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Phytophthora infestans is the root cause of late blight in potato leaves. It is a 

devastating pathogen that leads to significant yield losses worldwide. It is crucial to 

detect the pathogen in early stages to prevent outbreaks and improve disease 

management strategies. This study compares YOLO architectures, starting from 

YOLOv7 to YOLO12, tailored for high-accuracy detection of Phytophthora infestans. 

The database consists of images from healthy leaves to early blight leaves, to late-

blighted leaves, in potato crops, being publicly available. Experimental results show 

that YOLO12n achieved the highest precision of 0.999, outperforming all the other 

models. The proposed article contributes to precision agriculture by providing an 

automated, scalable, efficient integrated pathogen management detection system. 

Keywords: Phytophthora infestans, YOLO, Potato Crops, Deep Learning, 

Agriculture, Computer Vision 

1. Introduction 

Phytophthora infestans is a fungal pathogen responsible for late blight 

disease. This devastating disease is affecting potato and tomato crops. Experts [1] 

consider it to be one of the most aggressive plant pathogens, due to its fast spreading 

and destructive impact on global agriculture. The infection primarily targets leaves, 

but it also affects stems and tubers. As a representative of the Stramenopila family, 

P. Infestans is phylogenetically closer to algae than fungi and shows a complex life 

cycle. It diffuses predominantly through air and water under high humidity and 

moderate temperature conditions.  

Phytophthora infestans is a fungal-like oomycete pathogen responsible for 

the disease commonly known as "potato late blight," widely regarded by experts as 

the most aggressive plant pathogen. This microorganism primarily affects potato 

and tomato crops, causing significant damage to the leaves, stems, and tubers.  

The disease is highly destructive, leading to substantial losses both globally 

and nationally in the agricultural sector. 
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Phytophthora infestans belongs to the kingdom Stramenopila, making it 

more closely related to algae than fungi, and it has a complex life cycle. It spreads 

primarily through airborne and waterborne spores, thriving in high humidity and 

moderate temperatures. This fungal infection produces sporangia and zoospores, 

which could germinate in water and rapidly infect host plants. 

Constant monitoring of agricultural pests enables specialists to assess 

infestation levels and develop effective pest management strategies. This study 

investigates the capability of convolutional neural networks in classifying the 

degree of infestation in potato crops. It explores the detection of three infestation 

stages: healthy plants, an intermediate stage with moderate infestation, and the final 

stage of severe infection. Top accurately find damage caused by Phytophthora 

infestans, a decision fusion system including multiple neural networks was 

employed. 

The control of Phytophthora infestans is a highly labor-intensive process, 

requiring significant time and resources. One common method is crop’s rotation, 

which prevents the planting of tomatoes near potato fields and restricts the reuse of 

the same land for these crops in consecutive years, thereby reducing the favorable 

conditions for fungal proliferation. Another often used strategy involves cultivating 

Phytophthora infestans-resistant plant varieties, although resistance is not entirely 

foolproof. Additionally, removing infected plants from fields serves as an important 

measure to halt the spread of the pathogen. 

Managing the spread of this infection is complex but possible. Both 

chemical and biological control methods are employed. Chemical control involves 

the systematic application of preventive fungicides, often in varying formulations, 

as Phytophthora infestans can develop resistance to fungicidal treatments. 

Biological control methods relieve bacteria such as Pseudomonas fluorescens and 

Bacillus subtilis, as proved by scientific studies. 

The focus on Phytophthora infestans in this research stems from the severe 

economic damage it has caused both historically and in the present. This pathogen 

was notoriously responsible for triggering the Irish Potato Famine (1845–1852), 

which led to widespread human losses and increased migration rates. Today, this 

fungal infection continues to inflict substantial economic damage, particularly in 

regions where potato and tomato cultivation is a primary source of income. 

Consequently, this study aims to mitigate such losses through early infestation 

detection, improved classification performance, and scalable analysis methods, all 

of which contribute to cost reduction. 

