1 + θn)(1 + θn−1)...(1 + θ1)τ1

≤
∞∏

n=1

(1 + θn)τ1 ≤ eθτ1 = M, ∀n.

This implies that τn+1 = (1+ θn)τn ≤ τn+Mθn. Appling Lemma 2.3, we obtain limn→∞ τn
exists. Now, we prove that

τn ≥ min
{µ

L
, τ1

}
∀n.

Indeed, from F is L-Lipschitz continuous on H we get

∥Fwn − Fyn∥ ≤ L∥wn − yn∥.
If Fw2 ̸= Fy2 then

µ
∥w2 − y2∥

∥Fw2 − Fy2∥
≥ µ

L
.

By the definition of {τn}, we get τ2 ≥ min{ µ
L , τ1}. If Fw2 = Fy2 then we get τ2 =

(1 + θ1)τ1 ≥ τ1. Therefore, in both cases, we get

τ2 ≥ min{µ
L
, τ1}.



82 Duong Viet Thong

Employing mathematical induction, we now see that τn ≥ min{ µ
L , τ1} for all n ≥ 1. The

proof is completed. □

Remark 3.2. It should emphasize here that the sequence {τn} generated by (4) is new and

different from [28].

Next, we need the following lemma as the key to our results.

Lemma 3.2. [16] Assume that Conditions 1.1–1.4 and the mapping F is quasimonotone on

H. Let {wn} be a sequence generated by Algorithm 3.1. If there exists a subsequence {wnk
}

convergent weakly to z ∈ H and limk→∞ ∥wnk
− vnk

∥ = 0, then z ∈ SD or Fz = 0.

Theorem 3.1. Assume that Conditions 1.1–1.4 hold and Fx ̸= 0 ∀x ∈ C then the sequence

{sn} is generated by Algorithm 3.1 converges strongly to an element p ∈ SD ⊂ S, where

p = PSD
◦ f(p).

Remark 3.3. Frist, we note that PSD
◦ f is contraction mapping, hence there exists unique

p such that p = PSD
◦ f(p).

Proof. Claim 1.

∥zn − p∥2 ≤ ∥wn − p∥2 − ∥wn − zn − γηn∆n∥2 − (2− γ)γη2n∥∆n∥2 ∀n ≥ n0. (6)

Using (5), we have

∥∆n∥ = ∥wn − vn − τn(Fwn − Fvn)∥
≥ ∥wn − vn∥ − τn∥Fwn − Fvn∥

≥ ∥wn − vn∥ −
µτn
τn+1

∥wn − vn∥

=

(
1− µτn

τn+1

)
∥wn − vn∥. (7)

Since limn→∞

(
1− µτn

τn+1

)
= 1− µ > 0, there exists n0 ∈ N such that

1− µτn
τn+1

>
1− µ

2
∀n ≥ n0.

It follows from (7) that for all n ≥ n0 we get

∥∆n∥ ≥ 1− µ

2
∥wn − vn∥ > 0. (8)

Since x∗ ∈ SD ⊂ C ⊂ Tn, using Lemma 2.1 we have

∥zn − x∗∥2 =∥PTn
(wn − γηnτnFvn)− PTn

x∗∥2

≤⟨zn − x∗, wn − γηnτnFvn − x∗⟩

=
1

2
∥zn − x∗∥2 + 1

2
∥wn − γηnτnFvn − x∗∥2 − 1

2
∥zn − wn + γηnτnFvn∥2

=
1

2
∥zn − x∗∥2 + 1

2
∥wn − x∗∥2 + 1

2
γ2η2nτ

2
n∥Fvn∥2 − ⟨wn − x∗, γηnτnFvn⟩

− 1

2
∥zn − wn∥2 −

1

2
γ2η2nτ

2
n∥Fvn∥2 − ⟨zn − wn, γηnτnFvn⟩

=
1

2
∥zn − x∗∥2 + 1

2
∥wn − x∗∥2 − 1

2
∥zn − wn∥2 − ⟨zn − x∗, γηnτnFvn⟩.

This implies that

∥zn − x∗∥2 ≤ ∥wn − x∗∥2 − ∥zn − wn∥2 − 2γηnτn⟨zn − x∗, Fvn⟩. (9)
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Since vn ∈ C and x∗ ∈ SD, we get ⟨Fvn, vn − x∗⟩ ≥ 0, which implies

⟨Fvn, zn − x∗⟩ = ⟨Fvn, zn − vn⟩+ ⟨Fvn, vn − x∗⟩ ≥ ⟨Fvn, zn − vn⟩.