A modern solution in plant disease management is artificial intelligence 

(AI). AI plays a crucial role in agriculture, aiding in the identification of various 

plant species and agricultural pests, including potato late blight caused by 

Phytophthora infestans. AI can detect early symptoms of plant diseases far more 

efficiently than the human eye. Essential components in this context include 
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imaging devices such as cameras, drones, surveillance systems, and integrated field 

sensors, which prove continuous monitoring systems that detect subtle changes 

before they become visible to human observers. This enables prompt intervention 

to prevent disease spread, reduce costs, and minimize material losses caused by 

pests. 

AI also plays a key role in predicting environmental conditions that favor 

plant diseases. It allows for the analysis of meteorological data, humidity levels, 

temperature fluctuations, and other environmental factors that contribute to 

pathogen dissemination. By using such information, farmers receive real-time alerts 

regarding environmental changes and pathogen progression. Additionally, 

recommendation systems can provide personalized guidance, enabling prompt 

action to mitigate potential risks. 

Artificial Intelligence revolutionized plant disease management by enabling 

rapid and precise pathogen detection. This approach facilitates early intervention, 

reducing economic losses, mitigating disease spreading, and supporting agricultural 

development. This study contributes to the development of scalable, cost-effective 

solutions for safeguarding global food security by integrating AI-driven disease 

detection with precision agriculture. 

This paper presents the training and testing methodologies for the YOLO 

family to detect Phytophthora infestans in potato crops. The Experimental Results 

section discusses the strategies adopted in developing the application and compares 

the performances of different networks to determine the most effective network as 

a recommendation for end users. Finally, the Discussions and Conclusions sections 

provide a comprehensive analysis of the findings and insights drawn from this 

research. 

2. Related works 

Researchers propose an automated identification method based on VGG19 

for potato leaf detection [2]. This approach leverages computer vision to detect four 

common diseases: bacterial spots, early blight, late blight, and mite damage. The 

VGG19 model was fine-tuned using transfer learning on this dataset, achieving an 

impressive accuracy of 95.2% on the test set, outperforming other state-of-the-art 

methods. Early identification and classification of seven common potato diseases, 

including early blight, late blight, and other leaf diseases, was also the focus of 

study [3]. The proposed model employs deep learning techniques and is built upon 

a complex CNN architecture comprising three convolutional layers, three max-

pooling layers, and two fully connected layers. The model’s purpose is to enable 

more accurate and early disease detection, providing farmers and agricultural 

specialists with effective tools for disease management and improved crop 

protection. 
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Paper [4] proposes using CNNs to automate the detection process, enabling 

the early identification of potato leaf diseases. This study utilizes the “Potato 

Disease PyTorch Lightning CNN” dataset from Kaggle, similarly to the present 

research, for training the CNN model. The model achieved an impressive disease 

classification accuracy of approximately 98.6%. 

The evaluation of a total of eight deep learning (DL) models, including both 

custom-built and pre-trained architectures, using two validated datasets. The 

compared models include ResNet50, VGG16, a hybrid CNN-KNN, VGG19, 

SBCNN, InceptionV3, AlexNet, and a hybrid CNN-SVM [5]. Among these, the 

study found that ResNet50 achieved the highest accuracy in detecting potato leaf 

diseases, particularly CNN-based models, in enhancing the precision and efficiency 

of disease detection in potato crops. This achievement could play a crucial role in 

enabling prompt inventions and minimizing crop losses. 

Potato leaf images were categorized into three classes: healthy leaves, 

leaves affected by early blight, and leaves affected by late blight. A crucial aspect 

of the researcher [6] was balancing the dataset using oversampling techniques to 

prevent class imbalance. The data was then processed using a Convolution Neural 

Network (CNN), which employs multiple processing layers to extract and identify 

essential features from the images. The methodology involved selecting the optimal 

activation function, optimizer, the ReLU activation function, and 250 epochs. This 

result proves significant potential for the fast and precise diagnosis of potato leaf 

diseases, aiding farmers and agricultural authorities in implementing effective 

preventive measures.The primary diseases examined in [13] include late blight, 

early blight, and another leaf disease, all of which cause significant economic and 

ecological losses for farmers. The research aims to enable early detection of these 

diseases to minimize losses and safeguard the value of agricultural production. The 

study employs four categories of disease-affected leaves and one category of 

healthy leaves and evaluates three deep learning models: VGGNet16, ResNet101, 

and a modified version of AlexNet. The modified AlexNet model yielded the best 

results, achieving 99.97% accuracy during training and 61% accuracy in testing. 

This automated disease detection system has the potential to become a valuable tool 

for farmers, facilitating rapid diagnosis and effective intervention to prevent crop 

losses. This capability can significantly reduce the time and costs associated with 

manual crop health assessment.  

3. Materials and methods 

3.1. Database used 

The dataset “Potato Leafe Disease Gallery” is a public database available 

on Kaggle, being a valuable resource for researchers. This holds labeled images of 

early, late blight, and healthy leaves. The images are captured from different angles 
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and lighting conditions, creating various datasets suitable for training computer 

vision models.  

Each image is annotated with a specific disease type or marked as healthy 

for unaffected leaves. This structured labeling enables the training of models 

capable of distinguishing between healthy and infected leaves, including crop 

health monitoring, where fast disease detection allows farmers to take prompt 

action, thereby minimizing the risk of yield loss. Additionally, it plays a crucial role 

in precision agriculture, using advanced technologies to monitor and safeguard 

crops, ultimately enhancing agricultural efficiency and sustainability. In Table 1, 

the overview of the database is presented, explaining how balanced the number of 

images and the number of classes are. 
Table 1 

Database overview 

Class Number of 

Images 

Healthy leaves 152 

Early blight leaves 1000 

Late blight leaves 1000 

Total 2152 
 

As it can be seen in Table 1, the dataset is not balanced. In that regard, the 

class Healthy leaves were augmented to increase the size of the dataset from 152 to 

1000, as with the other classes, counting 3000 images in total. Table 2 also reflects 

the database after augmentation. The augmentation techniques used for the Healthy 

leaves class were horizontal flip, rotation, scale, vertical flip, brightness contrast, 

Gaussian blur, padding, and crop. For training/ validation, 800/ 200 images were 

used, as seen in Table 2.  
 

Table 2 

Database overview after image augmentation 

Class Number of Images for 

Training 

Number of 

Images for 

Validation 

Healthy leaves  800 200 

Early blight leaves  800 200 

Late blight leaves  800 200 

Total 2400 600 

  

The dataset is frequently employed with deep learning algorithms, 

particularly CNNs, which can analyze images, extract intricate features, and learn 

to recognize disease based on visual patterns. Before training models, data 

preprocessing is essential and typically involves noise reduction and image 

augmentation. Noise reduction improves image quality by removing artifacts, while 
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augmentation through transformations such as rotation, scaling, and brightness 

adjustment enhances dataset diversity, helping prevent model overfitting. Figure 1 

illustrates a representative example of each available class.  

 

Fig. 1.  a) Early_blight_leaves, b) Healthy_leaves, c) Late_blight_leaves 

 

3.2. Neural Networks Used 
 

The YOLO models, starting with YOLOv7 until YOLO12, were trained and 

proved progressive improvements in detection accuracy and efficiency, which 

highlighted the benefits of leveraging the latest advancements in object detection 

architectures. This approach shows performance improvements in accuracy, speed, 

and offering valuable insights into the evolution of the YOLO family architecture. 

YOLOv7 is a real-time object detection model that redefines the 

benchmarks for speed and accuracy in computer vision. It is particularly well-suited 

for applications such as object tracking, autonomous driving, robotics, and medical 

image analysis. One of the defining characteristics of this architecture is its 

performance, optimized for a broad range of frame rates, spanning from 5 FPS to 

160 FPS. With an average precision (AP) of 56.8%, YOLOv7 [7] stands as the most 

accurate real-time object detector for applications demanding speeds above 30 FPS. 

Among its notable innovations in design and training, YOLOv7 employs model 

reparameterization, which enhances performance by improving gradient flow 

within the network architecture. It also introduces a guided label assignment 

system, specifically fine-tuned for networks with multiple output layers. In Fig. 2, 

the architecture of YOLOv7 is presented. 