Thus, we obtain

−2γηnτn⟨Fvn, zn − x∗⟩ ≤ −2γηnτn⟨Fvn, zn − vn⟩. (10)

On the other hand, from zn ∈ Tn we have

⟨wn − τnFwn − vn, zn − vn⟩ ≤ 0.

This implies that

⟨wn − vn − τn(Fwn − Fvn), zn − vn⟩ ≤ τn⟨Fvn, zn − vn⟩,

thus

⟨∆n, zn − vn⟩ ≤ τn⟨Fvn, zn − vn⟩.
Hence

−2γηnτn⟨Fvn, zn − vn⟩ ≤ −2γηn⟨∆n, zn − vn⟩. (11)

On the other hand, we have

−2γηn⟨∆n, zn − vn⟩ = −2γηn⟨∆n, wn − vn⟩+ 2γηn⟨∆n, wn − zn⟩. (12)

From (8), we have ∆n ̸= 0 ∀n ≥ n0, thus ηn =
⟨wn − vn,∆n⟩

∥∆n∥2
, which means

⟨wn − vn,∆n⟩ = ηn∥∆n∥2 ∀n ≥ n0. (13)

Moreover

2γηn⟨∆n, wn − zn⟩ = 2⟨γηn∆n, wn − zn⟩
= ∥wn − zn∥2 + γ2η2n∥∆n∥2 − ∥wn − zn − γηn∆n∥2. (14)

Substituting (13) and (14) into (12) we get for all n ≥ n0 that

−2γηn⟨∆n, zn − vn⟩ ≤ −2γη2n∥∆n∥2 + ∥wn − zn∥2 + γ2η2n∥∆n∥2 − ∥wn − zn − γηn∆n∥2

= ∥wn − zn∥2 − ∥wn − zn − γηn∆n∥2 − (2− γ)γη2n∥∆n∥2. (15)

Combining (11) and (15), we obtain

−2γηnτn⟨Fvn, zn − vn⟩ ≤ −2γη2n∥∆n∥2 + ∥wn − zn∥2 + γ2η2n∥∆n∥2 − ∥wn − zn − γηn∆n∥2

= ∥wn − zn∥2 − ∥wn − zn − γηn∆n∥2 − (2− γ)γη2n∥∆n∥2. (16)

Again, combining (10) and (16), we get

−2γηnτn⟨Fvn, zn − x∗⟩ ≤ −2γη2n∥∆n∥2 + ∥wn − zn∥2 + γ2η2n∥∆n∥2 − ∥wn − zn − γηn∆n∥2

= ∥wn − zn∥2 − ∥wn − zn − γηn∆n∥2 − (2− γ)γη2n∥∆n∥2. (17)

Substituting (17) into (9) we get

∥zn − x∗∥2 ≤ ∥wn − x∗∥2 − ∥wn − zn − γηn∆n∥2 − (2− γ)γη2n∥∆n∥2 ∀n ≥ n0.

Claim 2. (
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ∥wn − vn∥2 ≤ η2n∥∆n∥2 ∀n ≥ n0.
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Indeed, we have

∥∆n∥ ≤ ∥wn − vn∥+ τn∥Fwn − Fvn∥ ≤
(
1 +

µτn
τn+1

)
∥wn − vn∥.

Hence

∥∆n∥2 ≤
(
1 +

µτn
τn+1

)2

∥wn − vn∥2,

or equivalently
1

∥∆n∥2
≥ 1(

1 +
µτn
τn+1

)2

∥wn − vn∥2
.

Again, we find

⟨wn − vn,∆n⟩ = ∥wn − vn∥2 − τn⟨wn − vn, Fwn − Fvn⟩
≥ ∥wn − vn∥2 − τn∥wn − vn∥∥Fwn − Fvn∥

≥ ∥wn − vn∥2 −
µτn
τn+1

∥wn − vn∥2

=

(
1− µτn

τn+1

)
∥wn − vn∥2.