YOLOv8 is one of the latest iterations in the YOLO series, developed by 

Ultralytics, marking a significant advancement in real-time object detection. This 

version integrates cutting-edge features and optimizations, making it well-suited for 

a diverse range of applications, from object detection to more complex tasks such 

as segmentation, key point detection, and classification. 
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Fig. 2. YOLOv7 architecture 

The available YOLOv8 models start with YOLOv8n and end with 

YOLOv8x. The difference consists of the number of parameters used and the 

FLOPs. Key advantages of YOLOv8 [8] include its superior performance, as it 

surpasses earlier versions in both accuracy and speed. Its architecture is highly 

versatile, designed to excel not only in object detection but also in segmentation, 

classification, and other sophisticated tasks. In Fig. 3, the architecture of YOLOv8 

is shown. 

 

Fig. 3. YOLOv8 architecture 

YOLOv9 [9] has introduced significant advancements in real-time object 

detection, particularly on the COCO dataset, setting new benchmarks for efficiency 

and accuracy. Its various model variants, ranging from tiny (t) lightweight versions 

to large-scale (e) models, prove notable improvements in mean Average Precision 

(mAP) while significantly reducing computational demands and parameter counts. 

This makes YOLOv9 not only more precise but also more efficient than its 

predecessors and competing models. These improvements solidify YOLOv9’s 

position as object detection model, excelling in both accuracy and resource 

optimization. In Fig. 4, the architecture of YOLOv9 is presented. 

 

Fig. 4. YOLOv9 architecture 

YOLOv10 [10], released in 2024, introduces a series of enhancements that 

make it faster and more efficient, continuing YOLO’s tradition of prioritizing real-
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time performance. Key features of YOLOv10 are reducing the parameter count and 

lowering the latency. Also, the refined architecture for improved computational 

efficiency, the Non-Maximum Suppression (NMS)-free approach, and consistent 

dual assignments for better object detection accuracy. YOLOv10 is specifically 

designed to minimize the number of parameters required for detection, leading to 

lower latency and reduced hardware resource consumption. The difference consists 

of the number of parameters used and the FLOPs. For instance, YOLOv10-B 

features 25% fewer parameters compared to YOLOv9-C and achieves 46% lower 

latency, making it an ideal choice for real-time applications on resource-constrained 

devices, such as drones and security cameras. In Fig. 5, the architecture of 

YOLOv10 is presented. 

 

Fig. 5. YOLOv10 architecture 

YOLO11 [11], also released in 2024, stands for the pinnacle of YOLO’s 

evolution, incorporating the most advanced techniques in computer vision and 

machine learning. This makes it a top-tier choice for any application requiring high-

quality real-time object detection. Key Features of YOLO11 are enhanced 

architecture with advanced feature extraction techniques, expanded scope for 

various computer vision tasks and optimized processing speeds for even faster 

performance. YOLO11 introduces 5 new models, starting from YOLO11n to 

YOLO11x.  

YOLO11 introduces significant architectural improvements, enhancing its 

ability to capture fine details in complex images. It can detect not only standard 

objects but also subtle objects or those in challenging lighting conditions. Beyond 

object detection, YOLO11 now supports instance segmentation, enabling the 

identification of individual objects within an image, pose estimation, allowing for 

spatial understanding of an objects or person’s position, and oriented object 

detection, capable of recognizing objects at unusual angles. With these 

advancements, YOLO11 sets a new benchmark for precision, versatility, and 

efficiency in real-time computer vision applications. In Fig. 6, the architecture of 

YOLO11 is presented. 

YOLO12 [12] introduces an Area Attention Mechanism, a novel self-

attention approach that efficiently handles large receptive fields by dividing feature 

maps into equal-sized regions, significantly reducing computational costs. 
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Fig. 6. YOLO11 architecture 

 

It also features Residual Efficient Layer Aggregation Networks (R-ELAN), an 

improved aggregation module with block-level residual connections and a 

bottleneck-like structure for enhanced optimization. 

The model streamlines standard attention mechanisms using 

FlashAttention, removing positional encoding, adjusting MLP ratios, and 

incorporating a 7×7 separable convolution to implicitly encode positional 

information. As well as the previous models, YOLO12 introduces 5 new models, 

from YOLO12n to YOLO12x. 