Hence for all n ≥ n0

ηn∥∆n∥2 = ⟨wn − vn,∆n⟩ ≥
(
1− µτn

τn+1

)
∥wn − vn∥2 (18)

and

ηn =
⟨wn − vn,∆n⟩

∥∆n∥2
≥

(
1− µτn

τn+1

)
(
1 +

µτn
τn+1

)2 . (19)

Combining (18) and (19), we get

η2n∥∆n∥2 ≥

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ∥wn − vn∥2 ∀n ≥ n0.

Claim 3. {sn} is bounded. Indeed, by Claim 1, we have

∥zn − p∥ ≤ ∥wn − p∥ ∀n ≥ n0. (20)

Moreover, by the definition of wn we get

∥wn − p∥ = ∥sn + αn(sn − sn−1)− p∥
≤ ∥sn − p∥+ αn∥sn − sn−1∥

= ∥sn − p∥+ βn
αn

βn
∥sn − sn−1∥. (21)

By condition
αn

βn
∥sn − sn−1∥ → 0, there exists a constant M1 ≥ 0 such that

αn

βn
∥sn − sn−1∥ ≤ M1 ∀n. (22)
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Combining (20), (21) and (25) we obtain

∥zn − p∥ ≤ ∥wn − p∥ ≤ ∥sn − p∥+ βnM1. (23)

From the definition of {sn} we get

∥sn+1 − p∥ = ∥βnf(zn) + (1− βn)zn − p∥
= ∥βn(f(zn)− p) + (1− βn)(zn − p)∥
≤ βn∥f(zn)− p∥+ (1− βn)∥zn − p∥
≤ βn∥f(zn)− f(p)∥+ βn∥f(p)− p∥+ (1− βn)∥zn − p∥
≤ βnκ∥zn − p∥+ βn∥f(p)− p∥+ (1− βn)∥zn − p∥
= (1− (1− κ)βn)∥zn − p∥+ βn∥f(p)− p∥. (24)

Substituting (23) into (24) we obtain

∥sn+1 − p∥ ≤(1− (1− κ)βn)∥sn − p∥+ βnM1 + βn∥f(p)− p∥

=(1− (1− κ)βn)∥sn − p∥+ (1− κ)βn
M1 + ∥f(p)− p∥

1− κ

≤max{∥sn − p∥, M1 + ∥f(p)− p∥
1− κ

}

≤... ≤ max{∥s0 − p∥, M1 + ∥f(p)− p∥
1− κ

}.

This implies {sn} is bounded. We also get {zn}, {f(zn)}, {wn} are bounded.

Claim 4.

∥wn − zn − γηn∆n∥2 + (2− γ)γη2n∥∆n∥2 ≤ ∥sn − p∥2 − ∥sn+1 − p∥2 + βnM4 ∀n ≥ n0,

for some M4 > 0. Indeed, we get

∥sn+1 − p∥2 ≤βn∥f(zn)− p∥2 + (1− βn)∥zn − p∥2

≤βn(∥f(zn)− f(p)∥+ ∥f(p)− p∥)2 + ∥zn − p∥2

≤βn(κ∥zn − p∥+ ∥f(p)− p∥)2 + (1− βn)∥zn − p∥2

≤βn(∥zn − p∥+ ∥f(p)− p∥)2 + (1− βn)∥zn − p∥2

=∥zn − p∥2 + βn(2∥zn − p∥∥f(p)− p∥+ ∥f(p)− p∥2)
≤∥zn − p∥2 + βnM2, (25)

for some M2 > 0. Substituting (6) into (25) we get

∥sn+1 − p∥2 ≤ ∥wn − x∗∥2 − ∥wn − zn − γηn∆n∥2 − (2− γ)γη2n∥∆n∥2 + βnM2. (26)

It implies from (23) that

∥wn − p∥2 ≤ (∥sn − p∥+ βnM1)
2

= ∥sn − p∥2 + βn(2M1∥sn − p∥+ βnM
2
1 )

≤ ∥sn − p∥2 + βnM3, (27)

for some M3 > 0. Combining (26) and (27) we obtain

∥sn+1 − p∥2 ≤ ∥sn − p∥2 + βnM3 − ∥wn − zn − γηn∆n∥2 − (2− γ)γη2n∥∆n∥2 + βnM2.

This implies that

∥wn − zn − γηn∆n∥2 + (2− γ)γη2n∥∆n∥2 ≤ ∥sn − p∥2 − ∥sn+1 − p∥2 + βnM4,

where M4 := M2 +M3.
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Claim 5.

∥sn+1 − p∥2 ≤(1− (1− κ)βn)∥sn − p∥2

+ (1− κ)βn

[
2

1− κ
⟨f(p)− p, sn+1 − p⟩+ 3M

1− κ

αn

βn
∥sn − sn−1∥

]
,

for some M > 0. Indeed, we have

∥wn − p∥2 = ∥sn + αn(sn − sn−1)− p∥2

= ∥sn − p∥2 + 2αn⟨sn − p, sn − sn−1⟩+ α2
n∥sn − sn−1∥2

≤ ∥sn − p∥2 + 2αn∥sn − p∥∥sn − sn−1∥+ α2
n∥sn − sn−1∥2. (28)

Using (2) we have

∥sn+1 − p∥2 = ∥βnf(zn) + (1− βn)zn − p∥2

= ∥βn(f(zn)− f(p)) + (1− βn)(zn − p) + βn(f(p)− p)∥2

≤ ∥βn(f(zn)− f(p)) + (1− βn)(zn − p)∥2 + 2βn⟨f(p)− p, sn+1 − p⟩
≤ βn∥f(zn)− f(p)∥2 + (1− βn)∥zn − p∥2 + 2βn⟨f(p)− p, sn+1 − p⟩
≤ βnκ

2∥zn − p∥2 + (1− βn)∥zn − p∥2 + 2βn⟨f(p)− p, sn+1 − p⟩
≤ βnκ∥zn − p∥2 + (1− βn)∥zn − p∥2 + 2βn⟨f(p)− p, sn+1 − p⟩
= (1− (1− κ)βn)∥zn − p∥2 + 2βn⟨f(p)− p, sn+1 − p⟩
≤ (1− (1− κ)βn)∥wn − p∥2 + 2βn⟨f(p)− p, sn+1 − p⟩. (29)

Substituting (28) into (29)

∥sn+1 − p∥2 ≤(1− (1− κ)βn)∥sn − p∥2 + 2αn∥sn − p∥∥sn − sn−1∥
+ α2

n∥sn − sn−1∥2 + 2βn⟨f(p)− p, sn+1 − p⟩

=(1− (1− κ)βn)∥sn − p∥2 + (1− κ)βn
2

1− κ
⟨f(p)− p, sn+1 − p⟩

+ αn∥sn − sn−1∥
(
2∥sn − p∥+ αn∥sn − sn−1∥

)
≤(1− (1− κ)βn)∥sn − p∥2 + (1− κ)βn

2

1− κ
⟨f(p)− p, sn+1 − p⟩

+ αn∥sn − sn−1∥
(
2∥sn − p∥+ α∥sn − sn−1∥

)
≤(1− (1− κ)βn)∥sn − p∥2

+ (1− κ)βn.
2

1− κ
⟨f(p)− p, sn+1 − p⟩+ 3Mαn∥sn − sn−1∥

≤(1− (1− κ)βn)∥sn − p∥2

+ (1− κ)βn

[
2

1− κ
⟨f(p)− p, sn+1 − p⟩+ 3M

1− κ

αn

βn
∥sn − sn−1∥

]
,

for M := supn∈N{∥sn − p∥, α∥sn − sn−1∥} > 0.

Claim 6. The sequence {∥sn − p∥}, n ≥ 0, converges to zero. To see this, set

an := ∥sn − p∥2

https://orcid.org/0000-0003-1753-7237


New viscosity algorithm with strong convergence for quasimonotone variational inequalities 87

and

bn :=
2

1− κ
⟨f(p)− p, sn+1 − p⟩+ 3M

1− κ

αn

βn
∥sn − sn−1∥.

Then Claim 5 can be rewritten as follows:

an+1 ≤ (1− (1− κ)βn)an + (1− κ)βnbn.

By Lemma 2.4, it is sufficient to show that lim supk→∞ bnk
≤ 0 for every subsequence {ank

}
of {an} satisfying

lim inf
k→∞

(ank+1 − ank
) ≥ 0.

Since limn→+∞
3M

1− κ

αn

βn
∥sn − sn−1∥ = 0, we only need to show that

lim sup
k→∞

⟨f(p)− p, snk+1 − p⟩ ≤ 0

for every subsequence {∥snk
− p∥} of {∥sn − p∥} satisfying

lim inf
k→∞

(∥snk+1 − p∥ − ∥snk
− p∥) ≥ 0.