YOLO12 is designed for versatile computer vision tasks, including object 

detection, instance segmentation, classification, pose estimation, and oriented 

object detection. It achieves a strong balance between speed and accuracy by 

reducing parameters while supporting high performance. It enhanced feature 

extraction, optimization stability, and architectural efficiency, being suitable for 

various applications. In Fig. 7, the model architecture of YOLO12 is presented. 

 

Fig.7. – YOLO12 architecture 

 The models were evaluated using the key performance metrics, presented in 

Tabel 3, such Precision (P), Recall (R) and Mean Average Precision (mAP) to 

assess their accuracy and effectiveness in the classification task. 

Table 3 

Performance Metrics 

Name Formula Parameters 

Precision 𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

TP = True Positive,  

FP = False Positive values 

Recall 𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

TP = True Positive,  

FN = False Negative values 
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Mean Average 

Precision 

𝑚𝐴𝑃

=  
1

𝑛
· ∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

 

n = total number of classes,  

k = the index of a specific class,  

𝐴𝑃𝑘 = sum of the Average 

Precision (AP) values across all n 

classes 

Precision measures the proportion of correctly identified instances out of all 

predicted instances, while Recall reflects the model’s ability to detect all relevant 

instances within the dataset. Mean average precision (mAP) provides a 

comprehensive evaluation by combining both precision and recall, across different 

confidence thresholds.  

4. Results 

The system diagram, presented in Figure 11, illustrates a standard machine 

learning pipeline, broken into four main stages as it follows: data acquisition, data 

preprocessing, modelling, result evaluation. Data acquisition involves collecting 

raw data from various sources such sensors or cameras, public or proprietary 

databases, manual annotation or scraping. The purpose of it is to to gather sufficient 

and relevant data that will serve as the foundation for the entire modeling process. 

Once data is collected, it must be cleaned and transformed. This stage, data 

preprocessing includes removing noise, duplicates, or irrelevant features, 

normalization or standardization, data augmentation and splitting into training, 

validation, and test sets the purpose of it is to prepare the data in a format suitable 

for training a model while reducing bias and improving performance. The 

modelling step focuses on building the machine learning or deep learning model 

choosing the model architecture, training the model on preprocessed data and 

tuning hyperparameters to optimize performance, with the purpose of learning 

patterns or relationships within the data to make predictions or classifications. 

Finally, the trained model is assessed using metrics such as accuracy, precision, 

recall, F1-score. Since the input involves static images, inference time is not critical 

here, meaning evaluation focuses more on model accuracy and generalization rather 

than speed. 

 

Fig. 11. – System diagram 

The models were trained using a cloud virtual machine powered by a GPU 

PNY NVIDIA TESLA T4 TCST4M-PB and CUDA 12.4 toolkit. The training for 

the YOLO models was performed the same, with batch dimensions of 16 on 100 

epochs, with a 640x640 image dimension. While training, callbacks were defined 
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as checkpoints for saving only the best weights, early stopping, and reducing the 

learning rate. Table 4 presents the leaves diseases studied in this paper, the number 

of images per class used for training, and for validation. Due to the small size of the 

dataset, it led to overfitting, as the model learned the training data too well but failed 

to generalize to unseen examples. 
Table 4 

Classes overview 

Class Class name Total Number 

of Images 

Number of 

Images for 

Training 

Number of 

Images for 

Validation 

Healthy leaves Healthy_leaves 1000 800 200 

Early blight leaves Early_blight_leaves 1000 800 200 

Late blight leaves Late_blight_leaves 1000 800 200 

Total  3000 2400 600 

 

In Table 5, the results obtained on the training phase are presented, and in 

Table 6 the results obtained in the validation phase are shown. 
Table 5 

Training results 

Architecture Precisio

n 

Recal

l 

mAP5

0 

mAP9

5 

Inference 

(ms) 

YOLOv7 0.574 0.733 0.666 0.466 14.3 

YOLOv8n 0.975 1 0.993 0.978 2.0 

YOLOv9n 0.976 0.991 0.993 0.983 1.3 

YOLOv10n 0.946 0.977 0.994 0.959 3.09 

YOLOv11n 0.998 1 0.995 0.988 2.7 

YOLOv8m 0.997 1 0.995 0.961 9.95 

YOLOv9m 0.969 0.992 0.991 0.99 12.56 

YOLOv10m 0.988 0.987 0.994 0.954 11.24 

YOLO11m 0.978 0.996 0.994 0.965 11.4 

YOLO12n 0.999 0.999 0.995 0.982 4.2 

YOLO12m 0.999 1 0.995 0.991 3.5 

 