Suppose that {∥snk
− p∥} is a subsequence of {∥sn − p∥} such that

lim inf
k→∞

(∥snk+1 − p∥ − ∥snk
− p∥) ≥ 0.

Then

lim inf
k→∞

(∥snk+1−p∥2−∥snk
−p∥2) = lim inf

k→∞
[(∥snk+1−p∥−∥snk

−p∥)(∥snk+1−p∥+∥snk
−p∥)] ≥ 0.

Using Claim 4, we obtain

lim sup
k→∞

[
∥wnk

− znk
− γηnk

∆nk
∥2 + (2− γ)γη2nk

∥∆nk
∥2
]

≤ lim sup
k→∞

[
∥snk

− p∥2 − ∥snk+1 − p∥2 + βnk
M4

]
≤ lim sup

k→∞

[
∥snk

− p∥2 − ∥snk+1 − p∥2
]
+ lim sup

k→∞
βnk

M4

= − lim inf
k→∞

[
∥snk+1 − p∥2 − ∥snk

− p∥2
]

≤ 0.

This implies that

lim
k→∞

∥wnk
− znk

− γηnk
∆nk

∥ = 0 and lim
k→∞

∥∆nk
∥ = 0. (30)

In view of (30), we obtain

lim
k→∞

∥wnk
− znk

∥ = 0. (31)

On the other hand, using Claim 2 we get

lim
k→∞

∥wnk
− vnk

∥ = 0. (32)

Now, we claim that

∥snk+1 − snk
∥ → 0 as n → ∞. (33)

Indeed, by definition {sn+1} we have

∥snk+1 − znk
∥ = βnk

∥znk
− f(znk

)∥ → 0 as n → +∞. (34)
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Combining (31) and (34) we deduce

∥snk+1 − wnk
∥ ≤ ∥snk+1 − znk

∥+ ∥znk
− wnk

∥ → 0 as n → +∞. (35)

Moreover, we have

∥snk
− wnk

∥ = αnk
∥snk

− snk−1∥ = βnk

αnk

βnk

∥snk
− snk−1∥ → 0. (36)

Combining (35) and (36), we get

∥snk+1 − snk
∥ ≤ ∥snk+1 − wnk

∥+ ∥wnk
− snk

∥ → 0.

Since the sequence {snk
} is bounded, without any loss of generality we may assume that

{snk
} converges weakly to some z∗ ∈ H so that

lim sup
k→∞

⟨f(p)− p, snk
− p⟩ = ⟨f(p)− p, z∗ − p⟩. (37)

Using (36), we get

wnk
⇀ z∗ as k → ∞.

Now, using (32), we get limk→∞ ∥wnk
− vnk

∥ = 0, Lemma 3.2 and the assumption Fx ̸=
0, ∀x ∈ C we get z∗ ∈ SD.

From (37) and the definition of p = PSD
◦ f(p), and z∗ ∈ SD. we have

lim sup
k→∞

⟨f(p)− p, snk
− p⟩ = ⟨f(p)− p, z∗ − p⟩ ≤ 0. (38)

Combining (33) and (38), we have

lim sup
k→∞

⟨f(p)− p, snk+1 − p⟩ = lim sup
k→∞

⟨f(p)− p, snk+1 − snk
⟩+ lim sup

k→∞
⟨f(p)− p, snk

− p⟩

= lim sup
k→∞

⟨f(p)− p, snk
− p⟩

= ⟨f(p)− p, z∗ − p⟩
≤ 0. (39)

Hence, by (39), limn→∞
αn

βn
∥sn − sn−1∥ = 0. Combining Claim 5 and Lemma 2.4, we have

limn→∞ ∥sn − p∥ = 0. The proof is completed.

□

4. Conclusions

This paper introduced a novel extragradient method for solving quasimonotone vari-

ational inequalities in real Hilbert spaces. The proposed algorithm requires computing only

one projection onto the feasible set C per iteration and employs an adaptive stepsize rule.

Notably, the convergence of our proposed method does not necessitate prior knowledge of the

Lipschitz constant of the variational inequality mapping. Our method represents a novel and

state-of-the-art contribution to the study of solving quasimonotone variational inequalities

in infinite-dimensional Hilbert spaces.
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