Table 6 

Validation results 

Architecture Precisio

n 

Recal

l 

mAP5

0 

mAP9

5 

Inference 

(ms) 

YOLOv7 0.574 0.733 0.666 0.466 14.8 

YOLOv8n 0.975 1 0.993 0.98 3.8 

YOLOv9n 0.976 0.991 0.993 0.983 2.3 

YOLOv10n 0.939 0.987 0.995 0.96 5.8 

YOLOv11n 0.998 1 0.995 0.988 4.7 

YOLOv8m 0.997 0.999 0.995 0.962 24.6 

YOLOv9m 0.969 0.992 0.991 0.99 25.2 

YOLOv10m 0.987 0.987 0.995 0.995 12.2 
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YOLO11m 0.978 0.996 0.994 0.965 26.9 

YOLO12n 0.999 0.999 0.995 0.984 6.2 

YOLO12m 0.999 1 0.995 0.991 5.6 

 

As it can be seen, the YOLO11m model obtained the best mAP95, 0.995. 

The best mAP50 is 0.995, obtained by several models as YOLOv10n, YOLO11n, 

YOLOv10m, and YOLO12n. The best recall score, 1, is obtained by YOLOv8n and 

YOLO11n. The most precise model is YOLO12n, which obtained 0.999. On the 

other hand, YOLOv7 obtained the lowest results in this task. Since the inference 

involves a comparison of static images, the time factor is not critical or relevant in 

this context.  

In Fig. 12, experimental results from all the classes in the training and 

validation phases are displayed. 

 

Fig. 12. – Experimental results from all the classes 

Table 7 

Class annotations 

Class Class annotation Name of the Image 

Early blight leaves 0 Starts with e/E 

Healthy leaves 1 Starts with h/H 

Late blight leaves 2 Starts with l/L 

  

Analyzing Fig. 12 and Table 7, there are both correctly classified and misclassified 

images. For example, Image ‘Haug_216.JPG’ is part of the healthy leaves class, but 

it was classified as an early blight leaf, while ‘h_ (64).JPG’ was correctly classified. 
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5. Conclusion  

In this study, the authors explored the effectiveness of YOLO object 

detection models from YOLOv7 to YOLOv12 for the detection of potato leaf 

infestation in precision agriculture. Across all versions, the models proved strong 

performance in accurately finding signs of infestation under diverse field 

conditions. Importantly, the authors have shown that YOLO's real-time processing 

capabilities, particularly in its recent versions, make it ideal for field deployment in 

precision agriculture, where prompt identification of crop diseases is crucial for 

minimizing yield loss. These findings underscore the suitability of YOLO-based 

models as practical tools for supporting early intervention and automated crop 

monitoring in real-world agricultural settings. 

In conclusion, deep learning architectures, particularly convolutional neural 

networks (CNNs), have proven to be highly effective in the agricultural domain, 

especially in the detection and management of plant diseases such as Phytophthora 

infestans. These architectures enable precise image classification, disease detection, 

and early identification of affected areas, which is crucial for improving crop yields 

and reducing the need for chemical interventions. In agriculture, CNN-based 

models, including popular architectures like YOLO (You Only Look Once), are 

used to analyze images of plants and detect symptoms of diseases, enabling farmers 

to take timely actions to prevent widespread infection. YOLO is known for its real-

time processing capabilities, which make it ideal for field deployment in precision 

agriculture. Furthermore, advancements in architecture, like YOLOv7 and others 

that focus on transfer learning, have significantly reduced the amount of labeled 

data needed for training models, making them more accessible and effective in 

various agricultural settings. The application of these architectures in the context of 

Phytophthora infestans provides a powerful tool for early detection, monitoring, 

and management, which not only supports sustainable farming practices but also 

contributes to better food security by mitigating crop losses caused by this 

devastating pathogen.  
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